Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hypertension

Abstract

Systemic arterial hypertension is the most important modifiable risk factor for all-cause morbidity and mortality worldwide and is associated with an increased risk of cardiovascular disease (CVD). Fewer than half of those with hypertension are aware of their condition, and many others are aware but not treated or inadequately treated, although successful treatment of hypertension reduces the global burden of disease and mortality. The aetiology of hypertension involves the complex interplay of environmental and pathophysiological factors that affect multiple systems, as well as genetic predisposition. The evaluation of patients with hypertension includes accurate standardized blood pressure (BP) measurement, assessment of the patients’ predicted risk of atherosclerotic CVD and evidence of target-organ damage, and detection of secondary causes of hypertension and presence of comorbidities (such as CVD and kidney disease). Lifestyle changes, including dietary modifications and increased physical activity, are effective in lowering BP and preventing hypertension and its CVD sequelae. Pharmacological therapy is very effective in lowering BP and in preventing CVD outcomes in most patients; first-line antihypertensive medications include angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, dihydropyridine calcium-channel blockers and thiazide diuretics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Association between systolic blood pressure and coronary heart disease mortality.
Figure 2: The major neuroendocrine systems involved in the regulation of blood pressure.
Figure 3: Role of the renin–angiotensin–aldosterone system in the regulation of blood pressure.
Figure 4: Pathways affected in single gene, Mendelian hypertension and hypotension syndromes.
Figure 5: Algorithm for the management of hypertension.

References

  1. 1

    Luft, F. C. Twins in cardiovascular genetic research. Hypertension 37, 350–356 (2001).

    CAS  PubMed  Google Scholar 

  2. 2

    Fagard, R. et al. Heritability of conventional and ambulatory blood pressures: a study in twins. Hypertension 26, 919–924 (1995).

    CAS  PubMed  Google Scholar 

  3. 3

    Surendran, P. et al. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat. Genet. 48, 1151–1161 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Ehret, G. B. et al. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat. Genet. 48, 1171–1184 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Liu, C. et al. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat. Genet. 48, 1162–1170 (2016). Together with references 3 and 4, these large-scale studies analysed the genomes of 1 million individuals, identifying new BP-associated loci, doubling the number of reported BP-associated genes and helping to identify potential new targets for BP treatment.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Dominiczak, A., Delles, C. & Padmanabhan, S. Genomics and precision medicine for clinicians and scientists in hypertension. Hypertension 69, e10–e13 (2017).

    CAS  PubMed  Google Scholar 

  7. 7

    Lifton, R. P., Gharavi, A. G. & Geller, D. S. Molecular mechanisms of human hypertension. Cell 104, 545–556 (2001).

    CAS  PubMed  Google Scholar 

  8. 8

    Ehret, G. B. & Caulfield, M. J. Genes for blood pressure: an opportunity to understand hypertension. Eur. Heart J. 34, 951–961 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Maass, P. G. et al. PDE3A mutations cause autosomal dominant hypertension with brachydactyly. Nat. Genet. 47, 647–653 (2015).

    CAS  PubMed  Google Scholar 

  10. 10

    Forouzanfar, M. H. et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1659–1724 (2016). The Global Burden of Disease Study 2015 summarizes the evidence for risk factor exposure and the attributable burden of disease spanning 25 years and establishes hypertension as one of the top ten largest contributors to global disability-adjusted life years, highlighting a huge opportunity for intervention.

    Google Scholar 

  11. 11

    Blood Pressure Lowering Treatment Trialists’ Collaboration. Blood pressure-lowering treatment based on cardiovascular risk: a meta-analysis of individual patient data. Lancet 384, 591–598 (2014).

    Google Scholar 

  12. 12

    Page, L. B., Damon, A. & Moellering, R. C. Antecedents of cardiovascular disease in six Solomon Islands societies. Circulation 49, 1132–1146 (1974).

    CAS  PubMed  Google Scholar 

  13. 13

    Poulter, N. R., Prabhakaran, D. & Caulfield, M. Hypertension. Lancet 386, 801–812 (2015).

    PubMed  Google Scholar 

  14. 14

    Rose, G. & Day, S. The population mean predicts the number of deviant individuals. BMJ 301, 1031–1034 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Mills, K. T. et al. Global Disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation 134, 441–450 (2016). This study examines global disparities in hypertension prevalence, awareness, treatment and control in 2010 compared with trends from 2000 and shows that the incidence of hypertension increased in low-income and middle-income countries whereas BP control rates decreased. BP control rates in 2010 remained low worldwide: 28.4% in high-income countries and 7.7% in middle-income and low-income countries.

    PubMed  PubMed Central  Google Scholar 

  16. 16

    Forouzanfar, M. H. et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mmHg, 1990–2015. JAMA 317, 165 (2017).

    PubMed  Google Scholar 

  17. 17

    Lewington, S. et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360, 1903–1913 (2002). This landmark study shows that usual (that is, the estimated BP at the start of that decade) BP is strongly and directly related to vascular and overall mortality, down to a threshold of 115/75 mmHg, below which there is little evidence.

    PubMed  Google Scholar 

  18. 18

    Rapsomaniki, E. et al. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. Lancet 383, 1899–1911 (2014).

    PubMed  PubMed Central  Google Scholar 

  19. 19

    Stamler, J., Stamler, R. & Neaton, J. D. Blood pressure, systolic and diastolic, and cardiovascular risks. US population data. Arch. Intern. Med. 153, 598–615 (1993).

    CAS  PubMed  Google Scholar 

  20. 20

    Klag, M. J. et al. Blood pressure and end-stage renal disease in men. N. Engl. J. Med. 334, 13–18 (1996).

    CAS  PubMed  Google Scholar 

  21. 21

    Goff, D. C. et al. 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk. J. Am. Coll. Cardiol. 63, 2935–2959 (2014).

    PubMed  Google Scholar 

  22. 22

    Hall, M. E. & Hall, J. E. in Hypertension: A Companion to Braunwald's Heart Disease 3rd edn (eds Bakris, G. L. & Sorrentino, M. ) 33–51 (Elsevier, 2018). This comprehensive review of the pathogenesis of hypertension includes the mechanisms involved in both the short-term and long-term control of BP and the integration of cardiovascular, renal, neural, endocrine, local tissue, inflammatory, genetic and environmental effects on the genesis of hypertension.

    Google Scholar 

  23. 23

    Gangwisch, J. E. A review of evidence for the link between sleep duration and hypertension. Am. J. Hypertens. 27, 1235–1242 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Palagini, L. et al. Sleep loss and hypertension: a systematic review. Curr. Pharm. Des. 19, 2409–2419 (2013).

    CAS  PubMed  Google Scholar 

  25. 25

    Mikael, L. de R. et al. Vascular aging and arterial stiffness. Arq. Bras. Cardiol. 109, 253–258 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. 26

    Sindler, A. L. et al. Nitrite supplementation reverses vascular endothelial dysfunction and large elastic artery stiffness with aging. Aging Cell 10, 429–437 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Steppan, J., Barodka, V., Berkowitz, D. E. & Nyhan, D. Vascular stiffness and increased pulse pressure in the aging cardiovascular system. Cardiol. Res. Pract. 2011, 263585 (2011).

    PubMed  PubMed Central  Google Scholar 

  28. 28

    Page, I. H. Pathogenesis of arterial hypertension. JAMA 140, 451–458 (1949).

    CAS  Google Scholar 

  29. 29

    Harrison, D. G. The Mosaic Theory revisited: common molecular mechanisms coordinating diverse organ and cellular events in hypertension. J. Am. Soc. Hypertens. 7, 68–74 (2013). This update of the mosaic theory of hypertension, proposed by Irvine Page in 1949, reviews the genetic, environmental, neural, mechanical and hormonal perturbations that interdigitate to raise BP, particularly the interactions that occur at the cellular and molecular level.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Feng, W., Dell’Italia, L. J. & Sanders, P. W. Novel paradigms of salt and hypertension. J. Am. Soc. Nephrol. 28, 1362–1369 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Wilck, N. et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551, 585 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Singh, A. & Williams, G. H. Textbook of Nephro-Endocrinology 2nd edn (Academic Press, 2017).

    Google Scholar 

  33. 33

    Varagic, J., Ahmad, S., Nagata, S. & Ferrario, C. M. ACE2: angiotensin II/angiotensin-(1–7) balance in cardiac and renal injury. Curr. Hypertens. Rep. 16, 420 (2014).

    PubMed  PubMed Central  Google Scholar 

  34. 34

    Ferrario, C. M. ACE2: more of Ang-(1–7) or less Ang II? Curr. Opin. Nephrol. Hypertens. 20, 1–6 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Zimmerman, D. & Burns, K. D. Angiotensin-(1–7) in kidney disease: a review of the controversies. Clin. Sci. 123, 333–346 (2012).

    CAS  Google Scholar 

  36. 36

    Zhou, Z. H. & Bubien, J. K. Nongenomic regulation of EnaC by aldosterone. Am. J. Physiol. Cell Physiol. 281, C1118–C1130 (2001).

    CAS  PubMed  Google Scholar 

  37. 37

    McCurley, A. & Jaffe, I. Z. Mineralocorticoid receptors in vascular function and disease. Mol. Cell. Endocrinol. 350, 256–265 (2012).

    CAS  PubMed  Google Scholar 

  38. 38

    Kerkelä, R., Ulvila, J. & Magga, J. Natriuretic peptides in the regulation of cardiovascular physiology and metabolic events. J. Am. Heart Assoc. 4, e002423 (2015).

    PubMed  PubMed Central  Google Scholar 

  39. 39

    Woodard, G. E. & Rosado, J. A. Chapter 3 Natriuretic peptides in vascular physiology and pathology. Int. Rev. Cell. Mol. Biol. 268, 59–93 (2008).

    CAS  PubMed  Google Scholar 

  40. 40

    Curry, F.-R. E. Atrial natriuretic peptide: an essential physiological regulator of transvascular fluid, protein transport, and plasma volume. J. Clin. Invest. 115, 1458–1461 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Armaly, Z., Assady, S. & Abassi, Z. Corin: a new player in the regulation of salt-water balance and blood pressure. Curr. Opin. Nephrol. Hypertens. 22, 713–722 (2013).

    CAS  PubMed  Google Scholar 

  42. 42

    Schlueter, N. et al. Metabolic actions of natriuretic peptides and therapeutic potential in the metabolic syndrome. Pharmacol. Ther. 144, 12–27 (2014).

    CAS  PubMed  Google Scholar 

  43. 43

    Khaddaj Mallat, R., Mathew John, C., Kendrick, D. J. & Braun, A. P. The vascular endothelium: a regulator of arterial tone and interface for the immune system. Crit. Rev. Clin. Lab. Sci. 54, 458–470 (2017).

    CAS  PubMed  Google Scholar 

  44. 44

    Sandoo, A., van Zanten, J. J. C. S. V., Metsios, G. S., Carroll, D. & Kitas, G. D. The endothelium and its role in regulating vascular tone. Open Cardiovasc. Med. J. 4, 302–312 (2010).

    PubMed  PubMed Central  Google Scholar 

  45. 45

    Spieker, L. E., Flammer, A. J. & Lüscher, T. F. in The Vascular Endothelium II ( Moncada, S. & Higgs, A. ) 249–283 (Springer, Berlin, Heidelberg, 2006).

    Google Scholar 

  46. 46

    Ayub, T., Khan, S. N., Ayub, S. G., Dar, R. & Andrabi, K. I. Reduced nitrate level in individuals with hypertension and diabetes. J. Cardiovasc. Dis. Res. 2, 172–176 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Panza, J. A., Casino, P. R., Badar, D. M. & Quyyumi, A. A. Effect of increased availability of endothelium-derived nitric oxide precursor on endothelium-dependent vascular relaxation in normal subjects and in patients with essential hypertension. Circulation 87, 1475–1481 (1993).

    CAS  PubMed  Google Scholar 

  48. 48

    Kohan, D. E. & Barton, M. Endothelin and endothelin antagonists in chronic kidney disease. Kidney Int. 86, 896–904 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Serrano-Ponz, M. et al. Temporal profiles of blood pressure, circulating nitric oxide, and adrenomedullin as predictors of clinical outcome in acute ischemic stroke patients. Mol. Med. Rep. 13, 3724–3734 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Vendégh, Z. et al. Calcitonin gene-related peptide, substance P, nitric oxide and epinephrine modulate bone marrow micro circulation of the rabbit tibia and femur. Clin. Hemorheol. Microcirc. 45, 9–17 (2010).

    PubMed  Google Scholar 

  51. 51

    Yu, M. et al. Antihypertensive effect of glucagon-like peptide 1 in Dahl salt-sensitive rats. J. Hypertens. 21, 1125–1135 (2003).

    CAS  PubMed  Google Scholar 

  52. 52

    Popolo, A., Autore, G., Pinto, A. & Marzocco, S. Oxidative stress in patients with cardiovascular disease and chronic renal failure. Free Radic. Res. 47, 346–356 (2013).

    CAS  PubMed  Google Scholar 

  53. 53

    Lazich, I. & Bakris, G. L. Endothelin antagonism in patients with resistant hypertension and hypertension nephropathy. Contrib. Nephrol. 172, 223–234 (2011).

    CAS  PubMed  Google Scholar 

  54. 54

    Dharmashankar, K. & Widlansky, M. E. Vascular endothelial function and hypertension: insights and directions. Curr. Hypertens. Rep. 12, 448–455 (2010).

    PubMed  PubMed Central  Google Scholar 

  55. 55

    Heymans, C. & Delaunois, A. L. Fundamental role of the tone and resistance to stretch of the carotid sinus arteries in the reflex regulation of blood pressure. Science 114, 546–547 (1951).

    CAS  PubMed  Google Scholar 

  56. 56

    Pijacka, W. et al. Carotid sinus denervation ameliorates renovascular hypertension in adult Wistar rats. J. Physiol. 594, 6255–6266 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    de Leeuw, P. W. et al. Sustained reduction of blood pressure with baroreceptor activation therapy. Results of the 6-year open follow-up. Hypertension 69, 836–843 (2017).

    CAS  PubMed  Google Scholar 

  58. 58

    Grassi, G. et al. Excessive sympathetic activation in heart failure with obesity and metabolic syndrome: characteristics and mechanisms. Hypertension 49, 535–541 (2007).

    CAS  PubMed  Google Scholar 

  59. 59

    Mancia, G. & Grassi, G. The autonomic nervous system and hypertension. Circ. Res. 114, 1804–1814 (2014). This review of the adrenergic and vagal abnormalities that occur in hypertension emphasizes the role of the autonomic nervous system as a promoter and amplifier of the elevated BP state.

    CAS  PubMed  Google Scholar 

  60. 60

    Augustyniak, R. A. et al. Sympathetic nerves and the progression of chronic kidney disease during 5/6 nephrectomy: studies in sympathectomized rats. Clin. Exp. Pharmacol. Physiol. 37, 12–18 (2010).

    CAS  PubMed  Google Scholar 

  61. 61

    Augustyniak, R. A., Tuncel, M., Zhang, W., Toto, R. D. & Victor, R. G. Sympathetic overactivity as a cause of hypertension in chronic renal failure. J. Hypertens. 20, 3–9 (2002).

    CAS  PubMed  Google Scholar 

  62. 62

    DiBona, G. F. Sympathetic nervous system and hypertension. Hypertension 61, 556–560 (2013).

    CAS  PubMed  Google Scholar 

  63. 63

    Grassi, G., Mark, A. & Esler, M. The sympathetic nervous system alterations in human hypertension. Circ. Res. 116, 976–990 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Grassi, G., Cattaneo, B. M., Seravalle, G., Lanfranchi, A. & Mancia, G. Baroreflex control of sympathetic nerve activity in essential and secondary hypertension. Hypertension 31, 68–72 (1998).

    CAS  PubMed  Google Scholar 

  65. 65

    Smith, P. A., Graham, L. N., Mackintosh, A. F., Stoker, J. B. & Mary, D. Relationship between central sympathetic activity and stages of human hypertension. Am. J. Hypertens. 17, 217–222 (2004).

    PubMed  Google Scholar 

  66. 66

    Fujita, T. Mechanism of salt-sensitive hypertension: focus on adrenal and sympathetic nervous systems. J. Am. Soc. Nephrol. 25, 1148–1155 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Mu, S. et al. Epigenetic modulation of the renal β-adrenergic–WNK4 pathway in salt-sensitive hypertension. Nat. Med. 17, 573–580 (2011).

    CAS  PubMed  Google Scholar 

  68. 68

    Harrison, D. G. & Bernstein, K. E. in in Hypertension: A Companion to Braunwald's Heart Disease 3rd edn (eds Bakris, G. L. & Sorrentino, M. ) 60–69 (Elsevier, 2018). This is an up-to-date summary of the role of inflammation and the immune system in the pathogenesis of hypertension.

    Google Scholar 

  69. 69

    Devallière, J. & Charreau, B. The adaptor Lnk (SH2B3): an emerging regulator in vascular cells and a link between immune and inflammatory signaling. Biochem. Pharmacol. 82, 1391–1402 (2011).

    PubMed  Google Scholar 

  70. 70

    Rodriguez-Iturbe, B. Autoimmunity in the pathogenesis of hypertension. Hypertension 67, 477–483 (2016).

    CAS  PubMed  Google Scholar 

  71. 71

    Mattson, D. L. et al. Genetic mutation of recombination activating gene 1 in Dahl salt-sensitive rats attenuates hypertension and renal damage. AJP Regul. Integr. Comp. Physiol. 304, R407–R414 (2013).

    CAS  Google Scholar 

  72. 72

    Roush, G. C. et al. Prognostic impact from clinic, daytime, and night-time systolic blood pressure in nine cohorts of 13 844 patients with hypertension. J. Hypertens. 32, 2332–2340 (2014). This systematic review of nine cohorts (n = 13,844) from Europe, Brazil and Japan shows that night-time systolic BP predicts cardiovascular events independently of office BP, providing support for the use of ABPM in the evaluation of patients with hypertension.

    CAS  PubMed  Google Scholar 

  73. 73

    Stergiou, G. S. et al. Methodology and technology for peripheral and central blood pressure and blood pressure variability measurement. J. Hypertens. 34, 1665–1677 (2016).

    CAS  PubMed  Google Scholar 

  74. 74

    Parati, G. et al. European Society of Hypertension Practice Guidelines for home blood pressure monitoring. J. Hum. Hypertens. 24, 779–785 (2010).

    CAS  PubMed  Google Scholar 

  75. 75

    O’Brien, E. et al. European Society of Hypertension Position Paper on ambulatory blood pressure monitoring. J. Hypertens. 31, 1731–1768 (2013).

    PubMed  Google Scholar 

  76. 76

    Muntner, P. & Whelton, P. K. Using predicted cardiovascular disease risk in conjunction with blood pressure to guide antihypertensive medication treatment. J. Am. Coll. Cardiol. 69, 2446–2456 (2017). This analysis of data from randomized trials that assessed relative and absolute CVD risk reduction that can occur when antihypertensive treatment is guided by CVD risk concludes that both CVD risk and BP levels should be considered in making treatment decisions.

    PubMed  PubMed Central  Google Scholar 

  77. 77

    Mancia, G. et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension. J. Hypertens. 31, 1281–1357 (2013).

    CAS  PubMed  Google Scholar 

  78. 78

    Pickering, T. G. Recommendations for blood pressure measurement in humans and experimental animals. Part 1: Blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation 111, 697–716 (2005).

    PubMed  Google Scholar 

  79. 79

    Whelton, P. K. The elusiveness of population-wide high blood pressure control. Annu. Rev. Publ. Health 36, 109–130 (2015).

    Google Scholar 

  80. 80

    Primatesta, P. & Poulter, N. R. Improvement in hypertension management in England: results from the Health Survey for England 2003. J. Hypertens. 24, 1187–1192 (2006).

    CAS  PubMed  Google Scholar 

  81. 81

    Ashworth, M., Medina, J. & Morgan, M. Effect of social deprivation on blood pressure monitoring and control in England: a survey of data from the quality and outcomes framework. BMJ 337, a2030 (2008).

    PubMed  PubMed Central  Google Scholar 

  82. 82

    Serumaga, B. et al. Effect of pay for performance on the management and outcomes of hypertension in the United Kingdom: interrupted time series study. BMJ 342, d108 (2011).

    PubMed  PubMed Central  Google Scholar 

  83. 83

    Poulter, N. R. & Lackland, D. T. May Measurement Month: a global blood pressure screening campaign. Lancet 389, 1678–1680 (2017).

    PubMed  Google Scholar 

  84. 84

    He, J. et al. Migration, blood pressure pattern, and hypertension: the Yi Migrant Study. Am. J. Epidemiol. 134, 1085–1101 (1991).

    CAS  PubMed  Google Scholar 

  85. 85

    Poulter, N. R. et al. The Kenyan Luo migration study: observations on the initiation of a rise in blood pressure. BMJ 300, 967–972 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Rosenthal, T. The effect of migration on hypertension and other cardiovascular risk factors: a review. J. Am. Soc. Hypertens. 8, 171–191 (2014).

    PubMed  Google Scholar 

  87. 87

    Klag, M. J. et al. The contribution of urinary cations to the blood pressure differences associated with migration. Am. J. Epidemiol. 142, 295–303 (1995).

    CAS  PubMed  Google Scholar 

  88. 88

    Whelton, P. K. et al. The effects of nonpharmacologic interventions on blood pressure of persons with high normal levels. Results of the Trials of Hypertension Prevention, Phase I. JAMA 267, 1213–1220 (1992).

    Google Scholar 

  89. 89

    Whelton, P. K. et al. Efficacy of nonpharmacologic interventions in adults with high-normal blood pressure: results from phase 1 of the Trials of Hypertension Prevention. Trials Hypertension Prevention Collaborative Res. Group. Am. J. Clin. Nutr. 65, 652S–660S (1997).

    CAS  Google Scholar 

  90. 90

    [No authors listed.] Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure. The Trials of Hypertension Prevention, phase II. Arch. Intern. Med. 157, 657–667 (1997).

  91. 91

    Sacks, F. M. et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N. Engl. J. Med. 344, 3–10 (2001). This study shows that combining the DASH diet with a low sodium (50 mmol per day) intake led to significant reductions in systolic BP both in persons with hypertension and in those without hypertension compared with persons who consumed a high sodium diet (150 mmol per day).

    CAS  PubMed  Google Scholar 

  92. 92

    Whelton, P. K. et al. Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. JAMA 277, 1624–1632 (1997).

    CAS  PubMed  Google Scholar 

  93. 93

    Aburto, N. J. et al. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ 346, f1378 (2013).

    PubMed  PubMed Central  Google Scholar 

  94. 94

    Whelton, S. P., Chin, A., Xin, X. & He, J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann. Intern. Med. 136, 493–503 (2002).

    PubMed  Google Scholar 

  95. 95

    Xin, X. et al. Effects of alcohol reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension 38, 1112–1117 (2001).

    CAS  PubMed  Google Scholar 

  96. 96

    Roerecke, M. et al. The effect of a reduction in alcohol consumption on blood pressure: a systematic review and meta-analysis. Lancet Public Health 2 e108–e120 (2017).

    PubMed  PubMed Central  Google Scholar 

  97. 97

    Appel, L. J. et al. A clinical trial of the effects of dietary patterns on blood pressure. N. Engl. J. Med. 336, 1117–1124 (1997).

    CAS  PubMed  Google Scholar 

  98. 98

    Whelton, P. K. Hypertension curriculum review: epidemiology and the prevention of hypertension. J. Clin. Hypertens. 6, 636–642 (2004).

    Google Scholar 

  99. 99

    Whelton, P. K. et al. Primary prevention of hypertension: clinical and public health advisory from The National High Blood Pressure Education Program. JAMA 288, 1882–1888 (2002).

    PubMed  Google Scholar 

  100. 100

    Whelton, P. K. et al. Sodium reduction and weight loss in the treatment of hypertension in older persons. JAMA 279, 839 (1998).

    CAS  PubMed  Google Scholar 

  101. 101

    [No authors listed.] National High Blood Pressure Education Program Working Group report on primary prevention of hypertension. Arch. Intern. Med. 153, 186–208 (1993).

  102. 102

    Cook, N. R., Cohen, J., Hebert, P. R., Taylor, J. O. & Hennekens, C. H. Implications of small reductions in diastolic blood pressure for primary prevention. Arch. Intern. Med. 155, 701–709 (1995).

    CAS  PubMed  Google Scholar 

  103. 103

    Julius, S. et al. Feasibility of treating prehypertension with an angiotensin-receptor blocker. N. Engl. J. Med. 354, 1685–1697 (2006).

    CAS  PubMed  Google Scholar 

  104. 104

    Lüders, S. et al. The PHARAO study: prevention of hypertension with the angiotensin-converting enzyme inhibitor _abellin in patients with high-normal blood pressure: a prospective, randomized, controlled prevention trial of the German Hypertension League. J. Hypertens. 26, 1487–1496 (2008).

    PubMed  Google Scholar 

  105. 105

    Fuchs, S. C. et al. Effectiveness of chlorthalidone plus amiloride for the prevention of hypertension: the PREVER-Prevention randomized clinical trial. J. Am. Heart Assoc. 5, e004248 (2016).

    PubMed  PubMed Central  Google Scholar 

  106. 106

    James, P. A. et al. 2014 evidence-based guideline for the management of high blood pressure in adults. JAMA 311, 507 (2014).

    CAS  PubMed  Google Scholar 

  107. 107

    SPRINT Research Group et al. A randomized trial of intensive versus standard blood-pressure control. N. Engl. J. Med. 373, 2103–2116 (2015). SPRINT shows that treating to a target systolic BP of <120 mmHg resulted in significantly lower rates of fatal and nonfatal cardiovascular events and all-cause mortality than treating to a target systolic BP of <140 mmHg in people with hypertension and increased CVD risk but without diabetes mellitus.

    Google Scholar 

  108. 108

    Johnson, K. C. et al. Blood pressure measurement in the Systolic Blood Pressure Intervention Trial (SPRINT). Hypertension (in the press).

  109. 109

    Filipovský, J. et al. Automated compared to manual office blood pressure and to home blood pressure in hypertensive patients. Blood Press. 25, 228–234 (2016).

    PubMed  Google Scholar 

  110. 110

    Kjeldsen, S. E., Lund-Johansen, P., Nilsson, P. M. & Mancia, G. Unattended blood pressure measurements in the systolic blood pressure intervention trial. Hypertension 67, 808–812 (2016).

    CAS  PubMed  Google Scholar 

  111. 111

    Whelton, P. K. et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/AphA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertensionhttps://doi.org/10.1161/HYP.0000000000000066 (2017).

    CAS  PubMed  Google Scholar 

  112. 112

    Aburto, N. J. et al. Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ 346 f1326 (2013).

    PubMed  PubMed Central  Google Scholar 

  113. 113

    He, F. J., Li, J. & Macgregor, G. A. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ 346, f1325 (2013).

    PubMed  Google Scholar 

  114. 114

    World Health Organization. Guideline: Sodium intake for adults and children (WHO, Geneva, 2012).

  115. 115

    Van Horn, L. et al. Recommended dietary pattern to achieve adherence to the American Heart Association/American College of Cardiology (AHA/ACC) guidelines: a scientific statement from the American Heart Association. Circulation 134, e505–e529 (2016).

    CAS  PubMed  Google Scholar 

  116. 116

    He, F. J. & MacGregor, G. A. Effect of modest salt reduction on blood pressure: a meta-analysis of randomized trials. Implications for public health. J. Hum. Hypertens. 16, 761–770 (2002).

    CAS  PubMed  Google Scholar 

  117. 117

    Langford, H. G. Dietary therapy slows the return of hypertension after stopping prolonged medication. JAMA 253, 657–664 (1985).

    CAS  PubMed  Google Scholar 

  118. 118

    Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. Intersalt Cooperative Research Group. BMJ 297, 319–328 (1988).

    Google Scholar 

  119. 119

    Bibbins-Domingo, K. et al. Projected effect of dietary salt reductions on future cardiovascular disease. N. Engl. J. Med. 362, 590–599 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Graudal, N. A., Hubeck-Graudal, T. & Jurgens, G. Effects of low-sodium diet versus high-sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride (Cochrane review). Am. J. Hypertens. 25, 1–15 (2012).

    CAS  PubMed  Google Scholar 

  121. 121

    He, F. J. & MacGregor, G. A. Reducing population salt intake-time for global action. J. Clin. Hypertens. 17, 10–13 (2014).

    CAS  Google Scholar 

  122. 122

    Cappuccio, F. P. & MacGregor, G. A. Does potassium supplementation lower blood pressure? A meta-analysis of published trials. J. Hypertens. 9, 465–473 (1991).

    CAS  PubMed  Google Scholar 

  123. 123

    Chalmers, J. et al. Australian National Health and Medical Research Council dietary salt study in mild hypertension. J. Hypertens. Suppl. 4, S629–S637 (1986).

    CAS  PubMed  Google Scholar 

  124. 124

    Kidney Disease Outcomes Quality Initiative (K/DOQI). K/DOQI clinical practice guidelines on hypertension and antihypertensive agents in chronic kidney disease. Am. J. Kidney Dis. 43, S1–S290 (2004).

    Google Scholar 

  125. 125

    Börjesson, M., Onerup, A., Lundqvist, S. & Dahlöf, B. Physical activity and exercise lower blood pressure in individuals with hypertension: narrative review of 27 RCTs. Br. J. Sports Med. 50, 356–361 (2016).

    PubMed  Google Scholar 

  126. 126

    MacDonald, H. V. et al. Dynamic resistance training as stand-alone antihypertensive lifestyle therapy: a meta-analysis. J. Am. Heart Assoc. 5, e003231 (2016).

    PubMed  PubMed Central  Google Scholar 

  127. 127

    Egan, B. M., Zhao, Y., Axon, R. N., Brzezinski, W. A. & Ferdinand, K. C. Uncontrolled and Apparent Treatment Resistant Hypertension in the United States, 1988 to 2008. Circulation 124, 1046–1058 (2011).

    PubMed  PubMed Central  Google Scholar 

  128. 128

    Zomer, E. et al. Interventions that cause weight loss and the impact on cardiovascular risk factors: a systematic review and meta-analysis. Obes. Rev. 17, 1001–1011 (2016).

    CAS  PubMed  Google Scholar 

  129. 129

    Stevens, V. J. Long-term weight loss and changes in blood pressure: results of the Trials of Hypertension Prevention, phase II. Ann. Intern. Med. 134, 1 (2001).

    CAS  PubMed  Google Scholar 

  130. 130

    Ettehad, D. et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 387, 957–967 (2016).

    PubMed  Google Scholar 

  131. 131

    Garjón, J. et al. First-line combination therapy versus first-line monotherapy for primary hypertension. Cochrane Database Syst. Rev. 1,CD010316 (2017).

  132. 132

    [No authors listed.] Hypertension in adults: diagnosis and management (CG127). National Institute for Health and Care Excellencehttps://www.nice.org.uk/guidance/cg127 (2011).

  133. 133

    Flack, J. M. et al. Management of high blood pressure in blacks: an update of the International Society on Hypertension in Blacks Consensus Statement. Hypertension 56, 780–800 (2010).

    CAS  PubMed  Google Scholar 

  134. 134

    Iskedjian, M. et al. Relationship between daily dose frequency and adherence to antihypertensive pharmacotherapy: evidence from a meta-analysis. Clin. Ther. 24, 302–316 (2002).

    PubMed  Google Scholar 

  135. 135

    Blood Pressure Lowering Treatment Trialists’ Collaboration. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet 362, 1527–1535 (2003).

    Google Scholar 

  136. 136

    Yusuf, S. et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N. Engl. J. Med. 358, 1547–1559 (2008).

    CAS  PubMed  Google Scholar 

  137. 137

    Bosch, J. et al. Effect of ramipril on the incidence of diabetes. N. Engl. J. Med. 355, 1551–1562 (2006).

    PubMed  Google Scholar 

  138. 138

    Brown, N. J., Ray, W. A., Snowden, M. & Griffin, M. R. Black Americans have an increased rate of angiotensin converting enzyme inhibitor-associated angioedema*. Clin. Pharmacol. Ther. 60, 8–13 (1996).

    CAS  PubMed  Google Scholar 

  139. 139

    Brown, N. J., Byiers, S., Carr, D., Maldonado, M. & Warner, B. A. Dipeptidyl peptidase-IV inhibitor use associated with increased risk of ACE inhibitor-associated angioedema. Hypertension 54, 516–523 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Guazzi, M. D. et al. Disparate unloading efficacy of the calcium channel blockers, verapamil and nifedipine, on the failing hypertensive left ventricle. Am. Heart J. 108, 116–123 (1984).

    CAS  PubMed  Google Scholar 

  141. 141

    Harari, D., Gurwitz, J. H., Avorn, J., Choodnovskiy, I. & Minaker, K. L. Correlates of regular laxative use by frail elderly persons. Am. J. Med. 99, 513–518 (1995).

    CAS  PubMed  Google Scholar 

  142. 142

    Bernard, E., Goutelle, S., Bertrand, Y. & Bleyzac, N. Pharmacokinetic drug-drug interaction of calcium channel blockers with cyclosporine in hematopoietic stem cell transplant children. Ann. Pharmacother. 48, 1580–1584 (2014).

    PubMed  Google Scholar 

  143. 143

    [No authors listed.] Effects of treatment on morbidity in hypertension. Results in patients with diastolic blood pressures averaging 115 through 129 mmHg. JAMA 202, 1028–1034 (1967).

  144. 144

    Barzilay, J. I. et al. Long-term effects of incident diabetes mellitus on cardiovascular outcomes in people treated for hypertension: the ALLHAT Diabetes Extension Study. Circ. Cardiovasc. Qual. Outcomes 5, 153–162 (2012).

    PubMed  PubMed Central  Google Scholar 

  145. 145

    Roush, G. C., Holford, T. R. & Guddati, A. K. Chlorthalidone compared with hydrochlorothiazide in reducing cardiovascular events: systematic review and network meta-analyses. Hypertension 59, 1110–1117 (2012).

    CAS  PubMed  Google Scholar 

  146. 146

    Roush, G. C., Ernst, M. E., Kostis, J. B., Tandon, S. & Sica, D. A. Head-to-head comparisons of hydrochlorothiazide with indapamide and chlorthalidone: antihypertensive and metabolic effects. Hypertension 65, 1041–1046 (2015). This systematic review shows that indapamide and chlorthalidone were more effective in lowering BP than hydrochlorothiazide at commonly prescribed doses without increasing the risk of adverse metabolic effects, including hypokalaemia, hyponatraemia and elevated creatinine.

    CAS  PubMed  Google Scholar 

  147. 147

    Antman, E. M. Cardiovascular Therapeutics: A Companion to Braunwald's Heart Disease 4th edn (Saunders, 2013).

    Google Scholar 

  148. 148

    Wiysonge, C. S., Bradley, H. A., Volmink, J., Mayosi, B. M. & Opie, L. H. Beta-blockers for hypertension. Cochrane Database Syst. Rev.https://doi.org/10.1002/14651858.CD002003.pub5 (2017).

  149. 149

    Boutouyrie, P., Achouba, A., Trunet, P. & Laurent, S. Amlodipine-valsartan combination decreases central systolic blood pressure more effectively than the amlodipine-atenolol combination: the EXPLOR Study. Hypertension 55, 1314–1322 (2010).

    CAS  PubMed  Google Scholar 

  150. 150

    Sharma, A. M., Pischon, T., Hardt, S., Kunz, I. & Luft, F. C. Hypothesis: beta-adrenergic receptor blockers and weight gain: a systematic analysis. Hypertension 37, 250–254 (2001).

    CAS  PubMed  Google Scholar 

  151. 151

    Bakris, G. L. et al. Metabolic effects of carvedilol versus metoprolol in patients with type 2 diabetes mellitus and hypertension. JAMA 292, 2227 (2004).

    CAS  PubMed  Google Scholar 

  152. 152

    Ruilope, L. M. et al. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet 375, 1255–1266 (2010).

    CAS  PubMed  Google Scholar 

  153. 153

    Ghofrani, H.-A. et al. Riociguat for the treatment of pulmonary arterial hypertension. N. Engl. J. Med. 369, 330–340 (2013).

    CAS  PubMed  Google Scholar 

  154. 154

    Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).

    CAS  PubMed  Google Scholar 

  155. 155

    Oparil, S. & Schmieder, R. E. New approaches in the treatment of hypertension. Circ. Res. 116, 1074–1095 (2015). This is a review of new drugs and device-based treatments that are undergoing preclinical or clinical testing for hypertension treatment.

    CAS  PubMed  Google Scholar 

  156. 156

    Jordan, J. et al. Improved insulin sensitivity with angiotensin receptor neprilysin inhibition in individuals with obesity and hypertension. Clin. Pharmacol. Ther. 101, 254–263 (2016).

    PubMed  Google Scholar 

  157. 157

    Seferovic, J. P. et al. Effect of sacubitril/valsartan versus enalapril on glycaemic control in patients with heart failure and diabetes: a post-hoc analysis from the PARADIGM-HF trial. Lancet Diabetes Endocrinol. 5, 333–340 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158

    Calhoun, D. A. et al. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension 51, 1403–1419 (2008).

    CAS  PubMed  Google Scholar 

  159. 159

    Sim, J. J. et al. Characteristics of resistant hypertension in a large, ethnically diverse hypertension population of an integrated health system. Mayo Clin. Proc. 88, 1099–1107 (2013).

    PubMed  PubMed Central  Google Scholar 

  160. 160

    Williams, B. et al. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet 386, 2059–2068 (2015). This trial shows that spironolactone was the most effective add-on drug for the treatment of resistant hypertension, regardless of the baseline renin levels.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161

    Bobrie, G. et al. Sequential nephron blockade versus sequential renin–angiotensin system blockade in resistant hypertension. J. Hypertens. 30, 1656–1664 (2012).

    CAS  PubMed  Google Scholar 

  162. 162

    Juurlink, D. N. et al. Rates of hyperkalemia after publication of the randomized aldactone evaluation study. N. Engl. J. Med. 351, 543–551 (2004).

    CAS  PubMed  Google Scholar 

  163. 163

    Krum, H. et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373, 1275–1281 (2009).

    PubMed  Google Scholar 

  164. 164

    Bhatt, D. L. et al. A controlled trial of renal denervation for resistant hypertension. N. Engl. J. Med. 370, 1393–1401 (2014).

    CAS  PubMed  Google Scholar 

  165. 165

    Heusser, K. et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension 55, 619–626 (2010).

    CAS  PubMed  Google Scholar 

  166. 166

    Bisognano, J. D. et al. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension. J. Am. Coll. Cardiol. 58, 765–773 (2011).

    PubMed  Google Scholar 

  167. 167

    Spiering, W. et al. LB02.05: Controlling and lowering blood pressure with the Mobiushd device: first in-man results (CALM-FIM study). J. Hypertens. 33, e86 (2015).

    Google Scholar 

  168. 168

    Narkiewicz, K. et al. Unilateral carotid body resection in resistant hypertension. JACC Bas. Transl Sci. 1, 313–324 (2016).

    Google Scholar 

  169. 169

    O’Callaghan, E. L. et al. Chronic deep brain stimulation decreases blood pressure and sympathetic nerve activity in a drug- and device-resistant hypertensive patient. Hypertension 69, 522–528 (2017).

    PubMed  Google Scholar 

  170. 170

    Lobo, M. D. et al. Central arteriovenous anastomosis for the treatment of patients with uncontrolled hypertension (the ROX CONTROL HTN study): a randomised controlled trial. Lancet 385, 1634–1641 (2015).

    PubMed  Google Scholar 

  171. 171

    Testa, M. A. & Simonson, D. C. Assessment of quality-of-life outcomes. N. Engl. J. Med. 334, 835–840 (1996).

    CAS  PubMed  Google Scholar 

  172. 172

    Trevisol, D. J., Moreira, L. B., Kerkhoff, A., Fuchs, S. C. & Fuchs, F. D. Health-related quality of life and hypertension: a systematic review and meta-analysis of observational studies. J. Hypertens. 29, 179–188 (2011). This meta-analysis of 20 cross-sectional studies shows that HRQOL was lower in persons with hypertension than in those with normal BP in the domains of physical and functional functioning, bodily pain, general health, vitality and mental health but that the magnitude of difference was small.

    CAS  PubMed  Google Scholar 

  173. 173

    Bardage, C. & Isacson, D. G. Hypertension and health-related quality of life. An. Epidemiol. Study Sweden. J. Clin. Epidemiol. 54, 172–181 (2001).

    CAS  PubMed  Google Scholar 

  174. 174

    Pickering, T. G. Now we are sick: labeling and hypertension. J. Clin. Hypertens. 8, 57–60 (2006).

    Google Scholar 

  175. 175

    Haynes, R. B., Sackett, D. L., Taylor, D. W., Gibson, E. S. & Johnson, A. L. Increased absenteeism from work after detection and labeling of hypertensive patients. N. Engl. J. Med. 299, 741–744 (1978).

    CAS  PubMed  Google Scholar 

  176. 176

    Fogari, R. & Zoppi, A. Effect of antihypertensive agents on quality of life in the elderly. Drugs Aging 21, 377–393 (2004).

    CAS  PubMed  Google Scholar 

  177. 177

    Carris, N. W. & Smith, S. M. Quality of life in treatment-resistant hypertension. Curr. Hypertens. Rep. 17, 61 (2015).

    PubMed  Google Scholar 

  178. 178

    Croog, S. H. et al. The effects of antihypertensive therapy on the quality of life. N. Engl. J. Med. 314, 1657–1664 (1986).

    CAS  PubMed  Google Scholar 

  179. 179

    Testa, M. A., Anderson, R. B., Nackley, J. F. & Hollenberg, N. K. Quality of life and antihypertensive therapy in men — a comparison of captopril with enalapril. N. Engl. J. Med. 328, 907–913 (1993).

    CAS  PubMed  Google Scholar 

  180. 180

    Grimm, R. H. et al. Relationships of quality-of-life measures to long-term lifestyle and drug treatment in the Treatment of Mild Hypertension Study. Arch. Intern. Med. 157, 638–648 (1997).

    PubMed  Google Scholar 

  181. 181

    Applegate, W. B. Quality of life during antihypertensive treatment. Lessons From Systol. Hypertension Elderly Program. Am. J. Hypertens. 11, 57S–61S (1998).

    CAS  PubMed  Google Scholar 

  182. 182

    Fletcher, A. E. et al. Quality of life on randomized treatment for isolated systolic hypertension: results from the Syst-Eur Trial. J. Hypertens. 20, 2069–2079 (2002).

    CAS  PubMed  Google Scholar 

  183. 183

    Saper, C. B. How low can you go? Ann. Neurol. 78, 665–666 (2015).

    PubMed  Google Scholar 

  184. 184

    O’Connor, P. J. et al. Effect of intensive versus standard blood pressure control on depression and health-related quality of life in type 2 diabetes: the ACCORD trial. Diabetes Care 35, 1479–1481 (2012).

    PubMed  PubMed Central  Google Scholar 

  185. 185

    Berlowitz, D. et al. Effect of Intensive Blood-Pressure Treatment on Patient-Reported Outcomes. N. Engl. J. Med. 377, 733–744 (2017).

    PubMed  PubMed Central  Google Scholar 

  186. 186

    NCD Risk Factor Collaboration. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants. Lancet 389, 37–55 (2017).

    Google Scholar 

  187. 187

    Kearney, P. M. et al. Global burden of hypertension: analysis of worldwide data. Lancet 365, 217–223 (2005).

    PubMed  Google Scholar 

  188. 188

    O’Donnell, M. J., Mente, A., Smyth, A. & Yusuf, S. Salt intake and cardiovascular disease: why are the data inconsistent? Eur. Heart J. 34, 1034–1040 (2012).

    PubMed  Google Scholar 

  189. 189

    Chow, C. K. et al. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA 310, 959 (2013).

    CAS  PubMed  Google Scholar 

  190. 190

    Adler, A. J. et al. Reducing cardiovascular mortality through prevention and management of raised blood pressure. Glob. Heart 10, 111–122 (2015).

    PubMed  Google Scholar 

  191. 191

    Olsen, M. H. et al. A call to action and a lifecourse strategy to address the global burden of raised blood pressure on current and future generations: the Lancet Commission on hypertension. Lancet 388, 2665–2712 (2016).

    PubMed  Google Scholar 

  192. 192

    Mendis, S. et al. The availability and affordability of selected essential medicines for chronic diseases in six low- and middle-income countries. Bull. World Health Organ. 85, 279–288 (2007).

    PubMed  PubMed Central  Google Scholar 

  193. 193

    Park, I. U. & Taylor, A. L. Race and ethnicity in trials of antihypertensive therapy to prevent cardiovascular outcomes: a systematic review. Ann. Fam. Med. 5, 444–452 (2007).

    PubMed  PubMed Central  Google Scholar 

  194. 194

    Anchala, R. et al. The role of decision support system (DSS) in prevention of cardiovascular disease: a systematic review and meta-analysis. PLoS ONE 7, e47064 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. 195

    World Health Organization. Task Shifting Global Recommendations and Guidelines (WHO, Geneva, 2008).

  196. 196

    Ehret, G. B. et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).

    CAS  PubMed  Google Scholar 

  197. 197

    Potter, L. R., Yoder, A. R., Flora, D. R., Antos, L. K. & Dickey, D. M. cGMP: in Generators, Effectors and Therapeutic Implications (eds Schmidt, H. H. H. W., Hofmann, F. & Stasch, J.-P. ) 341–366 (Springer, Berlin, Heidelberg, 2009).

    Google Scholar 

  198. 198

    Dries, D. L. Corin gene minor allele defined by 2 missense mutations is common in blacks and associated with high blood pressure and hypertension. Circulation 112, 2403–2410 (2005).

    CAS  PubMed  Google Scholar 

  199. 199

    Siebenhofer, A. et al. Long-term effects of weight-reducing drugs in people with hypertension. Cochrane Database Syst. Rev.https://doi.org/10.1002/14651858.cd007654.pub4 (2016).

  200. 200

    James, W. P. T. et al. Effect of sibutramine on cardiovascular outcomes in overweight and obese subjects. N. Engl. J. Med. 363, 905–917 (2010).

    CAS  PubMed  Google Scholar 

  201. 201

    Ricci, C. et al. Long-term effects of bariatric surgery on type II diabetes, hypertension and hyperlipidemia: a meta-analysis and meta-regression study with 5-year follow-up. Obes. Surg. 25, 397–405 (2014).

    Google Scholar 

  202. 202

    Sjöström, C. D., Lystig, T. & Lindroos, A. K. Impact of weight change, secular trends and ageing on cardiovascular risk factors: 10-year experiences from the SOS study. Int. J. Obes. 35, 1413–1420 (2011).

    Google Scholar 

  203. 203

    Whelton, P. K. Epidemiology and the Prevention of Hypertension. J. Clin. Hypertens. 6, 636–642 (2004).

    Google Scholar 

  204. 204

    Crowley, S. D. et al. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc. Natl Acad. Sci. USA 103, 17985–17990 (2006).

    CAS  PubMed  Google Scholar 

  205. 205

    Crowley, S. D. et al. Distinct roles for the kidney and systemic tissues in blood pressure regulation by the renin-angiotensin system. J. Clin. Invest. 115, 1092–1099 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. 206

    Reich, H. N., Oudit, G. Y., Penninger, J. M., Scholey, J. W. & Herzenberg, A. M. Decreased glomerular and tubular expression of ACE2 in patients with type 2 diabetes and kidney disease. Kidney Int. 74, 1610–1616 (2008).

    CAS  PubMed  Google Scholar 

  207. 207

    Liu, L.-S. & Writing Group of 2010 Chinese Guidelines for the Management of Hypertension. 2010 Chinese guidelines for the management of hypertension [Chinese]. Zhonghua Xin Xue Guan Bing Za Zhi 39, 579–615 (2011).

    PubMed  Google Scholar 

  208. 208

    Weber, M. A. et al. Clinical practice guidelines for the management of hypertension in the community. J. Clin. Hypertens. 16, 14–26 (2014).

    Google Scholar 

  209. 209

    Seedat, Y. K., Rayner, B. L. & Veriava, Y. South African hypertension practice guideline 2014: review article. Cardiovasc. J. Afr. 25, 288–294 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. 210

    Shimamoto, K. et al. The Japanese Society of Hypertension guidelines for the management of hypertension (JSH 2014) Hypertens. Res. 37, 253–392 (2014).

    PubMed  Google Scholar 

  211. 211

    Leung, A. A. et al. Hypertension Canada's 2016 Canadian hypertension education program guidelines for blood pressure measurement, diagnosis, assessment of risk, prevention, and treatment of hypertension. Can. J. Cardiol. 32, 569–588 (2016).

    PubMed  Google Scholar 

  212. 212

    National Heart Foundation of Australia. Guideline for the Diagnosis and Management of Hypertension in Adults (National Heart Foundation of Australia, 2016).

  213. 213

    American Diabetes Association. Standards of medical care in diabetes — 2017. Diabetes Care 40 (Suppl. 1), S1–S142 (2017).

    Google Scholar 

Download references

Acknowledgements

P.K.W. was supported by P20GM109036 (Tulane COBRE for Clinical and Translational Research in Cardiometabolic Diseases) from the National Institute of General Medical Sciences.

Author information

Affiliations

Authors

Contributions

Introduction (M.C.A. and S.O.); Epidemiology (A.R. and P.K.W.); Mechanisms/pathophysiology (G.L.B. and G.G.); Diagnosis, screening and prevention (A.F.D. and P.K.W.); Management (J.J. and R.C.); Quality of life (D.R.B.); Outlook (N.R.P.); Overview of Primer (S.O.).

Corresponding author

Correspondence to Suzanne Oparil.

Ethics declarations

Competing interests

S.O. (in the previous 24 months) has received research grant support or reimbursement for travel to meetings or other nonfinancial support from Actelion Clinical Research/George Clinical, AstraZeneca AB, Bayer, Lundbeck, Novartis, Novo Nordisk and ROX Medical, has consulted for Actelion/George Clinical, Lundbeck, Novo Nordisk and ROX Medical and has served as director and/or principal investigator for SPRINT University of Alabama at Birmingham (UAB) Clinical Center Network (CCN) and sub-investigator for the UAB CCN clinical site, for which Takeda and Arbor Pharmaceuticals donated 5% of medication used. G.L.B. served as a consultant for AbbVie, Bayer, Janssen, Merck, Relypsa and Vascular Dynamics, serves or has served as principal investigator for the FIDELIO trial (Bayer) and is a steering committee member for CALM-2-Vascular Dynamics, (CREDENCE)-Janssen and SONAR-AbbVie. G.G. has received lecture fees from Astra Zeneca and Merck. J.J. served as a consultant for Boehringer-Ingelheim, Novartis, Novo-Nordisc, Orexigen, Riemser, Sanofi, Theravance and Vivus and is cofounder of Eternygen GmbH. N.R.P. served as advisory board member (ad hoc) for Medtronic, MSD, Pfizer, Servier and Takeda (companies producing blood pressure-lowering agents and devices), received speaker honoraria from AstraZeneca, Menarini, Napi Labs and Servier, received research funding from Menarini, Pfizer and Servier, and is the president of the International Society of Hypertension. George Health Enterprises, the social enterprise arm of The George Institute for Global Health, has applied for a patent in the area of low-dose combinations on which A.R. is listed as an inventor and has received investment capital to develop fixed-dose combinations containing aspirin, statin and blood pressure-lowering drugs. A.R. is an investigator on grants for several trials of blood pressure-lowering interventions. M.C.A., D.R.B., R.C., A.F.D. and P.K.W. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oparil, S., Acelajado, M., Bakris, G. et al. Hypertension. Nat Rev Dis Primers 4, 18014 (2018). https://doi.org/10.1038/nrdp.2018.14

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing