Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Chronic constipation

Abstract

Chronic constipation is a prevalent condition that severely impacts the quality of life of those affected. Several types of primary chronic constipation, which show substantial overlap, have been described, including normal-transit constipation, rectal evacuation disorders and slow-transit constipation. Diagnosis of primary chronic constipation involves a multistep process initiated by the exclusion of ‘alarm’ features (for example, unintentional weight loss or rectal bleeding) that might indicate organic diseases (such as polyps or tumours) and a therapeutic trial with first-line treatments such as dietary changes, lifestyle modifications and over-the-counter laxatives. If symptoms do not improve, investigations to diagnose rectal evacuation disorders and slow-transit constipation are performed, such as digital rectal examination, anorectal structure and function testing (including the balloon expulsion test, anorectal manometry or defecography) or colonic transit tests (such as the radiopaque marker test, wireless motility capsule test, scintigraphy or colonic manometry). The mainstays of treatment are diet and lifestyle interventions, pharmacological therapy and, rarely, surgery. This Primer provides an introduction to the epidemiology, pathophysiological mechanisms, diagnosis, management and quality of life associated with the commonly encountered clinical problem of chronic constipation in adults unrelated to opioid abuse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global prevalence of chronic constipation.
Figure 2: Motor patterns in a healthy adult colon.
Figure 3: Intrinsic reflex circuitry involved in peristalsis.
Figure 4: Electrolyte and fluid absorption and secretion in the intestine.
Figure 5: Diagnosis and management algorithm for chronic constipation.
Figure 6: Anorectal manometry patterns during attempted defecation.

Similar content being viewed by others

References

  1. Peery, A. F. et al. Burden of gastrointestinal, liver, and pancreatic diseases in the United States. Gastroenterology 149, 1731–1741 (2015).

    Google Scholar 

  2. Camilleri, M., Lembo, A. & Katzka, D. A. Opioids in gastroenterology: treating adverse effects and creating therapeutic benefits. Clin. Gastroenterol. Hepatol. 15, 1338–1349 (2017).

    Google Scholar 

  3. Talley, N. J., Zinsmeister, A. R., Van Dyke, C. & Melton, L. Epidemiology of colonic symptoms and the IBS. Gastroenterology 101, 927–934 (1991).

    Google Scholar 

  4. Walker, E. A., Katon, W. J., Jemelka, R. P. & Roy-Byrne, P. P. Comorbidity of GI complaints, depression, and anxiety in the epidemiologic catchment area (ECA) study. Am. J. Med. 92 (Suppl. 1), 26S–30S (1992).

    Google Scholar 

  5. Heaton, K. W. & Cripps, H. A. Straining at stool and laxative taking in an English population. Dig. Dis. Sci. 38, 1004–1008 (1993). This paper describes the stool form scale that allows assessment of severity of constipation and responses to treatment in the clinical and research setting.

    Google Scholar 

  6. Agreus, L., Svardsudd, K., Nyren, O. & Tibblin, G. The epidemiology of abdominal symptoms: prevalence and demographic characteristics in a Swedish adult population. Scand. J. Gastroenterol. 29, 102–109 (1994).

    Google Scholar 

  7. Suares, N. C. & Ford, A. C. Prevalence of, and risk factors for, chronic idiopathic constipation in the community: systematic review and meta-analysis. Am. J. Gastroenterol. 106, 1582–1591 (2011).

    Google Scholar 

  8. Heidelbaugh, J. J., Stelwagon, M., Miller, S. A., Shea, E. P. & Chey, W. D. The spectrum of constipation-predominant irritable bowel syndrome and chronic idiopathic constipation: US survey assessing symptoms, care seeking, and disease burden. Am. J. Gastroenterol. 110, 580–587 (2015).

    Google Scholar 

  9. Nullens, S. et al. Regional colon transit in patients with dyssynergic defecation or slow transit in patients with constipation. Gut 61, 1132–1139 (2012).

    Google Scholar 

  10. Rao, S. S. C. & Patcharatrakul, T. Diagnosis and treatment of dyssynergic defecation. J. Neurogastroenterol. Motil. 22, 423–435 (2016). This paper gives an update of the current management of defecation disorders.

    Google Scholar 

  11. Talley, N. J., Weaver, A. L., Zinsmeister, A. R. & Melton, L. J. 3rd . Functional constipation and outlet delay: a population-based study. Gastroenterology 105, 781–790 (1993).

    Google Scholar 

  12. Talley, N. J., Jones, M., Nuyts, G. & Dubois, D. Risk factors for chronic constipation based on a general practice sample. Am. J. Gastroenterol. 98, 1107–1111 (2003).

    Google Scholar 

  13. Papatheoridis, G. V., Vlachogiannakos, J., Karaitianos, I. & Karamanolis, D. G. A. Greek survey of community prevalence and characteristics of constipation. Eur. J. Gastroenterol. Hepatol. 22, 354–360 (2010).

    Google Scholar 

  14. Wald, A. et al. Survey of laxative use by adults with self-defined constipation in South America and Asia: a comparison of six countries. Aliment. Pharmacol. Ther. 31, 274–284 (2010).

    Google Scholar 

  15. Wald, A. et al. A multinational survey of prevalence and patterns of laxative use among adults with self-defined constipation. Aliment. Pharmacol. Ther. 28, 917–930 (2008).

    Google Scholar 

  16. Lovell, R. M. & Ford, A. C. Effect of gender on prevalence of IBS in the community: systematic review and meta-analysis. Am. J. Gastroenterol. 107, 991–1000 (2012).

    Google Scholar 

  17. Ford, A. C., Marwaha, A., Sood, R. & Moayyedi, P. Global prevalence of, and risk factors for, uninvestigated dyspepsia: a meta-analysis. Gut 64, 1049–1057 (2015).

    Google Scholar 

  18. McCrea, G. L. et al. Gender differences in self-reported constipation characteristics, symptoms, and bowel and dietary habits among patients attending a specialty clinic for constipation. Gender Med. 6, 259–271 (2009).

    Google Scholar 

  19. Lu, P. L., Velasco-Benítez, C. A. & Saps, M. Sex, age, and prevalence of pediatric irritable bowel syndrome and constipation in Colombia: a population-based study. J. Pediatr. Gastroenterol. Nutr. 64, e137–e141 (2017).

    Google Scholar 

  20. Inan, M. et al. Factors associated with childhood constipation. J. Paediatr. Child. Health. 43, 700–706 (2007).

    Google Scholar 

  21. Werth, B. L., Williams, K. A. & Pont, L. G. A longitudinal study of constipation and laxative use in a community-dwelling elderly population. Arch. Gerontol. Geriatr. 60, 418–424 (2015).

    Google Scholar 

  22. Schmidt, F. M., de Gouveia Santos, V. L., de Cássia Domansky, R. & Neves, J. M. Constipation: prevalence and associated factors in adults living in Londrina, Southern Brazil. Gastroenterol. Nurs. 39, 204–211 (2016).

    Google Scholar 

  23. Everhart, J. E. et al. A longitudinal survey of self-reported bowel habits in the United States. Dig. Dis. Sci. 34, 1153–1162 (1989).

    Google Scholar 

  24. Howell, S. C., Quine, S. & Talley, N. J. Low social class is linked to upper GI symptoms in an Australian sample of urban adults. Scand. J. Gastroenterol. 41, 657–666 (2006).

    Google Scholar 

  25. Bytzer, P. et al. Low socioeconomic class is a risk factor for upper and lower GI symptoms: a population based study in 15 000 Australian adults. Gut 49, 66–72 (2001).

    Google Scholar 

  26. Enck, P., Leinert, J., Smid, M., Kohler, T. & Schwille-Kiuntke, J. Prevalence of constipation in the German population — a representative survey (GECCO). United Eur. Gastroenterol. J. 4, 429–437 (2016).

    Google Scholar 

  27. Ebling, B. et al. Demographic, anthropometric and socioeconomic characteristics of functional constipation in Eastern Croatia. Coll. Antropol. 38, 539–546 (2014).

    Google Scholar 

  28. Nellesen, D. et al. Comorbidities in patients with IBS with constipation or chronic idiopathic constipation: a review of the literature from the past decade. Postgrad. Med. 125, 40–50 (2013).

    Google Scholar 

  29. Zhao, Y. F. et al. Epidemiology of functional constipation and comparison with constipation-predominant IBS: the Systematic Investigation of GI Diseases in China (SILC). Aliment. Pharmacol. Ther. 34, 1020–1029 (2011).

    Google Scholar 

  30. Zimmerman, J. & Hershcovici, T. Bowel symptoms in nonerosive gastroesophageal reflux disease: nature, prevalence, and relation to acid reflux. J. Clin. Gastroenterol. 42, 261–265 (2008).

    Google Scholar 

  31. Wong, R. K. et al. Inability of the Rome III criteria to distinguish functional constipation from constipation-subtype irritable bowel syndrome. Am. J. Gastroenterol. 105, 2228–2234 (2010).

    Google Scholar 

  32. Mason, H. J., Serrano-Ikkos, E. & Kamm, M. A. Psychological morbidity in women with idiopathic constipation. Am. J. Gastroenterol. 95, 2852–2857 (2000).

    Google Scholar 

  33. Power, A. M., Talley, N. J. & Ford, A. C. Association between constipation and colorectal cancer: systematic review and meta-analysis of observational studies. Am. J. Gastroenterol. 108, 894–903 (2013).

    Google Scholar 

  34. Bharucha, A. E., Pemberton, J. H. & Locke, G. R. AGA technical review on constipation. Gastroenterology 144, 218–238 (2013).

    Google Scholar 

  35. Bayliss, W. M. & Starling, E. H. The movements and innervation of the small intestine. J. Physiol. 24, 99–143 (1899).

    Google Scholar 

  36. Nozdrachev, A. D. John Newport Langley and his autonomic (vegetative) nervous system structure (to the 150th anniversary of birth) [Russian]. Zh. Evol. Biokhim. Fiziol. 38, 422–429 (2002).

    Google Scholar 

  37. Reigstad, C. S. et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 29, 1395–1403 (2015).

    Google Scholar 

  38. Mawe, G. M. & Hoffman, J. M. Serotonin signalling in the gut — functions, dysfunctions and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol. 10, 473–486 (2013).

    Google Scholar 

  39. Alemi, F. et al. The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology 144, 145–154 (2013).

    Google Scholar 

  40. Bellono, N. W. et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170, 185–198.e16 (2017).

    Google Scholar 

  41. Wang, F. et al. Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. J. Physiol. 595, 79–91 (2017).

    Google Scholar 

  42. Wattchow, D. A., Brookes, S. J. & Costa, M. The morphology and projections of retrogradely labeled myenteric neurons in the human intestine. Gastroenterology 109, 866–875 (1995).

    Google Scholar 

  43. Sanders, K. M., Ward, S. M. & Koh, S. D. Interstitial cells: regulators of smooth muscle function. Physiol. Rev. 94, 859–907 (2014).

    Google Scholar 

  44. McClain, J. L. et al. Ca2+ responses in enteric glia are mediated by connexin-43 hemichannels and modulate colonic transit in mice. Gastroenterology 146, 497–507 (2014).

    Google Scholar 

  45. Furness, J. B. et al. The enteric nervous system and GI innervation: integrated local and central control. Adv. Exp. Med. Biol. 817, 39–71 (2014).

    Google Scholar 

  46. LePard, K. J., Ren, J. & Galligan, J. J. Presynaptic modulation of cholinergic and non-cholinergic fast synaptic transmission in the myenteric plexus of guinea pig ileum. Neurogastroenterol. Motil. 16, 355–364 (2004).

    Google Scholar 

  47. Szurszewski, J. H., Ermilov, L. G. & Miller, S. M. Prevertebral ganglia and intestinofugal afferent neurones. Gut 51 (Suppl. 1), i6–i10 (2002).

    Google Scholar 

  48. Berthoud, H. R., Carlson, N. R. & Powley, T. L. Topography of efferent vagal innervation of the rat GI tract. Am. J. Physiol. 260, R200–R207 (1991).

    Google Scholar 

  49. De Groat, W. C. & Krier, J. The sacral parasympathetic reflex pathway regulating colonic motility and defecation in the cat. J. Physiol. 276, 481–500 (1978).

    Google Scholar 

  50. Holzknechtg, G. Die normale persistatlik des kolon [German]. Muench. Med. Wochenschr. 47, 2401–2403 (1909).

    Google Scholar 

  51. Alvarez, W. C. in An Introduction to Gastroenterology 4th edn (ed. Alvarez, W. C. ) 325–363 (William Heinemann Medical Books Ltd., 1948).

    Google Scholar 

  52. Narducci, F., Bassotti, G., Gaburri, M. & Morelli, A. Twenty four hour manometric recording of colonic motor activity in healthy man. Gut 28, 17–25 (1987).

    Google Scholar 

  53. Bassotti, G. & Gaburri, M. Manometric investigation of high-amplitude propagated contractile activity of the human colon. Am. J. Physiol. 255, G660–G664 (1988).

    Google Scholar 

  54. Rao, S. S., Sadeghi, P., Beaty, J., Kavlock, R. & Ackerson, K. Ambulatory 24-h colonic manometry in healthy humans. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G629–G639 (2001).

    Google Scholar 

  55. Furukawa, Y. et al. Relationship between sleep patterns and human colonic motor patterns. Gastroenterology 107, 1372–1381 (1994).

    Google Scholar 

  56. Bampton, P. A., Dinning, P. G., Kennedy, M. L., Lubowski, D. Z. & Cook, I. J. Prolonged multi-point recording of colonic manometry in the unprepared human colon: providing insight into potentially relevant pressure wave parameters. Am. J. Gastroenterol. 96, 1838–1848 (2001).

    Google Scholar 

  57. Torsoli, A. Ramorino, M. L., Ammaturo, M. V., Capurso, L., Paoluzi, P. & Anzini, F. Mass movements and intracolonic pressures. Am. J. Dig. Dis. 16, 693–696 (1971).

    Google Scholar 

  58. Hardcastle, J. D. & Mann, C. V. Study of large bowel peristalsis. Gut 9, 512–520 (1968).

    Google Scholar 

  59. Kamm, M. A., van der Sijp, J. R. & Lennard-Jones, J. E. Observations on the characteristics of stimulated defecation in severe idiopathic constipation. Int. J. Colorectal Dis. 7, 197–201 (1992).

    Google Scholar 

  60. Bampton, P. A., Dinning, P. G., Kennedy, M. L., Lubowski, D. Z. & Cook, I. J. The proximal colonic motor response to rectal mechanical and chemical stimulation. Am. J. Physiol. Gastrointest. Liver Physiol. 282, G443–G449 (2002).

    Google Scholar 

  61. De Schryver, A. M., Samsom, M. & Smout, A. I. Effects of a meal and bisacodyl on colonic motility in healthy volunteers and patients with slow-transit constipation. Dig. Dis. Sci. 48, 1206–1212 (2003).

    Google Scholar 

  62. Jouet, P. et al. Fermentation of starch stimulates propagated contractions in the human colon. Neurogastroenterol. Motil. 23, 450–e176 (2011).

    Google Scholar 

  63. Cook, I. J., Furukawa, Y., Panagopoulos, V., Collins, P. J. & Dent, J. Relationships between spatial patterns of colonic pressure and individual movements of content. Am. J. Physiol. Gastrointest. Liver Physiol. 278, G329–G341 (2000).

    Google Scholar 

  64. Bampton, P. A. et al. Spatial and temporal organization of pressure patterns throughout the unprepared colon during spontaneous defecation. Am. J. Gastroenterol. 95, 1027–1035 (2000).

    Google Scholar 

  65. Hertz, A. F. Lectures on the passage of food through the human alimentary canal: delivered at Guy's Hospital for London University Advanced Students during October, 1907. Br. Med. J; 1, 130–137 (1908).

    Google Scholar 

  66. Lubowski, D. Z., Meagher, A. P., Smart, R. C. & Butler, S. P. Scintigraphic assessment of colonic function during defecation. Int. J. Colorect. Dis. 10, 91–93 (1995).

    Google Scholar 

  67. Ritchie, J. A. Colonic motor activity and bowel function. I. Normal movement of contents. Gut 9, 442–456 (1968).

    Google Scholar 

  68. Halls, J. Bowel content shift during normal defecation [summary]. Proc. R. Soc. Med. 58, 859–860 (1965).

    Google Scholar 

  69. Hiroz, P., Schlageter, V., Givel, J. C. & Kucera, P. Colonic movements in healthy subjects as monitored by a Magnet Tracking System. Neurogastroenterol. Motil. 21, e838–e857 (2009).

    Google Scholar 

  70. Moreno-Osset, E. et al. Association between postprandial changes in colonic intraluminal pressure and transit. Gastroenterology 96, 1265–1273 (1989).

    Google Scholar 

  71. Dinning, P. G., Szczesniak, M. M. & Cook, I. J. Proximal colonic propagating pressure waves sequences and their relationship with movements of content in the proximal human colon. Neurogastroenterol. Motil. 20, 512–520 (2008).

    Google Scholar 

  72. Dinning, P. G. et al. Quantification of in vivo colonic motor patterns in healthy humans before and after a meal revealed by high-resolution fiber-optic manometry. Neurogastroenterol. Motil. 26, 1443–1457 (2014).

    Google Scholar 

  73. Lin, A. Y. et al. High-resolution anatomic correlation of cyclic motor patterns in the human colon: Evidence of a rectosigmoid brake. Am. J. Physiol. Gastrointest. Liver Physiol. 312, G508–G515 (2017).

    Google Scholar 

  74. Rao, S. S. C., Sadeghi, P. & Beaty, J. Altered Periodic Rectal Motor Activity (PRMA): a mechanism for slow transit constipation. Neurogastroenterol. Motil. 13, 591–598 (2002).

    Google Scholar 

  75. Kern, F. Jr., Almy, T. P., Abbot, F. K. & Bogdonoff, M. D. The motility of the distal colon in nonspecific ulcerative colitis. Gastroenterology 19, 492–503 (1951).

    Google Scholar 

  76. Bazzocchi, G. et al. Effect of eating on colonic motility and transit in patients with functional diarrhea: simulataneous scintigraphic and manometric evaluation. Gastroenterology 101, 1298–1306 (1991).

    Google Scholar 

  77. von der Ohe, M. R., Hanson, R. B. & Camilleri, M. Comparison of simultaneous recordings of human colonic contractions by manometry and a barostat. Neurogastroenterol. Motil. 6, 213–222 (1994).

    Google Scholar 

  78. Schey, R., Cromwell, J. & Rao, S. Medical and surgical management of pelvic floor disorders affecting defecation. Am. J. Gastroenterol. 107, 1624–1633 (2012).

    Google Scholar 

  79. Rao, S. S. C., Welcher, K. D. & Leistikow, J. S. Obstructive defecation: a failure of rectoanal coordination. Am. J. Gastroenterol. 93, 1042–1050 (1998).

    Google Scholar 

  80. Rao, S. S. C., Mudipalli, R. S., Stessman, M. & Zimmerman, B. Investigation of the utility of colorectal function tests and Rome II criteria in dyssynergic defecation (anismus). Neurogastroenterol. Motil. 16, 589–596 (2004).

    Google Scholar 

  81. Rao, S. S. C., Tuteja, A. K., Vellema, T., Kempf, J. & Stessman, M. Dyssynergic defecation: demographics, symptoms, stool patterns, and QOL. J. Clin. Gastroenterol. 38, 680–685 (2004).

    Google Scholar 

  82. Karasick, S. & Ehrlich, S. M. Is constipation a disorder of defecation or impaired motility? Distinction based on defecography and colonic transit studies. Am. J. Roentgenol. 166, 63 (1996).

    Google Scholar 

  83. Preston, D. M. & Lennard-Jones, E. Anismus in chronic constipation. Dig. Dis. Sci. 30, 413–418 (1985).

    Google Scholar 

  84. Rao, S. S. C., Kavlock, R. & Rao, S. Influence of body position and stool characteristics on defecation in humans. Am. J. Gastroenterol. 101, 2790–2796 (2006).

    Google Scholar 

  85. Inho, M., Yoshioka, K. & Keighley, M. R. B. Long term results of anorectal myectomy for chronic constipation. Br. J. Surg. 76, 1163–1164 (1989).

    Google Scholar 

  86. Ron, Y. et al. Botulinum toxin type-A in therapy of patients with anismus. Dis. Colon Rectum 44, 1821–1826 (2001).

    Google Scholar 

  87. Remes-Troche, M. et al. Anorectal cortical function is impaired in patients with dyssynergic defecation. Gastroenterology 108, A20 (2007).

    Google Scholar 

  88. Rao, S. S. C. et al. Does biofeedback therapy modulate anorectal (gut)-brain axis in patients with dyssynergic defecation? Gastroenterology 140, S367 (2011).

    Google Scholar 

  89. Stivland, T. et al. Scintigraphic measurement of regional gut transit in idiopathic constipation. Gastroenterology 101, 107–115 (1991).

    Google Scholar 

  90. McLean, R. G. et al. Colon transit scintigraphy using oral indium-111-labeled DTPA: can scan pattern predict final diagnosis? Dig. Dis. Sci. 40, 2660–2668 (1995).

    Google Scholar 

  91. Bassotti, G. et al. Colonic mass movements in idiopathic chronic constipation. Gut 29, 1173–1179 (1988).

    Google Scholar 

  92. Dinning, P. G. et al. Pancolonic spatiotemporal mapping reveals regional deficiencies in, and disorganization of colonic propagating pressure waves in severe constipation. Neurogastroenterol. Motil. 22, e340–e349 (2010). This paper maps the colonic contractility and its derangement in patients with severe chronic constipation.

    Google Scholar 

  93. Bazzocchi, G. et al. Postprandial colonic transit and motor activity in chronic constipation. Gastroenterology 96, 686–693 (1990).

    Google Scholar 

  94. Knowles, C. H., Scott, S. M. & Lunniss, P. J. Slow transit constipation: a disorder of pelvic autonomic nerves? Dig. Dis. Sci. 46, 389–401 (2001).

    Google Scholar 

  95. Singal, A. K., Rosman, A. S., Bauman, W. A. & Korsten, M. A. Recent concepts in the management of bowel problems after spinal cord injury. Adv. Med. Sci. 51, 15–22 (2006).

    Google Scholar 

  96. Lee, J. I., Park, H., Kamm, M. A. & Talbot, I. C. Decreased density of interstitial cells of Cajal and neuronal cells in patients with slow-transit constipation and acquired megacolon. J. Gastroenterol. Hepatol. 20, 1292–1298 (2005).

    Google Scholar 

  97. Cohen, M. et al. Evaluation of interstitial cells of Cajal in patients with severe colonic inertia requiring surgery: a clinical-pathological study. Colorectal Dis. 19, 462–466 (2017).

    Google Scholar 

  98. Gattuso, J. M. & Kamm, M. A. Clinical features of idiopathic megarectum and idiopathic megacolon. Gut 41, 93–99 (1997).

    Google Scholar 

  99. O’Dwyer, R. H. et al. Clinical features and colonic motor disturbances in chronic megacolon in adults. Dig. Dis. Sci. 60, 2398–2407 (2015).

    Google Scholar 

  100. Gibbons, D., Camilleri, M., Nelson, A. D. & Eckert, D. Characteristics of chronic megacolon among patients diagnosed with multiple endocrine neoplasia type 2B. United Eur. Gastroenterol. J. 4, 449–454 (2016).

    Google Scholar 

  101. Barrett, K. E. Endogenous and exogenous control of gastrointestinal epithelial function: building on the legacy of Bayliss and Starling. J. Physiol. 595, 423–432 (2017).

    Google Scholar 

  102. Hammer, J. & Phillips, S. F. Fluid loading of the human colon: effects on segmental transit and stool composition. Gastroenterology 105, 988–998 (1993).

    Google Scholar 

  103. Camilleri, M. et al. Effect of a chloride channel activator, lubiprostone, on gastrointestinal transit, gastric sensory and motor functions in healthy humans. Am. J. Physiol. 290, G942–G947 (2006).

    Google Scholar 

  104. Andresen, V. et al. Effect of 5 days linaclotide on transit and bowel function in females with constipation-predominant irritable bowel syndrome. Gastroenterology 133, 761–768 (2007).

    Google Scholar 

  105. Barrett, K. E. & Keely, S. J. in Physiology of the Gastrointestinal Tract 4th edn (eds Johnson, L. R., Barrett, K. E., Gishan, F. K., Merchant, J. L., Said, H. M. & Wood, J. D. ) 1931–1951 (Elsevier Academic Press, 2006).

    Google Scholar 

  106. Zachos, N. C., Tse, M. & Donowitz, M. Molecular physiology of intestinal Na+/H+ exchange. Annu. Rev. Physiol. 67, 441–443 (2005).

    Google Scholar 

  107. Alli, A. A. et al. Calmodulin and CaMKII modulate ENaC activity by regulating the association of MARCKS and the cytoskeleton with the apical membrane. Am. J. Physiol. Renal Physiol. 309, F456–F463 (2015).

    Google Scholar 

  108. Kashlan, O. B. & Kleyman, T. R. Epithelial Na+ channel regulation by cytoplasmic and extracellular factors. Exp. Cell. Res. 318, 1011–1019 (2012).

    Google Scholar 

  109. Malsure, S. et al. Colon-specific deletion of epithelial sodium channel causes sodium loss and aldosterone resistance. J. Am. Soc. Nephrol. 25, 1453–1464 (2014).

    Google Scholar 

  110. Bergann, T. et al. Glucocorticoids and tumor necrosis factor-alpha synergize to induce absorption by the epithelial sodium channel in the colon. Gastroenterology 136, 933–942 (2009).

    Google Scholar 

  111. Sellin, J. H. & De Soignie, R. Ion transport in human colon in vitro. Gastroenterology 93, 441–448 (1987).

    Google Scholar 

  112. Lacy, B. E. et al. Bowel disorders. Gastroenterology 150, 1393–1407.e5 (2016).

    Google Scholar 

  113. Lewis, S. J. & Heaton, K. W. Stool form scale as a useful guide to intestinal transit time. Scand. J. Gastroenterol. 32, 920–924 (1997).

    Google Scholar 

  114. Degen, L. P. & Phillips, S. F. How well does stool form reflect colonic transit? Gut 39, 109–113 (1996).

    Google Scholar 

  115. Saad, R. J. et al. Do stool form and frequency correlate with whole-gut and colonic transit? Results from a multicenter study in constipated individuals and healthy controls. Am. J. Gastroenterol. 105, 403–411 (2010).

    Google Scholar 

  116. Wald, A., Bharucha, A. E., Cosman, B. C. & Whitehead, W. E. ACG Clinical Guideline: Management of benign anorectal disorders. Am. J. Gastroenterol. 109, 1141–1157 (2014).

    Google Scholar 

  117. Tantiphlachiva, K., Rao, P., Attaluri, A. & Rao, S. S. C. Digital rectal examination is a useful tool for identifying patients with dyssynergia. Clin. Gastroenterol. Hepatol. 8, 955–960 (2010).

    Google Scholar 

  118. Soh, J. S. et al. The diagnostic value of a digital rectal examination compared with high-resolution anorectal manometry in patients with chronic constipation and fecal incontinence. Am. J. Gastroenterol. 110, 1197–1204 (2015).

    Google Scholar 

  119. Wong, R. K. et al. The digital rectal examination: a multicenter survey of physicians’ and students’ perceptions and practice patterns. Am. J. Gastroenterol. 107, 1157–1163 (2012).

    Google Scholar 

  120. Voderholzer, W. A. et al. Clinical response to dietary fiber treatment of chronic constipation. Am. J. Gastroenterol. 92, 95–98 (1997).

    Google Scholar 

  121. Rao, S. S., Rattanakovit, K. & Patcharatrakul, T. Diagnosis and management of chronic constipation in adults. Nat. Rev. Gastroenterol. Hepatol. 13, 295–305 (2016).

    Google Scholar 

  122. Minguez, M. et al. Predictive value of the balloon expulsion test for excluding the diagnosis of pelvic floor dyssynergia in constipation. Gastroenterology 126, 57–62 (2004).

    Google Scholar 

  123. Chiarioni, G. et al. Validation of the balloon evacuation test: reproducibility and agreement with findings from anorectal manometry and electromyography. Clin. Gastroenterol. Hepatol. 12, 2049–2054 (2014).

    Google Scholar 

  124. Bharucha, A. E. & Rao, S. S. An update on anorectal disorders for gastroenterologists. Gastroenterology 146, 37–45 (2014).

    Google Scholar 

  125. Rao, S. S. C. et al. Characterization of dyssynergia phenotypes with high resolution anorectal manometry (HRAM). Gastroenterology 150, S158–S159 (2016).

    Google Scholar 

  126. Patcharatrakul, T., Shaffer, N., DeWitt, A., Mack, A. & Rao, S. S. C. Does the type of dyssynergia influence the outcome of biofeedback therapy? Neurogastroenterol. Motil. 28 (Suppl. 1), 18 (2016).

    Google Scholar 

  127. Ratuapli, S. K., Bharucha, A. E., Noelting, J., Harvey, D. M. & Zinsmeister, A. R. Phenotypic identification and classification of functional defecatory disorders using high-resolution anorectal manometry. Gastroenterology 144, 314–322 (2013).

    Google Scholar 

  128. Patcharatrakul, T. et al. Barostat-assisted sensory training (BT) is superior to syringe-assisted training (ST) for rectal hyposensitivity. Neurogastroenterol. Motil. 28 (Suppl. 1), 42 (2016).

    Google Scholar 

  129. Grossi, U. et al. Diagnostic accuracy study of anorectal manometry for diagnosis of dyssynergic defecation. Gut 65, 447–455 (2016).

    Google Scholar 

  130. Kim, A. Y. How to interpret a functional or motility test — defecography. J. Neurogastroenterol. Motil. 17, 416–420 (2011).

    Google Scholar 

  131. Flushing, M., Sahni, V. A., Erturk, S. M. & Mortelel, K. J. Dynamic MR defecography: assessment of the usefulness of defecation phase. Am. J. Roentgenol. 196, W394–W399 (2011).

    Google Scholar 

  132. Foti, P. V. et al. Pelvic floor imaging: comparison between MRI and conventional defecography in studying outlet obstruction syndrome. Radiol. Med. 118, 23–39 (2013).

    Google Scholar 

  133. Kim, E. R. & Rhee, P. L. How to interpret a functional or motility test — colon transit study. J. Neurogastroenterol. Motil. 18, 94–99 (2012).

    Google Scholar 

  134. Rao, S. S. et al. Evaluation of GI transit in clinical practice: position paper of the American and European Neurogastroenterology and Motility Societies. Neurogastroenterol. Motil. 23, 8–23 (2011).

    Google Scholar 

  135. Hinton, J. M., Lennard-Jones, J. E. & Young, A. C. A new method for studying gut transit times using radioopaque markers. Gut 10, 842–847 (1969).

    Google Scholar 

  136. Saad, R. J. The wireless motility capsule: a one-stop shop for the evaluation of GI motility disorders. Curr. Gastroenterol. Rep. 18, 14 (2016).

    Google Scholar 

  137. Camilleri, M. et al. Wireless pH-motility capsule for colonic transit: prospective comparison with radiopaque markers in chronic constipation. Neurogastroenterol. Motil. 22, 874–882 (2010).

    Google Scholar 

  138. Rao, S. S. et al. Investigation of colonic and whole-gut transit with wireless motility capsule and radiopaque markers in constipation. Clin. Gastroenterol. Hepatol. 7, 537–544 (2009).

    Google Scholar 

  139. Kuo, B. et al. Generalized transit delay on wireless motility capsule testing in patients with clinical suspicion of gastroparesis, small intestinal dysmotility, or STC. Dig. Dis. Sci. 56, 2928–2938 (2011).

    Google Scholar 

  140. Bonapace, E. S. et al. Whole gut transit scintigraphy in the clinical evaluation of patients with upper and lower GI symptoms. Am. J. Gastroenterol. 95, 2838–2847 (2000).

    Google Scholar 

  141. Burton, D. D., Camilleri, M., Mullan, B. P., Forstrom, L. A. & Hung, J. C. Colonic transit scintigraphy labeled activated charcoal compared with ion exchange pellets. J. Nucl. Med. 38, 1807–1810 (1997).

    Google Scholar 

  142. Maurer, A. H. & Parkman, H. P. Update on GI scintigraphy. Semin. Nucl. Med. 36, 110–118 (2006).

    Google Scholar 

  143. Parkman, H. P. Scintigraphy for evaluation of patients for GI motility disorders — the referring physicians perspective. Semin. Nucl. Med. 42, 76–78 (2012).

    Google Scholar 

  144. Vitton, V. et al. Water-perfused manometry versus 3D high resolution manometry: a comparative study on a large patient population with anorectal disorders. Colorectal Dis. 15, e726–e731 (2013).

    Google Scholar 

  145. Di Lorenzo, C., Flores, A. F., Reddy, S. N. & Hyman, P. E. Use of colonic manometry to differentiate causes of intractable constipation in children. J. Pediatr. 120, 690–695 (1992).

    Google Scholar 

  146. Singh, S., Heady, S., Coss-Adame, E. & Rao, S. S. C. Clinical utility of colonic manometry in slow transit constipation. Neurogastroenterol. Motil. 25, 487–e367 (2013).

    Google Scholar 

  147. Huang, L. et al. Prevalence and risk factors of chronic constipation among women aged 50 years and older in Shanghai. China. Med. Sci. Monit. 23, 2660–2667 (2017).

    Google Scholar 

  148. Markland, A. D. et al. Association of low dietary intake of fiber and liquids with constipation: evidence from the National Health and Nutrition Examination Survey. Am. J. Gastroenterol. 108, 796–803 (2013).

    Google Scholar 

  149. Sandler, R. S., Jordan, M. C. & Shelton, B. J. Demographic and dietary determinants of constipation in the US population. Am. J. Publ. Health 80, 185–189 (1990).

    Google Scholar 

  150. Muller-Lissner, S. A., Kamm, M. A., Scarpignato, C. & Wald, A. Myths and misconceptions about chronic constipation. Am. J. Gastroenterol. 100, 232–242 (2005).

    Google Scholar 

  151. Ziegenhagen, D. J., Tewinkel, G., Kruis, W. & Herrmann, F. Adding more fluid to wheat bran has no significant effects on intestinal functions of healthy subjects. J. Clin. Gastroenterol. 13, 525–530 (1991).

    Google Scholar 

  152. De Giorgio, R. et al. Chronic constipation in the elderly: a primer for the gastroenterologist. BMC Gastroenterol. 15, 130 (2015).

    Google Scholar 

  153. Mearin, F. et al. Clinical Practice Guideline: IBS with constipation and functional constipation in the adult. Rev. Esp. Enferm. Dig. 108, 332–363 (2016).

    Google Scholar 

  154. Ford, A. C. et al. American College of Gastroenterology monograph on the management of IBS and chronic idiopathic constipation. Am. J. Gastroenterol. 109 (Suppl. 1), S2–S26 (2014).

    Google Scholar 

  155. Badiali, D. et al. Effect of wheat bran in treatment of chronic nonorganic constipation. A double-blind controlled trial. Dig. Dis. Sci. 40, 349–356 (1995).

    Google Scholar 

  156. Bijkerk, C. J., Muris, J. W., Knottnerus, J. A., Hoes, A. W. & de Wit, N. J. Systematic review: the role of different types of fibre in the treatment of IBS. Aliment. Pharmacol. Ther. 19, 245–251 (2004).

    Google Scholar 

  157. Rao, S. S., Yu, S. & Fedewa, A. Systematic review: dietary fibre and FODMAP-restricted diet in the management of constipation and IBS. Aliment. Pharmacol. Ther. 41, 1256–1270 (2015).

    Google Scholar 

  158. Suares, N. C. & Ford, A. C. Systematic review: the effects of fibre in the management of chronic idiopathic constipation. Aliment. Pharmacol. Ther. 33, 895–901 (2011).

    Google Scholar 

  159. Bijkerk, C. J. et al. Soluble or insoluble fibre in IBS in primary care? Randomised placebo controlled trial. BMJ 339, b3154 (2009).

    Google Scholar 

  160. Francis, C. Y. & Whorwell, P. J. Bran and IBS: time for reappraisal. Lancet 344, 39–40 (1994).

    Google Scholar 

  161. Miller, V., Lea, R., Agrawal, A. & Whorwell, P. J. Bran and IBS: the primary-care perspective. Dig. Liver Dis. 38, 737–740 (2006).

    Google Scholar 

  162. McRorie J. W. Jr & McKeown, N. M. Understanding the physics of functional fibers in the GI tract: an evidence-based approach to resolving enduring misconceptions about insoluble and soluble fiber. J. Acad. Nutr. Diet. 117, 251–264 (2017).

    Google Scholar 

  163. Johannesson, E. Simren, M., Strid, H., Bajor, A. & Sadik, R. Physical activity improves symptoms in IBS: a randomized controlled trial. Am. J. Gastroenterol. 106, 915–922 (2011).

    Google Scholar 

  164. Karam, S. E. & Nies, D. M. Student/staff collaboration: a pilot bowel management program. J. Gerontol. Nurs. 20, 32–40 (1994).

    Google Scholar 

  165. Dipalma, J. A. et al. A randomized, multicenter, placebo-controlled trial of polyethylene glycol laxative for chronic treatment of chronic constipation. Am. J. Gastroenterol. 102, 1436–1441 (2007).

    Google Scholar 

  166. Attar, A. et al. Comparison of a low dose polyethylene glycol electrolyte solution with lactulose for treatment of chronic constipation. Gut 44, 226–230 (1999).

    Google Scholar 

  167. Cinca, R., Chera, D., Gruss, H. J. & Halphen, M. Randomised clinical trial: macrogol/PEG 3350+electrolytes versus prucalopride in the treatment of chronic constipation — a comparison in a controlled environment. Aliment. Pharmacol. Ther. 37, 876–886 (2013).

    Google Scholar 

  168. Bass, P. & Dennis, S. The laxative effects of lactulose in normal and constipated subjects. J. Clin. Gastroenterol. 3 (Suppl. 1), 23–28 (1981).

    Google Scholar 

  169. Dupont, C., Campagne, A. & Constant, F. Efficacy and safety of a magnesium sulfate-rich natural mineral water for patients with functional constipation. Clin. Gastroenterol. Hepatol. 12, 1280–1287 (2014).

    Google Scholar 

  170. Ikarashi, N. et al. The laxative effect of bisacodyl is attributable to decreased aquaporin-3 expression in the colon induced by increased PGE2 secretion from macrophages. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G887–G895 (2011).

    Google Scholar 

  171. Manabe, N., Cremonini, F., Camilleri, M., Sandborn, W. J. & Burton, D. D. Effects of bisacodyl on ascending colon emptying and overall colonic transit in healthy volunteers. Aliment. Pharmacol. Ther. 30, 930–936 (2009).

    Google Scholar 

  172. Kamm, M. A. et al. Oral bisacodyl is effective and well-tolerated in patients with chronic constipation. Clin. Gastroenterol. Hepatol. 9, 577–583 (2011).

    Google Scholar 

  173. Mueller-Lissner, S. et al. Multicenter, 4-week, double-blind, randomized, placebo-controlled trial of sodium picosulfate in patients with chronic constipation. Am. J. Gastroenterol. 105, 897–903 (2010).

    Google Scholar 

  174. Nelson, A. D. et al. Comparison of efficacy of pharmacological treatments for chronic idiopathic constipation: a systematic review and network meta-analysis. Gut 66, 1611–1622 (2017). This paper is the first-ever network meta-analysis of pharmacotherapies for chronic constipation.

    Google Scholar 

  175. Milner, P. et al. Effects of long-term laxative treatment on neuropeptides in rat mesenteric vessels and caecum. J. Pharm. Pharmacol. 44, 777–779 (1992).

    Google Scholar 

  176. Johanson, J. F., Morton, D., Geenen, J. & Ueno, R. Multicenter, 4-week, double-blind, randomized, placebo-controlled trial of lubiprostone, a locally-acting type-2 chloride channel activator, in patients with chronic constipation. Am. J. Gastroenterol. 103, 170–177 (2008).

    Google Scholar 

  177. Chey, W. D. et al. Safety and patient outcomes with lubiprostone for up to 52 weeks in patients with IBS with constipation. Aliment. Pharmacol. Ther. 35, 587–599 (2012).

    Google Scholar 

  178. Lembo, A. J. et al. Two randomized trials of linaclotide for chronic constipation. N. Engl. J. Med. 365, 527–536 (2011).

    Google Scholar 

  179. Lacy, B. E. et al. Linaclotide in chronic idiopathic constipation patients with moderate to severe abdominal bloating: a randomized, controlled trial. PLoS ONE 10, e0134349 (2015).

    Google Scholar 

  180. Miner, P. B. et al. Randomized phase III clinical trial of plecanatide, a uroguanylin analog, in patients with chronic idiopathic constipation. Am. J. Gastroenterol. 112, 613–621 (2017).

    Google Scholar 

  181. Shin, A. et al. Systematic review with meta-analysis: highly selective 5-HT4 agonists (prucalopride, velusetrag or naronapride) in chronic constipation. Aliment. Pharmacol. Ther. 39, 239–253 (2014).

    Google Scholar 

  182. Camilleri, M., Kerstens, R., Rykx, A. & Vandeplassche, L. A placebo-controlled trial of prucalopride for severe chronic constipation. N. Engl. J. Med. 358, 2344–2354 (2008).

    Google Scholar 

  183. Chiarioni, G., Whitehead, W. E., Pezza, V., Morelli, A. & Bassotti, G. Biofeedback is superior to laxatives for normal transit constipation due to pelvic floor dyssynergia. Gastroenterology 130, 657–664 (2006). This paper describes the first randomized controlled trial demonstrating the efficacy of biofeedback training for dyssynergic defecation.

    Google Scholar 

  184. Heymen, S. et al. Prospective, randomized trial comparing four biofeedback techniques for patients with constipation. Dis. Colon Rectum 42, 1388–1393 (1999).

    Google Scholar 

  185. Rao, S. S. et al. Randomized controlled trial of biofeedback, sham feedback, and standard therapy for dyssynergic defecation. Clin. Gastroenterol. Hepatol. 5, 331–338 (2007).

    Google Scholar 

  186. Lee, H. J. et al. Long-term efficacy of biofeedback therapy in patients with dyssynergic defecation: results of a median 44 months follow-up. Neurogastroenterol. Motil. 27, 787–795 (2015).

    Google Scholar 

  187. Rao, S. S. C. et al. ANMS-ESMN position paper and consensus guidelines on biofeedback therapy for anorectal disorders. Neurogastroenterol. Motil. 27, 594–609 (2015).

    Google Scholar 

  188. Redmond, J. M. et al. Physiological tests to predict long-term outcome of total abdominal colectomy for intractable constipation. Am. J. Gastroenterol. 90, 748–753 (1995).

    Google Scholar 

  189. Paquette, I. M. et al. The American Society of Colon and Rectal Surgeons’ clinical practice guideline for the evaluation and management of constipation. Dis. Colon Rectum 59, 479–492 (2016).

    Google Scholar 

  190. Thaha, M. A., Abukar, A. A., Thin, N. N., Ramsanahie, A. & Knowles, C. H. Sacral nerve stimulation for faecal incontinence and constipation in adults. Cochrane Database Syst. Rev. 8, CD004464

  191. Graf, W., Sonesson, A. C., Lindberg, B., Åkerud, P. & Karlbom, U. Results after sacral nerve stimulation for chronic constipation. Neurogastroenterol. Motil. 27, 734–739 (2015).

    Google Scholar 

  192. Dinning, P. G. et al. Treatment efficacy of sacral nerve stimulation in slow transit constipation: a two-phase, double-blind randomized controlled crossover study. Am. J. Gastroenterol. 110, 733–740 (2015).

    Google Scholar 

  193. Patton, V., Stewart, P., Lubowski, D. Z., Cook, I. J. & Dinning, P. G. Sacral nerve stimulation fails to offer long-term benefit in patients with slow-transit constipation. Dis. Colon Rectum 59, 878–885 (2016).

    Google Scholar 

  194. Maeda, Y. et al. Long-term outcome of sacral neuromodulation for chronic refractory constipation. Tech. Coloproctol. 21, 277–286 (2017).

    Google Scholar 

  195. Zerbib, F. et al. Randomized clinical trial of sacral nerve stimulation for refractory constipation. Br. J. Surg. 104, 205–213 (2017).

    Google Scholar 

  196. He, C. L. et al. Decreased interstitial cell of cajal volume in patients with slow-transit constipation. Gastroenterol. 118, 14–21 (2000).

    Google Scholar 

  197. Lyford, G. L. et al. Pan-colonic decrease in interstitial cells of Cajal in patients with STC. Gut 51, 496–501 (2002).

    Google Scholar 

  198. Pinedo, G. et al. Laparoscopic total colectomy for colonic inertia: surgical and functional results. Surg. Endosc. 23, 62–65 (2009).

    Google Scholar 

  199. Indar, A. A., Efron, J. E. & Young-Fadok, T. M. Laparoscopic ileal pouch-anal anastomosis reduces abdominal and pelvic adhesions. Surg. Endosc. 23, 174–177 (2009).

    Google Scholar 

  200. O’Brien, S., Hyman, N., Osler, T. & Rabinowitz, T. Sexual abuse: a strong predictor of outcomes after colectomy for slow-transit constipation. Dis. Colon Rectum 52, 1844–1847 (2009).

    Google Scholar 

  201. Nyam, D. C., Pemberton, J. H., Ilstrup, D. M. & Rath, D. M. Long-term results of surgery for chronic constipation. Dis. Colon Rectum 40, 273 (1997).

    Google Scholar 

  202. Knowles, C. H., Scott, M. & Lunniss, P. J. Outcome of colectomy for STC. Ann. Surg. 230, 627 (1999).

    Google Scholar 

  203. Hassan, I. et al. Ileorectal anastomosis for STC: long-term functional and QOL results. J. Gastrointest. Surg. 10, 1330–1336 (2006).

    Google Scholar 

  204. Pikarsky, A. J. et al. Long-term follow-up of patients undergoing colectomy for colonic inertia. Dis. Colon Rectum 44, 179 (2001).

    Google Scholar 

  205. FitzHarris, G. P. et al. Quality of life after subtotal colectomy for slow-transit constipation: both quality and quantity count. Dis. Colon Rectum 46, 433–440 (2003).

    Google Scholar 

  206. Belsey, J., Greenfield, S., Candy, D. & Geraint, M. Systematic review: impact of constipation on QOL in adults and children. Aliment. Pharmacol. Ther. 31, 938–949 (2010).

    Google Scholar 

  207. Wald, A. et al. The burden of constipation on QOL: results of a multinational survey. Aliment. Pharmacol. Ther. 26, 227–236 (2007).

    Google Scholar 

  208. Jiang, Y. et al. Influence of sleep disorders on somatic symptoms, mental health, and QOL in patients with chronic constipation. Medicine 96, e6093 (2017).

    Google Scholar 

  209. Glia, A. & Lindberg, G. QOL in patients with different types of functional constipation. Scand. J. Gastroenterol. 32, 1083–1089 (1997).

    Google Scholar 

  210. Marquis, P., De La Loge, C., Dubois, D., McDermott, A. & Chassany, O. Development and validation of the Patient Assessment of Constipation QOL questionnaire. Scand. J. Gastroenterol. 40, 540–551 (2005).

    Google Scholar 

  211. Bellini, M. et al. Chronic constipation diagnosis and treatment evaluation: the “CHRO.CO.DI.T.E.” study. BMC Gastroenterol. 17, 11 (2017).

    Google Scholar 

  212. Cai, Q. et al. Healthcare costs among patients with chronic constipation: a retrospective claims analysis in a commercially insured population. J. Med. Econ. 17, 148–158 (2014).

    Google Scholar 

  213. Nyrop, K. A. et al. Costs of health care for IBS, chronic constipation, functional diarrhoea and functional abdominal pain. Aliment. Pharmacol. Ther. 26, 237–248 (2007).

    Google Scholar 

  214. Choung, R. S. et al. Longitudinal direct medical costs associated with constipation in women. Aliment. Pharmacol. Ther. 33, 251–260 (2011).

    Google Scholar 

  215. Mitra, D., Davis, K. L. & Baran, R. W. All-cause health care charges among managed care patients with constipation and comorbid IBS. Postgrad. Med. 123, 122–132 (2011).

    Google Scholar 

  216. Lembo, A. & Camilleri, M. Chronic constipation. N. Engl. J. Med. 349, 1360–1368 (2003). This review details the history and physical examination findings and mechanisms leading to rectal evacuation disorders among patients with chronic constipation.

    Google Scholar 

  217. Halder, S. L. et al. Natural history of functional gastrointestinal disorders: a 12-year longitudinal population-based study. Gastroenterology 133, 799–807 (2007).

    Google Scholar 

  218. Kolar, G. J., Camilleri, M., Burton, D., Nadeau, A. & Zinsmeister, A. R. Prevalence of colonic motor or evacuation disorders in patients presenting with chronic nausea and vomiting evaluated by a single gastroenterologist in a tertiary referral practice. Neurogastroenterol. Motil. 26, 131–138 (2014).

    Google Scholar 

  219. Mohammed, S. D. et al. Joint hypermobility and rectal evacuatory dysfunction: an etiological link in abnormal connective tissue? Neurogastroenterol. Motil. 22, 1085–e1283 (2010).

    Google Scholar 

  220. Nelson, A. D. et al. Ehlers Danlos syndrome and gastrointestinal manifestations: a 20-year experience at Mayo Clinic. Neurogastroenterol. Motil. 27, 1657–1666 (2015).

    Google Scholar 

  221. Fikree, A., Chelimsky, G., Collins, H., Kovacic, K. & Aziz, Q. Gastrointestinal involvement in the Ehlers-Danlos syndromes. Am. J. Med. Genet. C Semin. Med. Genet. 175, 181–187 (2017).

    Google Scholar 

  222. Wu, G. J., Xu, F., Lin, L., Pasricha, P. J. & Chen, J. D. Z. Anorectal manometry: should it be performed in a seated position? Neurogastroenterol. Motil. 29, e12997 (2017).

    Google Scholar 

  223. Clarke, M. C. et al. Transabdominal electrical stimulation increases colonic propagating pressure waves in paediatric slow transit constipation. J. Pediatr. Surg. 47, 2279–2284 (2012).

    Google Scholar 

  224. Gaertner, J. et al. Definitions and outcome measures of clinical trials regarding opioid-induced constipation: a systematic review. J. Clin. Gastroenterol. 49, 9–16 (2015).

    Google Scholar 

  225. Benninga, M. A. et al. Childhood functional gastrointestinal disorders: neonate/toddler. Gastroenterology 150, 1443–1455.e2 (2016).

    Google Scholar 

  226. Hyams, J. S. et al. Functional disorders: children and adolescents. Gastroenterology 150, 1456–1468 (2016).

    Google Scholar 

  227. Tse, Y. et al. Treatment algorithm for chronic idiopathic constipation and constipation-predominant irritable bowel syndrome derived from a Canadian national survey and needs assessment on choices of therapeutic agents. Can. J. Gastroenterol. Hepatol. 2017, 8612189 (2017). This paper contains a recent guideline and algorithm for the management of chronic constipation.

    Google Scholar 

Download references

Acknowledgements

This study was supported in part by the US Public Health Service NIH Grant 5R21DK104127-02 and Grant 1 U34 DK109191-01 to S.S.R. The authors thank C. L. Stanislav (Mayo Clinic, USA) for her excellent administrative support.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (M.C.); Epidemiology (A.C.F.); Mechanisms/pathophysiology (M.C., G.M.M., P.G.D., S.S.R. and W.D.C.); Diagnosis, screening and prevention (W.D.C.); Management (M.S., A.L. and T.M.Y.-F.); Quality of life (L.C.); Outlook (M.C.); Overview of Primer (M.C.).

Corresponding author

Correspondence to Michael Camilleri.

Ethics declarations

Competing interests

M.C. serves on an advisory board for Ironwood Pharmaceuticals and Shire Pharmaceuticals, with compensation to his employer and not to him personally, and has received grant and research support from NGM Pharmaceuticals. A.C.F. has received grant and research support from Almirall and has acted as a consultant and speaker for Almirall, Norgine and Shire Pharmaceuticals. S.S.R. serves on the advisory board for Forest Labs, Salix Pharmaceuticals, Takeda Pharmaceuticals and Synergy Pharmaceuticals and has received research grants from Forest Labs and Medtronic Corporation. M.S. has received grant and research support from Danone Nutricia Research and Ferring Pharmaceuticals and has acted as a consultant and speaker for Allergan, Almirall, Danone Nutricia Research, Menarini, Nestlé, Shire Pharmaceuticals, Takeda Pharmaceuticals and Tillotts. L.C. has served on advisory boards for BioAmerica, Cairn Diagnostics, IM Healthcare Science LLC, Napo Pharmaceuticals, Salix Pharmaceuticals, and Synergy Pharmaceuticals. All other authors have no relevant conflicts of interest related to the content of this Primer to declare.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camilleri, M., Ford, A., Mawe, G. et al. Chronic constipation. Nat Rev Dis Primers 3, 17095 (2017). https://doi.org/10.1038/nrdp.2017.95

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2017.95

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing