Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Familial hypercholesterolaemia

Abstract

Familial hypercholesterolaemia is a common inherited disorder characterized by abnormally elevated serum levels of low-density lipoprotein (LDL) cholesterol from birth, which in time can lead to cardiovascular disease (CVD). Most cases are caused by autosomal dominant mutations in LDLR, which encodes the LDL receptor, although mutations in other genes coding for proteins involved in cholesterol metabolism or LDLR function and processing, such as APOB and PCSK9, can also be causative, although less frequently. Several sets of diagnostic criteria for familial hypercholesterolaemia are available; common diagnostic features are an elevated LDL cholesterol level and a family history of hypercholesterolaemia or (premature) CVD. DNA-based methods to identify the underlying genetic defect are desirable but not essential for diagnosis. Cascade screening can contribute to early diagnosis of the disease in family members of an affected individual, which is crucial because familial hypercholesterolaemia can be asymptomatic for decades. Clinical severity depends on the nature of the gene that harbours the causative mutation, among other factors, and is further modulated by the type of mutation. Lifelong LDL cholesterol-lowering treatment substantially improves CVD-free survival and longevity. Statins are the first-line therapy, but additional drugs, such as ezetimibe, bile acid sequestrants, PCSK9 inhibitors and other emerging therapies, are often required.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Survival rates of patients with familial hypercholesterolaemia.
Figure 2: Basic pathways in LDL particle synthesis and LDLR-mediated uptake.
Figure 3: Tendinous xanthomas on the hands and Achilles tendon in patients with heterozygous familial hypercholesterolaemia.
Figure 4: Arcus cornealis and xanthelasmata in patients with heterozygous familial hypercholesterolaemia.
Figure 5: Basic schematic procedure of clinical cascade screening.
Figure 6: Severe familial hypercholesterolaemia criteria and treatment goals according to the International Atherosclerosis Society expert panel*.

Similar content being viewed by others

References

  1. Goldstein, J. L., Hobbs, H. H. & Brown, M. S. in The Metabolic annd Molecular Bases of Inherited Disease (eds Scriver, C. R., Beaudet, A., Valle, D. & Sly, W. S. ) 2863–2913 (McGraw-Hill, 2001).

    Google Scholar 

  2. Scientific Steering Committee on behalf of the Simon Broome Register Group. Risk of fatal coronary heart disease in familial hypercholesterolaemia. BMJ 303, 893–896 (1991).This paper describes the widely used Simon Broome clinical criteria for diagnosis of heterozygous familial hypercholesterolaemia.

    Google Scholar 

  3. Umans-Eckenhausen, M. A., Defesche, J. C., Sijbrands, E. J., Scheerder, R. L. & Kastelein, J. J. Review of first 5 years of screening for familial hypercholesterolaemia in the Netherlands. Lancet 357, 165–168 (2001).This paper defines the widely used DLCN criteria for diagnosis of heterozygous familial hypercholesterolaemia.

    Google Scholar 

  4. Williams, R. R. et al. Diagnosing heterozygous familial hypercholesterolemia using new practical criteria validated by molecular genetics. Am. J. Cardiol. 72, 171–176 (1993).

    Google Scholar 

  5. Genest, J. G. et al. Canadian Cardiovascular Society position statement on familial hypercholesterolemia. Can. J. Cardiol. 30, 1471–1481 (2014).

    Google Scholar 

  6. Nordestgaard, B. G. et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur. Heart J. 34, 3478–3490 (2013).This article offers the definitive European Atherosclerosis Society position statement on major clinical and cardiovascular implications of heterozygous familial hypercholesterolaemia.

    Google Scholar 

  7. Gidding, S. S. et al. The agenda for familial hypercholesterolemia: a scientific statement from the American Heart Association. Circulation 132, 2167–2192 (2015).This article offers the definitive American Heart Association position statement on several clinical and cardiovascular implications of heterozygous familial hypercholesterolaemia.

    Google Scholar 

  8. Cuchel, M. et al. Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur. Heart J. 35, 2146–2157 (2014).This expert opinion consensus document focuses on numerous pressing issues specific to homozygous familial hypercholesterolaemia.

    Google Scholar 

  9. Versmissen, J. et al. Efficacy of statins in familial hypercholesterolaemia: a long term cohort study. BMJ 337, a2423 (2008).

    Google Scholar 

  10. Nordestgaard, B. G. & Benn, M. Genetic testing for familial hypercholesterolaemia is essential in individuals with high LDL cholesterol: who does it in the world? Eur. Heart J. 38, 1580–1583 (2017).

    Google Scholar 

  11. Benn, M., Watts, G. F., Tybjaerg-Hansen, A. & Nordestgaard, B. G. Familial hypercholesterolemia in the Danish general population: prevalence, coronary artery disease, and cholesterol-lowering medication. J. Clin. Endocrinol. Metab. 97, 3956–3964 (2012).

    Google Scholar 

  12. Watts, G. F. et al. Prevalence and treatment of familial hypercholesterolaemia in Australian communities. Intl J.Cardiol. 185, 69–71 (2015).

    Google Scholar 

  13. Shi, Z. et al. Familial hypercholesterolemia in China: prevalence and evidence of underdetection and undertreatment in a community population. Intl J.Cardiol. 174, 834–836 (2014).

    Google Scholar 

  14. Sjouke, B. et al. Homozygous autosomal dominant hypercholesterolaemia in the Netherlands: prevalence, genotype-phenotype relationship, and clinical outcome. Eur. Heart J. 36, 560–565 (2015).

    Google Scholar 

  15. Lansberg, P. J., Tuzgol, S., van de Ree, M. A., Defesche, J. C. & Kastelein, J. J. Higher prevalence of familial hypercholesterolemia than expected in adult patients of four family practices in Netherlands [Dutch]. Ned. Tijdschr. Geneeskd. 144, 1437–1440 (2000).

    Google Scholar 

  16. Marks, D., Thorogood, M., Neil, H. A. & Humphries, S. E. A review on the diagnosis, natural history, and treatment of familial hypercholesterolaemia. Atherosclerosis 168, 1–14 (2003).

    Google Scholar 

  17. Steyn, K. et al. Estimation of the prevalence of familial hypercholesterolaemia in a rural Afrikaner community by direct screening for three Afrikaner founder low density lipoprotein receptor gene mutations. Hum. Genet. 98, 479–484 (1996).

    Google Scholar 

  18. Marais, A. D., Firth, J. C. & Blom, D. J. Familial hypercholesterolemia in South Africa. Semin. Vasc. Med. 4, 93–95 (2004).

    Google Scholar 

  19. Moorjani, S. et al. Homozygous familial hypercholesterolemia among French Canadians in Quebec Province. Arteriosclerosis 9, 211–216 (1989).

    Google Scholar 

  20. Der Kaloustian, V. M., Naffah, J. & Loiselet, J. Genetic diseases in Lebanon. Am. J. Med. Genet. 7, 187–203 (1980).

    Google Scholar 

  21. Miller, P. E. et al. Screening and advanced lipid phenotyping in familial hypercholesterolemia: the Very Large Database of Lipids Study-17 (VLDL-17). J. Clin. Lipidol. 9, 676–683 (2015).

    Google Scholar 

  22. Varvel, S. A. et al. Familial hypercholesterolemia prevalence of 1.5% in a clinical database of 542,214 patients: refined risk stratification using apoB:LDL-C ratio [abstract]. J. Clin. Lipidol. 9, 103 (2015).

    Google Scholar 

  23. De Backer, G. et al. Prevalence and management of familial hypercholesterolaemia in coronary patients: an analysis of EUROASPIRE IV, a study of the European Society of Cardiology. Atherosclerosis 241, 169–175 (2015).

    Google Scholar 

  24. Do, R. et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature 518, 102–106 (2015).

    Google Scholar 

  25. Pérez de Isla, L. et al. Coronary heart disease, peripheral arterial disease, and stroke in familial hypercholesterolaemia: insights from the SAFEHEART registry (Spanish Familial Hypercholesterolaemia Cohort Study). Arterioscler. Thromb. Vasc. Biol. 36, 2004–2010 (2016).

    Google Scholar 

  26. Wiegman, A. et al. Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing detection and treatment. Eur. Heart J. 36, 2425–2437 (2015).This expert opinion consensus document focuses on issues and challenges specific to familial hypercholesterolaemia in children and adolescents.

    Google Scholar 

  27. Besseling, J., Kastelein, J. J., Defesche, J. C., Hutten, B. A. & Hovingh, G. K. Association between familial hypercholesterolemia and prevalence of type 2 diabetes mellitus. J. Am. Med. Assoc. 313, 1029–1036 (2015).

    Google Scholar 

  28. Eapen, D. J. Valiani, K., Reddy, S. & Sperling, L. Management of familial hypercholesterolemia during pregnancy: case series and discussion. J. Clin. Lipidol. 6, 88–91 (2012).

    Google Scholar 

  29. Raal, F. J. & Santos, R. D. Homozygous familial hypercholesterolemia: current perspectives on diagnosis and treatment. Atherosclerosis 223, 262–268 (2012).

    Google Scholar 

  30. Raal, F. J. et al. Reduction in mortality in subjects with homozygous familial hypercholesterolemia associated with advances in lipid-lowering therapy. Circulation 124, 2202–2207 (2011).

    Google Scholar 

  31. Nanchen, D. et al. Prognosis of patients with familial hypercholesterolemia after acute coronary syndromes. Circulation 134, 698–709 (2016).

    Google Scholar 

  32. Khera, A. V. et al. Diagnostic yield and clinical utility of sequencing familial hypercholesterolemia genes in patients with severe hypercholesterolemia. J. Am. Coll. Cardiol. 67, 2578–2589 (2016).

    Google Scholar 

  33. Goldstein, J. L. & Brown, M. S. The LDL receptor. Arterioscler. Thromb. Vasc. Biol. 29, 431–438 (2009).This retrospective paper provides a firsthand account of the history of the Nobel Prize-winning discovery of the LDLR and the process of receptor-mediated endocytosis.

    Google Scholar 

  34. Huijgen, R. et al. Assessment of carotid atherosclerosis in normocholesterolemic individuals with proven mutations in the low-density lipoprotein receptor or apolipoprotein B genes. Circ. Cardiovasc. Genet. 4, 413–417 (2011).

    Google Scholar 

  35. Hegele, R. A. Plasma lipoproteins: genetic influences and clinical implications. Nat. Rev. Genet. 10, 109–121 (2009).

    Google Scholar 

  36. Stroes, E. S., Koomans, H. A., de Bruin, T. W. & Rabelink, T. J. Vascular function in the forearm of hypercholesterolaemic patients off and on lipid-lowering medication. Lancet 346, 467–471 (1995).

    Google Scholar 

  37. Moore, K. J. et al. Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. J. Clin. Invest. 115, 2192–2201 (2005).

    Google Scholar 

  38. Lusis, A. J. Atherosclerosis. Nature 407, 233–241 (2000).

    Google Scholar 

  39. Liyanage, K. E., Burnett, J. R., Hooper, A. J. & van Bockxmeer, F. M. Familial hypercholesterolemia: epidemiology, Neolithic origins and modern geographic distribution. Crit. Rev. Clin. Lab. Sci. 48, 1–18 (2011).

    Google Scholar 

  40. Bourbon, M., Alves, A. C. & Sijbrands, E. J. Low-density lipoprotein receptor mutational analysis in diagnosis of familial hypercholesterolemia. Curr. Opin. Lipidol. 28, 120–129 (2017).

    Google Scholar 

  41. Moorjani, S. et al. Mutations of low-density-lipoprotein-receptor gene, variation in plasma cholesterol, and expression of coronary heart disease in homozygous familial hypercholesterolaemia. Lancet 341, 1303–1306 (1993).

    Google Scholar 

  42. Jansen, A. C., van, W. S., Defesche, J. C. & Kastelein, J. J. Phenotypic variability in familial hypercholesterolaemia: an update. Curr. Opin. Lipidol. 13, 165–171 (2002).

    Google Scholar 

  43. Wang, J., Ban, M. R. & Hegele, R. A. Multiplex ligation-dependent probe amplification of LDLR enhances molecular diagnosis of familial hypercholesterolemia. J. Lipid Res. 46, 366–372 (2005).

    Google Scholar 

  44. Santos, R. D. & Maranhao, R. C. What is new in familial hypercholesterolemia? Curr. Opin. Lipidol. 25, 183–188 (2014).

    Google Scholar 

  45. Andersen, L. H., Miserez, A. R., Ahmad, Z. & Andersen, R. L. Familial defective apolipoprotein B-100: a review. J. Clin. Lipidol. 10, 1297–1302 (2016).

    Google Scholar 

  46. Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34 154–156 (2003).

    Google Scholar 

  47. Hopkins, P. N. et al. Characterization of autosomal dominant hypercholesterolemia caused by PCSK9 gain of function mutations and its specific treatment with alirocumab, a PCSK9 monoclonal antibody. Circ. Cardiovasc. Genet. 8, 823–831 (2015).

    Google Scholar 

  48. Awan, Z. et al. APOE p. Leu167del mutation in familial hypercholesterolemia. Atherosclerosis 231, 218–222 (2013).

    Google Scholar 

  49. Fouchier, S. W. et al. Mutations in STAP1 are associated with autosomal dominant hypercholesterolemia. Circ. Res. 115, 552–555 (2014).

    Google Scholar 

  50. Fellin, R., Arca, M., Zuliani, G., Calandra, S. & Bertolini, S. The history of Autosomal Recessive Hypercholesterolemia (ARH). From clinical observations to gene identification. Gene 555, 23–32 (2014).

    Google Scholar 

  51. Rios, J., Stein, E., Shendure, J., Hobbs, H. H. & Cohen, J. C. Identification by whole-genome resequencing of gene defect responsible for severe hypercholesterolemia. Hum. Molec. Genet. 19, 4313–4318 (2010).

    Google Scholar 

  52. Stitziel, N. O. et al. Exome sequencing and directed clinical phenotyping diagnose cholesterol ester storage disease presenting as autosomal recessive hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 33, 2909–2914 (2013).

    Google Scholar 

  53. Patel, S. B. Recent advances in understanding the STSL locus and ABCG5/ABCG8 biology. Curr. Opin. Lipidol. 25, 169–175 (2014).

    Google Scholar 

  54. Fouchier, S. W. & Defesche, J. C. Lysosomal acid lipase A and the hypercholesterolaemic phenotype. Curr. Opin. Lipidol. 24, 332–338 (2013).

    Google Scholar 

  55. Talmud, P. J. et al. Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: a case-control study. Lancet 381, 1293–1301 (2013).This manuscript reports the initial observation that a substantial proportion of individuals who seem to have heterozygous familial hypercholesterolaemia on clinical grounds in fact have polygenic hypercholesterolaemia due to multiple inherited small genetic effects.

    Google Scholar 

  56. Global Lipids Genetics Consortium et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).

    Google Scholar 

  57. Futema, M. et al. Refinement of variant selection for the LDL cholesterol genetic risk score in the diagnosis of the polygenic form of clinical familial hypercholesterolemia and replication in samples from 6 countries. Clin. Chem. 61, 231–238 (2015).

    Google Scholar 

  58. Wang, J. et al. Polygenic versus monogenic causes of hypercholesterolemia ascertained clinically. Arterioscler. Thromb. Vasc. Biol. 36, 2439–2445 (2016).

    Google Scholar 

  59. Santos, R. D. et al. Defining severe familial hypercholesterolaemia and the implications for clinical management: a consensus statement from the International Atherosclerosis Society Severe Familial Hypercholesterolemia Panel. Lancet Diabetes Endocrinol. 4, 850–861 (2016).This paper provides advice pertinent to individuals who are on the severe end of the clinical spectrum of familial hypercholesterolaemia, particularly severely affected patients with heterozygous familial hypercholesterolaemia.

    Google Scholar 

  60. ICD List. ICD-10 Diagnosis Code E78.01: Familial hypercholesterolemia. ICD Listhttp://icdlist.com/icd-10/E78.01 (2017).

  61. Brahm, A. J. & Hegele, R. A. Combined hyperlipidemia: familial but not (usually) monogenic. Curr. Opin. Lipidol. 27, 131–140 (2016).

    Google Scholar 

  62. Haralambos, K. et al. Clinical experience of scoring criteria for Familial Hypercholesterolaemia (FH) genetic testing in Wales. Atherosclerosis 240, 190–196 (2015).

    Google Scholar 

  63. Weng, S. F., Kai, J., Andrew Neil, H., Humphries, S. E. & Qureshi, N. Improving identification of familial hypercholesterolaemia in primary care: derivation and validation of the familial hypercholesterolaemia case ascertainment tool (FAMCAT). Atherosclerosis 238, 336–343 (2015).

    Google Scholar 

  64. Iacocca, M. A. & Hegele, R. A. Recent advances in genetic testing for familial hypercholesterolemia. Expert Rev. Mol. Diagn. 17, 641–651 (2017).

    Google Scholar 

  65. Santos, R. D. Familial hypercholesterolaemia: beware of lipoprotein(a). Lancet Diabetes Endocrinol. 4, 553–555 (2016).

    Google Scholar 

  66. Langsted, A., Kamstrup, P. R., Benn, M., Tybjaerg-Hansen, A. & Nordestgaard, B. G. High lipoprotein(a) as a possible cause of clinical familial hypercholesterolaemia: a prospective cohort study. Lancet Diabetes Endocrinol. 4, 577–587 (2016).

    Google Scholar 

  67. Paquette, M. et al. Cardiovascular disease in familial hypercholesterolemia: validation and refinement of the Montreal-FH-SCORE. J. Clin. Lipidol. 11, 1161–1167 (2017).

    Google Scholar 

  68. Lyceum CME Inc. Framingham Risk Score: Risk assessment tool for estimating a patient's 10-year risk of developing cardiovascular disease. Patient Monitoring and Support: CVD Risk Checkhttps://www.cvdriskchecksecure.com/framinghamriskscore.aspx (2013).

  69. Pérez de Isla, L. et. al. Predicting cardiovascular events in familial hypercholesterolemia: the SAFEHEART registry (Spanish Familial Hypercholesterolemia Cohort Study). Circulation 135, 2133–2144 (2017).

    Google Scholar 

  70. deGoma, E. M. et al. Treatment gaps in adults with heterozygous familial hypercholesterolemia in the United States: data from the CASCADE-familial hypercholesterolemia registry. Circ. Cardiovasc. Genet. 9, 240–249 (2016).

    Google Scholar 

  71. Wierzbicki, A. S., Humphries, S. E. & Minhas, R. Familial hypercholesterolaemia: summary of NICE guidance. BMJ 337, a1095 (2008).

    Google Scholar 

  72. EAS Familial Hypercholesterolaemia Studies Collaboration et al. Pooling and expanding registries of familial hypercholesterolaemia to assess gaps in care and improve disease management and outcomes: rationale and design of the global EAS Familial Hypercholesterolaemia Studies Collaboration. Atheroscler. Suppl. 22, 1–32 (2016).

    Google Scholar 

  73. Andersen, R. & Andersen, L. Examining barriers to cascade screening for familial hypercholesterolemia in the United States. J. Clin. Lipidol. 10, 225–227 (2016).

    Google Scholar 

  74. Kusters, D. M. et al. Paediatric screening for hypercholesterolaemia in Europe. Arch. Dis. Child. 97, 272–276 (2012).

    Google Scholar 

  75. Lozano, P. et al. Lipid screening in childhood and adolescence for detection of familial hypercholesterolemia: evidence report and systematic review for the US Preventive Services Task Force. JAMA 316, 645–655 (2016).

    Google Scholar 

  76. Bell, D. A. et al. Effectiveness of genetic cascade screening for familial hypercholesterolaemia using a centrally co-ordinated clinical service: an Australian experience. Atherosclerosis 239, 93–100 (2015).

    Google Scholar 

  77. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents: summary report. Pediatrics 128 (Suppl. 5), S213–S256 (2011).

    Google Scholar 

  78. Klancar, G. et al. Universal screening for familial hypercholesterolemia in children. J. Am. Coll. Cardiol. 66, 1250–1257 (2015).

    Google Scholar 

  79. Wald, D. S. et al. Child-parent familial hypercholesterolemia screening in primary care. N. Engl. J. Med. 375, 1628–1637 (2016).This paper validates the utility of case finding in familial hypercholesterolaemia by child and parent lipid screening in primary care practices at routine child immunization visits.

    Google Scholar 

  80. Besseling, J., Hovingh, G. K., Huijgen, R., Kastelein, J. J. & Hutten, B. A. Statins in familial hypercholesterolemia: consequences for coronary artery disease and all-cause mortality. J. Am. Coll. Cardiol. 68, 252–260 (2016).

    Google Scholar 

  81. Gryn, S. E. & Hegele, R. A. New oral agents for treating dyslipidemia. Curr. Opin. Lipidol. 27, 579–584 (2016).

    Google Scholar 

  82. Schonewille, M., de Boer, J. F. & Groen, A. K. Bile salts in control of lipid metabolism. Curr. Opin. Lipidol. 27, 295–301 (2016).

    Google Scholar 

  83. Cupido, A. J., Reeskamp, L. F. & Kastelein, J. J. P. Novel lipid modifying drugs to lower LDL cholesterol. Curr. Opin. Lipidol. 28, 367–373 (2017).This is a state-of-the-art review of the medications available for the management of hypercholesterolaemia.

  84. Kastelein, J. J. et al. Efficacy and safety of the proprotein convertase subtilisin/kexin type 9 monoclonal antibody alirocumab versus placebo in patients with heterozygous familial hypercholesterolemia. J. Clin. Lipidol. 11, 195–203.e4 (2017).

    Google Scholar 

  85. Raal, F. J. et al. Long-term treatment with evolocumab added to conventional drug therapy, with or without apheresis, in patients with homozygous familial hypercholesterolaemia: an interim subset analysis of the open-label TAUSSIG study. Lancet Diabetes Endocrinol. 5, 280–290 (2017).

    Google Scholar 

  86. Robinson, J. G. & Goldberg, A. C. Treatment of adults with familial hypercholesterolemia and evidence for treatment: recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J. Clin. Lipidol 5, S18–S29 (2011).

    Google Scholar 

  87. Smit, J. W., Bar, P. R., Geerdink, R. A. & Erkelens, D. W. Heterozygous familial hypercholesterolaemia is associated with pathological exercise-induced leakage of muscle proteins, which is not aggravated by simvastatin therapy. Eur. J. Clin. Invest. 25, 79–84 (1995).

    Google Scholar 

  88. Sbrana, F. et al. Statin intolerance in heterozygous familial hypercolesterolemia with cardiovascular disease: after PCSK-9 antibodies what else? Eur. J. Prev. Cardiol. 24, 1528–1531 (2017).

    Google Scholar 

  89. Stroes, E. S. et al. Statin-associated muscle symptoms: impact on statin therapy-European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management. Eur. Heart J. 36, 1012–1022 (2015).This review of the mechanisms and management strategies of statin intolerance provides important clinical guidance, as statin intolerance is observed among many patients with familial hypercholesterolaemia.

    Google Scholar 

  90. Mancini, G. B. et al. Diagnosis, prevention, and management of statin adverse effects and intolerance: Canadian Working Group Consensus update. Can. J. Cardiol. 29, 1553–1568 (2013).

    Google Scholar 

  91. Amundsen, A. L. et al. Marked changes in plasma lipids and lipoproteins during pregnancy in women with familial hypercholesterolemia. Atherosclerosis 189, 451–457 (2006).

    Google Scholar 

  92. Robinson, J. G. et al. Determining when to add nonstatin therapy: a quantitative approach. J. Am. Coll. Cardiol. 68, 2412–2421 (2016).

    Google Scholar 

  93. Raal, F. J. et al. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet 385, 331–340 (2015).

    Google Scholar 

  94. Tonstad, S., Knudtzon, J., Sivertsen, M., Refsum, H. & Ose, L. Efficacy and safety of cholestyramine therapy in peripubertal and prepubertal children with familial hypercholesterolemia. J. Pediatr. 129, 42–49 (1996).

    Google Scholar 

  95. Hegele, R. A. et al. Nonstatin low-density lipoprotein-lowering therapy and cardiovascular risk reduction — statement from ATVB council. Arterioscler. Thromb. Vasc. Biol. 35, 2269–2280 (2015).

    Google Scholar 

  96. Kastelein, J. J. et al. Simvastatin with or without ezetimibe in familial hypercholesterolemia. N. Engl. J. Med. 358, 1431–1443 (2008).

    Google Scholar 

  97. Huijgen, R. et al. Colesevelam added to combination therapy with a statin and ezetimibe in patients with familial hypercholesterolemia: a 12-week, multicenter, randomized, double-blind, controlled trial. Clin. Ther. 32, 615–625 (2010).

    Google Scholar 

  98. Qian, L. J. et al. Therapeutic efficacy and safety of PCSK9-monoclonal antibodies on familial hypercholesterolemia and statin-intolerant patients: a meta-analysis of 15 randomized controlled trials. Sci. Rep. 7, 238 (2017).

    Google Scholar 

  99. Landmesser, U. et al. European Society of Cardiology/European Atherosclerosis Society Task Force consensus statement on proprotein convertase subtilisin/kexin type 9 inhibitors: practical guidance for use in patients at very high cardiovascular risk. Eur. Heart J. 38, 2245–2255 (2017).

    Google Scholar 

  100. Orringer, C. E. et al. Update on the use of PCSK9 inhibitors in adults: recommendations from an Expert Panel of the National Lipid Association. J. Clin. Lipidol. 11, 880–890 (2017).

    Google Scholar 

  101. Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376, 1713–1172 (2017).

    Google Scholar 

  102. Ridker, P. M. et al. Cardiovascular efficacy and safety of bococizumab in high-risk patients. N. Engl. J. Med. 376, 1527–1539 (2017).

    Google Scholar 

  103. Santos, R. D. Phenotype versus genotype in severe familial hypercholesterolemia: what matters most for the clinician? Curr. Opin. Lipidol. 28, 130–135 (2017).

    Google Scholar 

  104. Wierzbicki, A. S. & Watts, G. F. The hinterland of familial hypercholesterolaemia: what do we not know? Curr. Opin. Lipidol. 26, 475–483 (2015).

    Google Scholar 

  105. Watts, G. F. et al. Integrated guidance on the care of familial hypercholesterolaemia from the International FH Foundation. Intl J. Cardiol. 171, 309–325 (2014).

    Google Scholar 

  106. Ito, M. K., McGowan, M. P. & Moriarty, P. M. Management of familial hypercholesterolemias in adult patients: recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J. Clin. Lipidol 5, S38–S45 (2011).

    Google Scholar 

  107. Smilde, T. J. et al. Effect of aggressive versus conventional lipid lowering on atherosclerosis progression in familial hypercholesterolaemia (ASAP): a prospective, randomised, double-blind trial. Lancet 357, 577–581 (2001).

    Google Scholar 

  108. National Institute for Health and Care Excellence. Ezetimibe for treating primary heterozygous-familial and non-familial hypercholesterolaemia. NICE technology appraisal guidance [TA385]. NICEhttps://www.nice.org.uk/guidance/ta385 (2016).

  109. Cannon, C. P. et al. Ezetimibe added to statin therapy after acute coronary syndromes. N. Engl. J. Med. 372, 2387–2397 (2015).

    Google Scholar 

  110. Maher, V. M. et al. Effects of lowering elevated LDL cholesterol on the cardiovascular risk of lipoprotein(a). JAMA 274, 1771–1774 (1995).

    Google Scholar 

  111. Ference, B. A. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 38, 2459–2472 (2017).This comprehensive review lays out the arguments supporting a direct causative role in atherogenesis for LDL cholesterol.

    Google Scholar 

  112. Raal, F. J. et al. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial. Lancet 385, 341–350 (2015).

    Google Scholar 

  113. Gagne, C., Gaudet, D. & Bruckert, E. Efficacy and safety of ezetimibe coadministered with atorvastatin or simvastatin in patients with homozygous familial hypercholesterolemia. Circulation 105, 2469–2475 (2002).

    Google Scholar 

  114. Moutafis, C. D., Simons, L. A., Myant, N. B., Adams, P. W. & Wynn, V. The effect of cholestyramine on the faecal excretion of bile acids and neutral steroids in familial hypercholesterolaemia. Atherosclerosis 26, 329–334 (1977).

    Google Scholar 

  115. Thompson, G. R. The evidence-base for the efficacy of lipoprotein apheresis in combating cardiovascular disease. Atheroscler. Suppl. 14, 67–70 (2013).

    Google Scholar 

  116. Wang, A. et al. Systematic review of low-density lipoprotein cholesterol apheresis for the treatment of familial hypercholesterolemia. J. Am. Heart Assoc. 5, e003294 (2016).

    Google Scholar 

  117. Thompson, G. R. et al. Familial Hypercholesterolaemia Regression Study: a randomised trial of low-density-lipoprotein apheresis. Lancet 345, 811–816 (1995).

    Google Scholar 

  118. Wang, L. R., & Hegele, R. A. Genetics for the identification of lipid targets beyond PCSK9. Can. J. Cardiol. 33, 334–342 (2017).

    Google Scholar 

  119. Raal, F. J. et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 375, 998–1006 (2010).

    Google Scholar 

  120. Cuchel, M. et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet 381, 40–46 (2013).

    Google Scholar 

  121. Blom, D. J. et al. Long-term efficacy and safety of the microsomal triglyceride transfer protein inhibitor lomitapide in patients with homozygous familial hypercholesterolemia. Circulation 136, 332–335 (2017).

    Google Scholar 

  122. Daniels, S. R., Gidding, S. S. & de Ferranti, S. D. Pediatric aspects of familial hypercholesterolemias: recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J. Clin. Lipidol. 5, S30–S37 (2011).

    Google Scholar 

  123. Stein, E. A. et al. Efficacy of rosuvastatin in children with homozygous familial hypercholesterolemia and association with underlying genetic mutations. J. Am. Coll. Cardiol. 70, 1162–1170 (2017).

    Google Scholar 

  124. Frich, J. C., Ose, L., Malterud, K. & Fugelli, P. Perceived vulnerability to heart disease in patients with familial hypercholesterolemia: a qualitative interview study. Ann. Fam. Med. 4, 198–204 (2006).

    Google Scholar 

  125. Claassen, L., Henneman, L., van der Weijden, T., Marteau, T. M. & Timmermans, D. R. Being at risk for cardiovascular disease: perceptions and preventive behavior in people with and without a known genetic predisposition. Psychol. Health. Med. 17, 511–521 (2012).

    Google Scholar 

  126. Agard, A., Bolmsjo, I. A., Hermeren, G. & Wahlstom, J. Familial hypercholesterolemia: ethical, practical and psychological problems from the perspective of patients. Patient Educ. Couns. 57, 162–167 (2005).

    Google Scholar 

  127. Graesdal, A. et al. Apheresis in homozygous familial hypercholesterolemia: the results of a follow-up of all Norwegian patients with homozygous familial hypercholesterolemia. J. Clin. Lipidol. 6, 331–339 (2012).

    Google Scholar 

  128. Sturm, A. C. Cardiovascular cascade genetic testing: exploring the role of direct contact and technology. Front. Cardiovasc. Med. 3, 11 (2016).This article reviews the process and provides tips on procedures and implementation of cascade screening, which is very effective in ascertaining new patients with familial hypercholesterolaemia.

    Google Scholar 

  129. Aatre, R. D. & Day, S. M. Psychological issues in genetic testing for inherited cardiovascular diseases. Circ. Cardiovasc. Genet. 4, 81–90 (2011).

    Google Scholar 

  130. Homsma, S. J., Huijgen, R., Middeldorp, S., Sijbrands, E. J. & Kastelein, J. J. Molecular screening for familial hypercholesterolaemia: consequences for life and disability insurance. Eur. J. Hum. Genet. 16, 14–17 (2008).

    Google Scholar 

  131. Huijgen, R. et al. Improved access to life insurance after genetic diagnosis of familial hypercholesterolaemia: cross-sectional postal questionnaire study. Eur. J. Hum. Genet. 20, 722–728 (2012).

    Google Scholar 

  132. Perak, A. M. et al. Long-term risk of atherosclerotic cardiovascular disease in US adults with the familial hypercholesterolemia phenotype. Circulation 134, 9–19 (2016).

    Google Scholar 

  133. Paquette, M., Dufour, R. & Baass, A. The Montreal-familial hypercholesterolemia-SCORE: A new score to predict cardiovascular events in familial hypercholesterolemia. J. Clin. Lipidol. 11, 80–86 (2017).

    Google Scholar 

  134. Hegele, R. A. et al. Targeted next-generation sequencing in monogenic dyslipidemias. Curr. Opin. Lipidol. 26, 103–113 (2015).

    Google Scholar 

  135. van der Graaf, A. et al. Familial defective apolipoprotein B and familial hypobetalipoproteinemia in one family: two neutralizing mutations. Ann. Intern. Med. 148, 712–714 (2008).

    Google Scholar 

  136. Wittekoek, M. E. et al. A common mutation in the lipoprotein lipase gene (N291S) alters the lipoprotein phenotype and risk for cardiovascular disease in patients with familial hypercholesterolemia. Circulation 97, 729–735 (1998).

    Google Scholar 

  137. Wierzbicki, A. S. & Grant, P. Drugs for hypercholesterolaemia - from statins to pro-protein convertase subtilisin kexin 9 (PCSK9) inhibition. Clin. Med. 16, 353–357 (2016).This is another state-of-the-art review of current medications available for the management of hypercholesterolaemia.

    Google Scholar 

  138. Ray, K. K. et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med. 376, 1430–1440 (2017).

    Google Scholar 

  139. Turner, T. & Stein, E. A. Non-statin treatments for managing LDL cholesterol and their outcomes. Clin. Ther. 37, 2751–2769 (2015).

    Google Scholar 

  140. Galabova, G. et al. Peptide-based anti-PCSK9 vaccines — an approach for long-term LDLc management. PLoS ONE 9, e114469 (2014).

    Google Scholar 

  141. The HPS3-TIMI55-REVEAL Collaborative Group. Effects of anacetrapib in patients with atherosclerotic vascular disease (REVEAL). N. Engl. J. Med. 377, 1217–1227 (2017).

    Google Scholar 

  142. Kassim, S. H. et al. Adeno-associated virus serotype 8 gene therapy leads to significant lowering of plasma cholesterol levels in humanized mouse models of homozygous and heterozygous familial hypercholesterolemia. Hum. Gene Ther. 24, 19–26 (2013).

    Google Scholar 

  143. Somanathan, S. et al. AAV vectors expressing LDLR gain-of-function variants demonstrate increased efficacy in mouse models of familial hypercholesterolemia. Circ. Res. 115, 591–599 (2014).

    Google Scholar 

  144. Nherera, L., Marks, D., Minhas, R., Thorogood, M. & Humphries, S. E. Probabilistic cost-effectiveness analysis of cascade screening for familial hypercholesterolaemia using alternative diagnostic and identification strategies. Heart 97, 1175–1181 (2011).

    Google Scholar 

  145. Ademi, Z. et al. Cascade screening based on genetic testing is cost-effective: evidence for the implementation of models of care for familial hypercholesterolemia. J. Clin. Lipidol. 8, 390–400 (2014).

    Google Scholar 

  146. Alfonsi, J. E., Hegele, R. A. & Gryn, S. E. Pharmacogenetics of lipid-lowering agents: precision or indecision medicine? Curr. Atheroscler. Rep. 18, 24 (2016).

    Google Scholar 

  147. Dequeker, J., Muls, E. & Leenders, K. Xanthelasma and lipoma in Leonardo da Vinci's Mona Lisa. Isr. Med. Assoc. J. 6, 505–506 (2004).

    Google Scholar 

  148. Ose, L. The real code of Leonardo da Vinci. Curr. Cardiol. Rev. 4, 60–62 (2008).

    Google Scholar 

  149. Erkelens, D. W. & Sherwood, L. M. Familial hypercholesterolaemia, tendinous xanthomas, and Frans Hals. JAMA 262, 2092 (1989).

    Google Scholar 

  150. Fagge, C. H. Xanthomatous diseases of the skin. Trans Pathol. Soc. 24, 242–250 (1873).

    Google Scholar 

  151. Muller, C. Xanthoma, hypercholesterolaemia, angina pectoris. Acta Med. Scand. 89, 75–84 (1938).

    Google Scholar 

  152. Wilkinson, C. F., Hand, E. A. & Fliegelman, F. T. Essential familial hypercholesterolaemia. Ann. Intern. Med. 29, 671–676 (1948).

    Google Scholar 

  153. Khachadurian, A. K. The inheritance of essential familial hypercholesterolaemia. Am. J. Med. 37, 402–407 (1964).

    Google Scholar 

  154. Goldstein, J. L. & Brown, M. S. Familial hypercholesterolaemia: identification of a defect in the regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity associated with overproduction of cholesterol. Proc. Natl Acad. Sci. USA 70, 2804–2808 (1973).

    Google Scholar 

  155. Brown, M. S. & Goldstein, J. L. Expression of the familial hypercholesterolaemia gene in heterozygotes: mechanism for a dominant disorder in man. Science 185, 61–63 (1974).

    Google Scholar 

  156. Anderson, R. G., Goldstein, J. L. & Brown, M. S. Localization of low density lipoprotein receptors on plasma membrane of normal human fibroblasts and their absence in cells from a familial hypercholesterolaemia homozygote. Proc. Natl Acad. Sci. USA 73, 2434–2438 (1976).

    Google Scholar 

  157. Brown, M. S. & Goldstein, J. L. A receptor-mediated pathway for cholesterol homeostasis. Science 232, 34–47 (1986).

    Google Scholar 

  158. Endo, A., Kuroda, M. & Tsujita, Y. ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinium. J. Antibiot. 29, 1346–1348 (1976).

    Google Scholar 

  159. Santos, R. D. Cascade screening in familial hypercholesterolemia: advancing forward. J. Atheroscler. Thromb. 22, 869–880 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (J.C.D. and R.A.H.); Epidemiology (A.S.W.); Mechanisms/pathophysiology (R.A.H. and J.C.D.); Diagnosis, screening and prevention (R.A.H., R.D.S. and J.C.D.); Management (A.S.W., R.A.H. and S.S.G.); Quality of life (S.S.G. and M.H.-S.); Outlook (M.H.-S. and R.A.H.); Overview of the Primer (J.C.D. and R.A.H).

Corresponding authors

Correspondence to Joep C. Defesche or Robert A. Hegele.

Ethics declarations

Competing interests

S.S.G. acts as a consultant for RegenXbio. M.H.-S. acts as a consultant for Aegerion, receives research funding from Amgen, Astellas, Sanofi and MSD and has received speaker fees from Amgen, Astellas, Astra Zeneca, Sanofi, Boehringer Ingelheim, Otsuka and Daiichi-Sankyo. R.A.H. acts as a consultant for and is on the advisory board of Acasti, Aegerion, Amgen, Boston Heart Diagnostics, Cerenis, Medpace, Pfizer, Regeneron, Sanofi and Valeant. R.S.D. acts as a consultant for Amgen, Biolab, Boehringer Ingelheim, Eli Lilly, Merck, NovoNordisk, Pfizer and Sanofi/Regeneron and has received speaker fees from Amgen, Astra Zeneca and Sanofi/Regeneron. J.C.D. and A.S.W. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Defesche, J., Gidding, S., Harada-Shiba, M. et al. Familial hypercholesterolaemia. Nat Rev Dis Primers 3, 17093 (2017). https://doi.org/10.1038/nrdp.2017.93

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2017.93

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing