Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Gastric adenocarcinoma

Abstract

Gastric cancers, with gastric adenocarcinoma (GAC) as the most common histological type, impose a considerable global health burden. Although the screening strategies for early detection have been shown to be successful in Japan and South Korea, they are either not implemented or not feasible in most of the world, leading to late diagnosis in most patients. Helicobacter pylori infection contributes to the development of many endemic GACs, and pre-emptive eradication or early treatment of this bacterial infection might provide effective primary prevention. GACs are phenotypically and genotypically heterogeneous. Localized (clinical stage I) GAC is best treated either endoscopically or with limited surgical resection, but clinical stage II or stage III tumours require multidisciplinary adjunctive approaches in addition to surgery. Although GAC is highly treatable in its early stages, advanced (clinical stage IV) GAC has a median survival of just 9–10 months. However, detailed molecular and immune profiling of GAC is yielding promise; early studies with immune checkpoint inhibitors suggest that GAC is amenable to immune modulation. Molecular studies have yielded a vast quantity of new information for potential exploitation. Nevertheless, advances against GACs have lagged compared with other tumours of similar incidence, and more research is necessary to overcome the obstacles to prolong survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global incidence of gastric adenocarcinoma in 2012.
Figure 2: The Siewert–Stein classification of gastroesophageal region cancers.
Figure 3: Helicobactor pylori exerts oncogenic effects on the gastric epithelium that can result in gastric adenocarcinoma.
Figure 4: Molecular classification of gastric adenocarcinoma.
Figure 5: Molecular alterations in receptor tyrosine kinases and TP53 and potential target therapy in gastric adenocarcinoma.
Figure 6: Molecular alterations common in gastric adenocarcinoma.
Figure 7: Adaptive T cell response controlled by co-stimulatory and co-inhibitory signalling in the tumour microenvironment.
Figure 8: Histological classification of gastric adenocarcinoma.
Figure 9: A representative treatment algorithm for gastric adenocarcinoma.

Similar content being viewed by others

References

  1. Torre, L. A., Siegel, R. L., Ward, E. M. & Jemal, A. Global cancer incidence and mortality rates and trends — an update. Cancer Epidemiol. Biomarkers Prev. 25, 16–27 (2016).

    PubMed  Google Scholar 

  2. Helicobacter and Cancer Collaborative group. Gastric cancer and Helicobacter pylori: a combined analysis of 12 case control studies nested within prospective cohorts. Gut 49, 347–353 (2001).

    Google Scholar 

  3. Sugano, K. et al. Kyoto global consensus report on Helicobacter pylori gastritis. Gut 64, 1353–1367 (2015).

    PubMed  Google Scholar 

  4. Siewert, J. R. & Stein, H. J. Classification of adenocarcinoma of the oesophagogastric junction. Br. J. Surg. 85, 1457–1459 (1998). This seminal paper proposes classification of the upper gastrointestinal tract based on anatomical landmarks.

    CAS  PubMed  Google Scholar 

  5. Bosman, F. T., Carneiro, F., Hruban, R. H. & Theise, N. D. in WHO Classification of Tumours of the Digestive System 4th edn Vol. 3 (eds Bosman, F. T., Carneiro, F., Hruban, R. H. & Theise, N. D. ) 48–58 (IARC, 2010).

    Google Scholar 

  6. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014). A landmark paper that provides multiplex genomic data on GAC and defines four genomic subclasses.

    Google Scholar 

  7. Verdecchia, A. et al. Recent cancer survival in Europe: a 2000–2002 period analysis of EUROCARE-4 data. Lancet Oncol. 8, 784–796 (2007).

    PubMed  Google Scholar 

  8. Crew, K. D. & Neugut, A. I. Epidemiology of gastric cancer. World J. Gastroenterol. 12, 354–362 (2006).

    PubMed  PubMed Central  Google Scholar 

  9. Ajani, J. A. et al. Gastric cancer, version 3.2016, NCCN clinical practice guidelines in oncology. J. Natl Compr. Canc. Netw. 14, 1286–1312 (2016). US guidelines put together by experts from 28 comprehensive cancer centres, which are updated every 6–12 months.

    PubMed  Google Scholar 

  10. Sonnenberg, A. Time trends of mortality from gastric cancer in Europe. Dig. Dis. Sci. 56, 1112–1118 (2011).

    Google Scholar 

  11. Hamashima, C., Saito, H., Nakayama, T., Nakayama, T. & Sobue, T. The standardized development method of the Japanese guidelines for cancer screening. Jpn. J. Clin. Oncol. 38, 288–295 (2008).

    PubMed  Google Scholar 

  12. Colquhoun, A. et al. Global patterns of cardia and non-cardia gastric cancer incidence in 2012. Gut 64, 1881–1888 (2015).

    CAS  PubMed  Google Scholar 

  13. Deans, C. et al. Cancer of the gastric cardia is rising in incidence in an Asian population and is associated with adverse outcome. World J. Surg. 35, 617–624 (2011).

    PubMed  Google Scholar 

  14. de Martel, C. et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 13, 607–615 (2012). A very important report that provides comprehensive analyses of cancers associated with various infectious agents.

    PubMed  Google Scholar 

  15. Gonzalez, C. A. et al. Helicobacter pylori infection assessed by ELISA and by immunoblot and noncardia gastric cancer risk in a prospective study: the Eurgast-EPIC project. Ann. Oncol. 23, 1320–1324 (2012).

    CAS  PubMed  Google Scholar 

  16. Matsuo, T. et al. Low prevalence of Helicobacter pylori-negative gastric cancer among Japanese. Helicobacter 16, 415–419 (2011).

    PubMed  Google Scholar 

  17. Akiba, S., Koriyama, C., Herrera-Goepfert, R. & Eizuru, Y. Epstein–Barr virus associated gastric carcinoma: epidemiological and clinicopathological features. Cancer Sci. 99, 195–201 (2008).

    CAS  PubMed  Google Scholar 

  18. Song, P., Wu, L. & Guan, W. Dietary nitrates, nitrites, and nitrosamines intake and the risk of gastric cancer: a meta-analysis. Nutrients 7, 9872–9895 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fang, X. et al. Landscape of dietary factors associated with risk of gastric cancer: a systematic review and dose-response meta-analysis of prospective cohort studies. Eur. J. Cancer 51, 2820–2832 (2015).

    PubMed  Google Scholar 

  20. Lagergren, J. et al. Marital status, education, and income in relation to the risk of esophageal and gastric cancer by histological type and site. Cancer 122, 207–212 (2016).

    PubMed  Google Scholar 

  21. Limburg, P. et al. Helicobacter pylori seropositivity and subsite-specific gastric cancer risks in Linxian, China. J. Natl Cancer Inst. 93, 226–233 (2001).

    CAS  PubMed  Google Scholar 

  22. Kamangar, F. et al. Opposing risks of gastric cardia and noncardia gastric adenocarcinomas associated with Helicobacter pylori seropositivity. J. Natl Cancer Inst. 98, 1445–1452 (2006).

    PubMed  Google Scholar 

  23. Graham, D. Y. Helicobacter pylori update: gastric cancer, reliable therapy, and possible benefits. Gastroenterology 148, 719–731.e3 (2015). A very useful expert commentary on H. pylori as it relates to GAC.

    PubMed  Google Scholar 

  24. Maeda, M., Moro, H. & Ushijima, T. Mechanisms for the induction of gastric cancer by Helicobacter pylori infection: aberrant DNA methylation pathway. Gastric Cancer 20 (Suppl. 1), 8–15 (2016).

    PubMed  Google Scholar 

  25. Zhao, J. et al. Zinc finger E-box binding factor 1 plays a central role in regulating Epstein–Barr virus (EBV) latent-lytic switch and acts as a therapeutic target in EBV-associated gastric cancer. Cancer 118, 924–936 (2012).

    CAS  PubMed  Google Scholar 

  26. Zhao, J. et al. Genome-wide identification of Epstein–Barr virus-driven promoter methylation profiles of human genes in gastric cancer cells. Cancer 119, 304–312 (2013).

    CAS  PubMed  Google Scholar 

  27. Yau, T. O., Tang, C. M. & Yu, J. Epigenetic dysregulation in Epstein–Barr virus-associated gastric carcinoma: disease and treatments. World J. Gastroenterol. 20, 6448–6456 (2014).

    PubMed  PubMed Central  Google Scholar 

  28. Liang, Q. et al. Integrative identification of Epstein–Barr Virus-associated mutations and epigenetic alterations in gastric cancer. Gastroenterology 147, 1350–1362.e4 (2014).

    CAS  PubMed  Google Scholar 

  29. Wroblewski, L. E. & Peek, R. M. Jr. Helicobacter pylori : pathogenic enablers — toxic relationships in the stomach. Nat. Rev. Gastroenterol. Hepatol. 13, 317–318 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Saju, P. et al. Host SHP1 phosphatase antagonizes Helicobacter pylori CagA and can be downregulated by Epstein–Barr virus. Nat. Microbiol. 1, 16026 (2016).

    CAS  PubMed  Google Scholar 

  31. Fenoglio-Preiser, C. M., Wang, J., Stemmermann, G. N. & Noffsinger, A. TP53 and gastric carcinoma: a review. Hum. Mutat. 21, 258–270 (2003).

    CAS  PubMed  Google Scholar 

  32. Tan, P. & Yeoh, K. G. Genetics and molecular pathogenesis of gastric adenocarcinoma. Gastroenterology 149, 1153–1162.e3 (2015). An important contribution that defines further details on the molecular biology of GAC.

    CAS  PubMed  Google Scholar 

  33. Park, S. Y. et al. Mixed-type gastric cancer and its association with high-frequency CpG island hypermethylation. Virchows Arch. 456, 625–633 (2010).

    CAS  PubMed  Google Scholar 

  34. Zouridis, H. et al. Methylation subtypes and large-scale epigenetic alterations in gastric cancer. Sci. Transl Med. 4, 156ra140 (2012).

    PubMed  Google Scholar 

  35. Liu, J. B. et al. CpG island methylator phenotype and Helicobacter pylori infection associated with gastric cancer. World J. Gastroenterol. 18, 5129–5134 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim, J. G. et al. Comprehensive DNA methylation and extensive mutation analyses reveal an association between the CpG island methylator phenotype and oncogenic mutations in gastric cancers. Cancer Lett. 330, 33–40 (2013).

    CAS  PubMed  Google Scholar 

  37. Cristescu, R. et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat. Med. 21, 449–456 (2015).

    CAS  PubMed  Google Scholar 

  38. Riquelme, I. et al. Molecular classification of gastric cancer: towards a pathway-driven targeted therapy. Oncotarget 6, 24750–24779 (2015).

    PubMed  PubMed Central  Google Scholar 

  39. Elimova, E. et al. Molecular biomarkers in gastric cancer. J. Natl Compr. Canc. Netw. 13, e19–e29 (2015).

    PubMed  Google Scholar 

  40. Tanner, M. et al. Amplification of HER-2 in gastric carcinoma: association with topoisomerase IIα gene amplification, intestinal type, poor prognosis and sensitivity to trastuzumab. Ann. Oncol. 16, 273–278 (2005).

    CAS  PubMed  Google Scholar 

  41. Li, J. et al. Randomized, double-blind, placebo-controlled phase III trial of apatinib in patients with chemotherapy-refractory advanced or metastatic adenocarcinoma of the stomach or gastroesophageal junction. J. Clin. Oncol. 34, 1448–1454 (2016).

    CAS  PubMed  Google Scholar 

  42. Bang, Y. J. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376, 687–697 (2010). An important report that led to the approval of trastuzumab in select patients with HER2-positive GAC.

    CAS  PubMed  Google Scholar 

  43. Wilke, H. et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol. 15, 1224–1235 (2014).

    CAS  PubMed  Google Scholar 

  44. Wang, Z. S. et al. Significance and prognostic value of Gli-1 and Snail/E-cadherin expression in progressive gastric cancer. Tumour Biol. 35, 1357–1363 (2014).

    CAS  PubMed  Google Scholar 

  45. Li, Y., Nichols, M. A., Shay, J. W. & Xiong, Y. Transcriptional repression of the D-type cyclin-dependent kinase inhibitor p16 by the retinoblastoma susceptibility gene product pRb. Cancer Res. 54, 6078–6082 (1994).

    CAS  PubMed  Google Scholar 

  46. Maley, C. C. et al. The combination of genetic instability and clonal expansion predicts progression to esophageal adenocarcinoma. Cancer Res. 64, 7629–7633 (2004).

    CAS  PubMed  Google Scholar 

  47. Weber, J. D. et al. p53-independent functions of the p19(ARF) tumor suppressor. Genes Dev. 14, 2358–2365 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Xue, L. et al. Different roles for p16INK4a–Rb pathway and INK4a/ARF methylation between adenocarcinomas of gastric cardia and distal stomach. J. Gastroenterol. Hepatol. 29, 1418–1426 (2014).

    CAS  PubMed  Google Scholar 

  49. van Dekken, H. et al. Molecular dissection of the chromosome band 7q21 amplicon in gastroesophageal junction adenocarcinomas identifies cyclin-dependent kinase 6 at both genomic and protein expression levels. Genes Chromosomes Cancer 47, 649–656 (2008).

    CAS  PubMed  Google Scholar 

  50. Clark, A. S. et al. Palbociclib (PD0332991) — a selective and potent cyclin-dependent kinase inhibitor: a review of pharmacodynamics and clinical development. JAMA Oncol. 2, 253–260 (2016).

    PubMed  Google Scholar 

  51. Ajani, J. A., Song, S., Hochster, H. S. & Steinberg, I. B. Cancer stem cells: the promise and the potential. Seminars Oncol. 42, S3–S17 (2015).

    CAS  Google Scholar 

  52. Tumaneng, K., Russell, R. C. & Guan, K. L. Organ size control by Hippo and TOR pathways. Curr. Biol. 22, R368–R379 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Tumaneng, K. et al. YAP mediates crosstalk between the Hippo and PI(3)K–TOR pathways by suppressing PTEN via miR-29. Nat. Cell Biol. 14, 1322–1329 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lu, L. et al. Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc. Natl Acad. Sci. USA 107, 1437–1442 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kang, W. et al. Yes-associated protein 1 exhibits oncogenic property in gastric cancer and its nuclear accumulation associates with poor prognosis. Clin. Cancer Res. 17, 2130–2139 (2011).

    CAS  PubMed  Google Scholar 

  56. Song, S. et al. Hippo coactivator YAP1 upregulates SOX9 and endows esophageal cancer cells with stem-like properties. Cancer Res. 74, 4170–4182 (2014). An important contribution that further defines the molecular biology of gastroesophageal adenocarcinoma.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Overholtzer, M. et al. Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc. Natl Acad. Sci. USA 103, 12405–12410 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Keren-Paz, A., Emmanuel, R. & Samuels, Y. YAP and the drug resistance highway. Nat. Genet. 47, 193–194 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lin, L. et al. The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat. Genet. 47, 250–256 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Chiurillo, M. A. Role of the Wnt/beta-catenin pathway in gastric cancer: an in-depth literature review. World J. Exp. Med. 5, 84–102 (2015).

    PubMed  PubMed Central  Google Scholar 

  61. Clements, W. M. et al. β-Catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer. Cancer Res. 62, 3503–3506 (2002).

    CAS  PubMed  Google Scholar 

  62. Ogasawara, N. et al. Mutations and nuclear accumulation of beta-catenin correlate with intestinal phenotypic expression in human gastric cancer. Histopathology 49, 612–621 (2006).

    CAS  PubMed  Google Scholar 

  63. Katoh, Y. & Katoh, M. Integrative genomic analyses on GLI2: mechanism of Hedgehog priming through basal GLI2 expression, and interaction map of stem cell signaling network with P53. Int. J. Oncol. 33, 881–886 (2008).

    CAS  PubMed  Google Scholar 

  64. Carpenter, R. L. & Lo, H. W. Hedgehog pathway and GLI1 isoforms in human cancer. Discov. Med. 69, 105–113 (2012).

    Google Scholar 

  65. Wang, K. et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat. Genet. 46, 573–582 (2014). A report that defines novel targetable mutations in GAC.

    CAS  PubMed  Google Scholar 

  66. Xu, X. et al. Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene 19, 1868–1874 (2000).

    CAS  PubMed  Google Scholar 

  67. Ding, Z. et al. SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature 470, 269–273 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Song, S. et al. Loss of TGF-beta adaptor beta2SP activates notch signaling and SOX9 expression in esophageal adenocarcinoma. Cancer Res. 73, 2159–2169 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang, K. et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat. Genet. 43, 1219–1223 (2011). ARID1A loss is important in GAC as it activates various oncogenes that could be targeted.

    CAS  PubMed  Google Scholar 

  70. Yang, L. et al. Loss of ARID1A expression predicts poor survival prognosis in gastric cancer: a systematic meta-analysis from 14 studies. Sci. Rep. 6, 28919 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ford, D. J. & Dingwall, A. K. The cancer COMPASS: navigating the functions of MLL complexes in cancer. Cancer Genet. 208, 178–191 (2015).

    CAS  PubMed  Google Scholar 

  72. Riedel, S. S. et al. MLL1 and DOT1L cooperate with meningioma-1 to induce acute myeloid leukemia. J. Clin. Invest. 126, 1438–1450 (2016).

    PubMed  PubMed Central  Google Scholar 

  73. Daigle, S. R. et al. Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood 122, 1017–1025 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Bitler, B. G., Aird, K. M. & Zhang, R. Epigenetic synthetic lethality in ovarian clear cell carcinoma: EZH2 and ARID1A mutations. Mol. Cell. Oncol. 3, e1032476 (2016).

    PubMed  Google Scholar 

  75. Knutson, S. K. et al. Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc. Natl Acad. Sci. USA 110, 7922–7927 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hansford, S. et al. Hereditary diffuse gastric cancer syndrome: CDH1 mutations and beyond. JAMA Oncol. 1, 23–32 (2015). An excellent review on hereditary diffuse gastric cancer.

    PubMed  Google Scholar 

  77. Morris, L. G. et al. Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation. Nat. Genet. 45, 253–261 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Zang, Z. J. et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat. Genet. 44, 570–574 (2012).

    CAS  PubMed  Google Scholar 

  79. Katoh, M. Function and cancer genomics of FAT family genes (review). Int. J. Oncol. 41, 1913–1918 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kakiuchi, M. et al. Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat. Genet. 46, 583–587 (2014).

    CAS  PubMed  Google Scholar 

  81. Pan, Y. et al. Expression of seven main Rho family members in gastric carcinoma. Biochem. Biophys. Res. Commun. 315, 686–691 (2004).

    CAS  PubMed  Google Scholar 

  82. Yoon, C. et al. Chemotherapy resistance in diffuse-type gastric adenocarcinoma is mediated by RhoA activation in cancer stem-like cells. Clin. Cancer Res. 22, 971–983 (2016).

    CAS  PubMed  Google Scholar 

  83. Junttila, M. R. & de Sauvage, F. J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501, 346–354 (2013).

    CAS  PubMed  Google Scholar 

  84. Thompson, E. D. et al. Patterns of PD-L1 expression and CD8 T cell infiltration in gastric adenocarcinomas and associated immune stroma. Gut 66, 794–801 (2016).

    PubMed  Google Scholar 

  85. Busuttil, R. A. et al. A signature predicting poor prognosis in gastric and ovarian cancer represents a coordinated macrophage and stromal response. Clin. Cancer Res. 20, 2761–2772 (2014).

    CAS  PubMed  Google Scholar 

  86. Isella, C. et al. Stromal contribution to the colorectal cancer transcriptome. Nat. Genet. 47, 312–319 (2015).

    CAS  PubMed  Google Scholar 

  87. Laklai, H. et al. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat. Med. 22, 497–505 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wu, Y. et al. Comprehensive genomic meta-analysis identifies intra-tumoural stroma as a predictor of survival in patients with gastric cancer. Gut 62, 1100–1111 (2013).

    CAS  PubMed  Google Scholar 

  89. Lin, C. N., Wang, C. J., Chao, Y. J., Lai, M. D. & Shan, Y. S. The significance of the co-existence of osteopontin and tumor-associated macrophages in gastric cancer progression. BMC Cancer 15, 128 (2015).

    PubMed  PubMed Central  Google Scholar 

  90. Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013). This paper highlights newer targets for cancer therapeutics and is relevant to GAC.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Quail, D. F. et al. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352, aad3018 (2016).

    PubMed  PubMed Central  Google Scholar 

  92. Ries, C. H. et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25, 846–859 (2014).

    CAS  PubMed  Google Scholar 

  93. Tap, W. D. et al. Structure-guided blockade of CSF1R kinase in tenosynovial giant-cell tumor. N. Engl. J. Med. 373, 428–437 (2015).

    CAS  PubMed  Google Scholar 

  94. Yoshida, K. et al. CD47 is an adverse prognostic factor and a therapeutic target in gastric cancer. Cancer Med. 4, 1322–1333 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Majeti, R. et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138, 286–299 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Chao, M. P. et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142, 699–713 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Weiskopf, K. & Weissman, I. L. Macrophages are critical effectors of antibody therapies for cancer. mAbs 7, 303–310 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Janakiram, M., Pareek, V., Cheng, H., Narasimhulu, D. M. & Zang, X. Immune checkpoint blockade in human cancer therapy: lung cancer and hematologic malignancies. Immunotherapy 8, 809–819 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Pentcheva-Hoang, T., Simpson, T. R., Montalvo-Ortiz, W. & Allison, J. P. Cytotoxic T lymphocyte antigen-4 blockade enhances antitumor immunity by stimulating melanoma-specific T-cell motility. Cancer Immunol. Res. 2, 970–980 (2014).

    CAS  PubMed  Google Scholar 

  100. Curran, M. A., Montalvo, W., Yagita, H. & Allison, J. P. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc. Natl Acad. Sci. USA 107, 4275–4280 (2010). This report provides a rationale for combined checkpoint inhibition.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Brahmer, J. et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 373, 123–135 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Schlosser, H. A. et al. Immune checkpoints programmed death 1 ligand 1 and cytotoxic T lymphocyte associated molecule 4 in gastric adenocarcinoma. Oncoimmunology 5, e1100789 (2016).

    PubMed  Google Scholar 

  103. Janakiram, M., Abadi, Y. M., Sparano, J. A. & Zang, X. T cell coinhibition and immunotherapy in human breast cancer. Discov. Med. 14, 229–236 (2012).

    PubMed  PubMed Central  Google Scholar 

  104. Lauren, P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol. Microbiol. Scand. 64, 31–49 (1965). A classic article on the Lauren classification of GAC.

    CAS  PubMed  Google Scholar 

  105. Charalampakis, N. et al. The proportion of signet ring cell component in patients with localized gastric adenocarcinoma correlates with the degree of response to pre-operative chemoradiation. Oncology 90, 239–247 (2016).

    CAS  PubMed  Google Scholar 

  106. Rugge, M. et al. Chronicles of a cancer foretold: 35 years of gastric cancer risk assessment. Gut 65, 721–725 (2016).

    CAS  PubMed  Google Scholar 

  107. Camargo, M. C. et al. Divergent trends for gastric cancer incidence by anatomical subsite in US adults. Gut 60, 1644–1649 (2011).

    PubMed  Google Scholar 

  108. Ikoma, N. et al. Yield of staging laparoscopy and lavage cytology for radiologically occult peritoneal carcinomatosis of gastric cancer. Ann. Surg. Oncol. 23, 4332–4337 (2016).

    PubMed  Google Scholar 

  109. Ajani, J. A. et al. in AJCC Cancer Staging Manual 8th edn (eds Amin, M. B. et al.) 203–220 (Springer, 2017). This book chapter explains the guidelines and changes that have occurred in the AJCC8 GAC classification. Notably, two new classifications have been added.

    Google Scholar 

  110. Hamashima, C., Shabana, M., Okada, K., Okamoto, M. & Osaki, Y. Mortality reduction from gastric cancer by endoscopic and radiographic screening. Cancer Sci. 106, 1744–1749 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hamashima, C., Shabana, M., Okamoto, M., Osaki, Y. & Kishimoto, T. Survival analysis of patients with interval cancer undergoing gastric cancer screening by endoscopy. PLoS ONE 10, e0126796 (2015).

    PubMed  PubMed Central  Google Scholar 

  112. Sasako, M. et al. Gastric Cancer Working Group report. Jpn. J. Clin. Oncol. 40 (Suppl. 1), i28–i37 (2010).

    PubMed  Google Scholar 

  113. Hosokawa, O. et al. Decreased death from gastric cancer by endoscopic screening: association with a population-based cancer registry. Scand. J. Gastroenterol. 43, 1112–1115 (2008).

    PubMed  Google Scholar 

  114. Nam, S. Y. et al. Effect of repeated endoscopic screening on the incidence and treatment of gastric cancer in health screenees. Eur. J. Gastroenterol. Hepatol. 21, 855–860 (2009).

    PubMed  Google Scholar 

  115. Kakizoe, T. Chemoprevention of cancer — focusing on clinical trials. Jpn. J. Clin. Oncol. 33, 421–442 (2003).

    PubMed  Google Scholar 

  116. De Flora, S. & Bonanni, P. The prevention of infection-associated cancers. Carcinogenesis 32, 787–795 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ma, J. L. et al. Fifteen-year effects of Helicobacter pylori, garlic, and vitamin treatments on gastric cancer incidence and mortality. J. Natl Cancer Inst. 104, 488–492 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Lee, Y. C. et al. The benefit of mass eradication of Helicobacter pylori infection: a community-based study of gastric cancer prevention. Gut 62, 676–682 (2013).

    PubMed  Google Scholar 

  119. Abnet, C. C. et al. Non-steroidal anti-inflammatory drugs and risk of gastric and oesophageal adenocarcinomas: results from a cohort study and a meta-analysis. Br. J. Cancer 100, 551–557 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Wu, C. Y. et al. Effective reduction of gastric cancer risk with regular use of nonsteroidal anti-inflammatory drugs in Helicobacter pylori-infected patients. J. Clin. Oncol. 28, 2952–2957 (2010).

    CAS  PubMed  Google Scholar 

  121. Tian, W., Zhao, Y., Liu, S. & Li, X. Meta-analysis on the relationship between nonsteroidal anti-inflammatory drug use and gastric cancer. Eur. J. Cancer Prev. 19, 288–298 (2010).

    CAS  PubMed  Google Scholar 

  122. Kato, M. & Asaka, M. Recent development of gastric cancer prevention. Jpn. J. Clin. Oncol. 42, 987–994 (2012).

    PubMed  Google Scholar 

  123. Fukase, K. et al. Effect of eradication of Helicobacter pylori on incidence of metachronous gastric carcinoma after endoscopic resection of early gastric cancer: an open-label, randomised controlled trial. Lancet 372, 392–397 (2008).

    PubMed  Google Scholar 

  124. Malfertheiner, P. et al. Management of Helicobacter pylori infection — the Maastricht V/Florence Consensus Report. Gut 66, 6–30 (2017). Current consensus guidelines for the management of H. pylori infection.

    CAS  PubMed  Google Scholar 

  125. Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2014 (ver. 4). Gastric Cancer 20, 1–19 (2016).

    PubMed Central  Google Scholar 

  126. Smyth, E. C. et al. Gastric cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 27, v38–v49 (2016). European guidelines for the management of GAC.

    CAS  PubMed  Google Scholar 

  127. Bartley, A. N. et al. HER2 testing and clinical decision making in gastroesophageal adenocarcinoma: guideline from the College of American Pathologists, American Society for Clinical Pathology, and the American Society of Clinical Oncology. J. Clin. Oncol. 35, 446–464 (2017). New guidelines for HER2 testing for gastroesophageal adenocarcinoma.

    CAS  PubMed  Google Scholar 

  128. Gotoda, T. Endoscopic resection of early gastric cancer. Gastric Cancer 10, 1–11 (2007).

    PubMed  Google Scholar 

  129. Gotoda, T. et al. Incidence of lymph node metastasis from early gastric cancer: estimation with a large number of cases at two large centers. Gastric Cancer 3, 219–225 (2000).

    PubMed  Google Scholar 

  130. Gotoda, T., Iwasaki, M., Kusano, C., Seewald, S. & Oda, I. Endoscopic resection of early gastric cancer treated by guideline and expanded National Cancer Centre criteria. Br. J. Surg. 97, 868–871 (2010). Japanese guidelines for endoscopic therapy of early-stage GAC.

    CAS  PubMed  Google Scholar 

  131. Nagaraja, V., Eslick, G. D. & Cox, M. R. Endoscopic stenting versus operative gastrojejunostomy for malignant gastric outlet obstruction — a systematic review and meta-analysis of randomized and non-randomized trials. J. Gastrointest. Oncol. 5, 92–98 (2014).

    PubMed  PubMed Central  Google Scholar 

  132. Lee, S. S., Chung, H. Y., Kwon, O. K. & Yu, W. Long-term quality of life after distal subtotal and total gastrectomy: symptom- and behavior-oriented consequences. Ann. Surg. 263, 738–744 (2016).

    PubMed  Google Scholar 

  133. Squires, M. H. III et al. Utility of the proximal margin frozen section for resection of gastric adenocarcinoma: a 7-institution study of the US Gastric Cancer Collaborative. Ann. Surg. Oncol. 21, 4202–4210 (2014).

    PubMed  Google Scholar 

  134. Bonenkamp, J. J. et al. Extended lymph-node dissection for gastric cancer. N. Engl. J. Med. 340, 908–914 (1999).

    CAS  PubMed  Google Scholar 

  135. Cuschieri, A. et al. Patient survival after D1 and D2 resections for gastric cancer: long-term results of the MRC randomized surgical trial. Surgical Co-operative Group. Br. J. Cancer 79, 1522–1530 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Yu, W., Choi, G. S. & Chung, H. Y. Randomized clinical trial of splenectomy versus splenic preservation in patients with proximal gastric cancer. Br. J. Surg. 93, 559–563 (2006).

    CAS  PubMed  Google Scholar 

  137. Wu, C. W. et al. Nodal dissection for patients with gastric cancer: a randomised controlled trial. Lancet Oncol. 7, 309–315 (2006).

    CAS  PubMed  Google Scholar 

  138. Sasako, M. et al. Left thoracoabdominal approach versus abdominal-transhiatal approach for gastric cancer of the cardia or subcardia: a randomised controlled trial. Lancet Oncol. 7, 644–651 (2006).

    PubMed  Google Scholar 

  139. Sasako, M. et al. D2 lymphadenectomy alone or with para-aortic nodal dissection for gastric cancer. N. Engl. J. Med. 359, 453–462 (2008).

    CAS  PubMed  Google Scholar 

  140. Degiuli, M., Sasako, M., Ponti, A. & Calvo, F. Survival results of a multicentre phase II study to evaluate D2 gastrectomy for gastric cancer. Br. J. Cancer 90, 1727–1732 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Hirao, M. et al. Long-term outcomes after prophylactic bursectomy in patients with resectable gastric cancer: final analysis of a multicenter randomized controlled trial. Surgery 157, 1099–1105 (2015).

    PubMed  Google Scholar 

  142. Sano, T. et al. Randomized controlled trial to evaluate splenectomy in total gastrectomy for proximal gastric carcinoma. Ann. Surg. 265, 277–283 (2016).

    Google Scholar 

  143. Songun, I., Putter, H., Kranenbarg, E. M., Sasako, M. & van de Velde, C. J. Surgical treatment of gastric cancer: 15-year follow-up results of the randomised nationwide Dutch D1D2 trial. Lancet Oncol. 11, 439–449 (2010).

    PubMed  Google Scholar 

  144. Fujitani, K. et al. Gastrectomy plus chemotherapy versus chemotherapy alone for advanced gastric cancer with a single non-curable factor (REGATTA): a phase 3, randomised controlled trial. Lancet Oncol. 17, 309–318 (2016). An important report that documents that, in advanced-stage GAC, debulking surgery in addition to systemic therapy has no advantage.

    CAS  PubMed  Google Scholar 

  145. Kinoshita, T. et al. Multicentre analysis of long-term outcome after surgical resection for gastric cancer liver metastases. Br. J. Surg. 102, 102–107 (2015).

    CAS  PubMed  Google Scholar 

  146. Kubota, T. et al. Prognostic significance of complications after curative surgery for gastric cancer. Ann. Surg. Oncol. 21, 891–898 (2014).

    PubMed  Google Scholar 

  147. Fujiya, K. et al. Long-term survival in patients with postoperative intra-abdominal infectious complications after curative gastrectomy for gastric cancer: a propensity score matching analysis. Ann. Surg. Oncol. 23 (Suppl. 5), 809–816 (2016).

    PubMed  Google Scholar 

  148. Kim, W. et al. Decreased morbidity of laparoscopic distal gastrectomy compared with open distal gastrectomy for stage I gastric cancer: short-term outcomes from a multicenter randomized controlled trial (KLASS-01). Ann. Surg. 263, 28–35 (2016).

    PubMed  Google Scholar 

  149. Nakamura, K. et al. A phase III study of laparoscopy-assisted versus open distal gastrectomy with nodal dissection for clinical stage IA/IB gastric cancer (JCOG0912). Jpn. J. Clin. Oncol. 43, 324–327 (2013).

    PubMed  Google Scholar 

  150. Hu, Y. et al. Morbidity and mortality of laparoscopic versus open D2 distal gastrectomy for advanced gastric cancer: a randomized controlled trial. J. Clin. Oncol. 34, 1350–1357 (2016).

    PubMed  Google Scholar 

  151. Elimova, E. et al. It is time to stop using epirubicin to treat any gastroesophageal adenocarcinoma patient. J. Clin. Oncol. 35, 475–477 (2017). A plea to colleagues to stop using epirubin in patients with GAC.

    PubMed  Google Scholar 

  152. Fuchs, C. S. et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 383, 31–39 (2014).

    CAS  PubMed  Google Scholar 

  153. Press, M. F. et al. HER2 status in advanced or metastatic gastric, esophageal, or gastro-esophageal adenocarcinoma for entry to the TRIO-013/LOGiC trial of lapatinib. Mol. Cancer Ther. 16, 228–238 (2016).

    PubMed  Google Scholar 

  154. Satoh, T. et al. Randomized phase II trial of nimotuzumab plus irinotecan versus irinotecan alone as second-line therapy for patients with advanced gastric cancer. Gastric Cancer 18, 824–832 (2015).

    CAS  PubMed  Google Scholar 

  155. Kang, Y. K. et al. A randomized, open-label, multicenter, adaptive phase 2/3 study of trastuzumab emtasine (T-DM1) versus a taxane (TAX) in patients with previously treated Her2 positive locally advanced or metastatic gastric/gastroesophageal junction adenocarcinoma [abstract]. J. Clin. Oncol. 34 (Suppl. 4S), 5 (2016).

    Google Scholar 

  156. Thuss-Patience, P. C. et al. Trastuzumab emtansine versus taxane use for previously treated HER2-positive locally advanced or metastatic gastric or gastro-oesophageal junction adenocarcinoma (GATSBY): an international randomised, open-label, adaptive, phase 2/3 study. Lancet Oncol. 18, 640–653 (2017).

    CAS  PubMed  Google Scholar 

  157. Lordick, F. et al. Capecitabine and cisplatin with or without cetuximab for patients with previously untreated advanced gastric cancer (EXPAND): a randomised, open-label phase 3 trial. Lancet Oncol. 14, 490–499 (2013).

    CAS  PubMed  Google Scholar 

  158. Waddell, T. et al. Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for patients with previously untreated advanced oesophagogastric cancer (REAL3): a randomised, open-label phase 3 trial. Lancet Oncol. 14, 481–489 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Cunningham, D. et al. Phase III, randomized, double-blind, multicenter, placebo (P)-controlled trial of rilotumumab (R) plus epirubicin, cisplatin and capecitabine (ECX) as first-line therapy in patients (pts) with advanced MET-positive (pos) gastric or gastroesophageal junction (G/GEJ) cancer: RILOMET-1 study [abstract]. J. Clin. Oncol. 33 (Suppl. 4S), 4000 (2015).

    Google Scholar 

  160. Iveson, T. et al. Rilotumumab in combination with epirubicin, cisplatin, and capecitabine as first-line treatment for gastric or oesophagogastric junction adenocarcinoma: an open-label, dose de-escalation phase 1b study and a double-blind, randomised phase 2 study. Lancet Oncol. 15, 1007–1018 (2014).

    CAS  PubMed  Google Scholar 

  161. Smyth, E. et al. Phase II study of AZD4547 in FGFR amplified tumours: gastroesophageal cancer (GC) cohort pharmacodynamic and biomarker results [abstract]. J. Clin. Oncol. 34 (Suppl. 4S), 154 (2016).

    Google Scholar 

  162. Bang, Y.-J. et al. A randomized, open-label phase II study of AZD4547 (AZD) versus paclitaxel (P) in previously treated patients with advanced gastric cancer (AGC) with Fibroblast growth factor receptor 2 (FGFR2) polysomy or gene amplification (amp): SHINE study [abstract]. J. Clin. Oncol. 33 (Suppl.), 4014 (2015).

    Google Scholar 

  163. Lee, J. et al. Antitumor activity and safety of FPA144, an ADCC-enhanced, FGFR2b isoform-selective monoclonal antibody, in patients with FGFR2b+ gastric cancer and advanced solid tumors [abstract]. J. Clin. Oncol. 34 (Suppl.), 2502 (2016).

    Google Scholar 

  164. Schuler, M. et al. Final results of the FAST study, an international, multicenter, randomized, phase II trial of epirubicin, oxaliplatin, and capecitabine (EOX) with or without the anti-CLDN18.2 antibody IMAB362 as first-line therapy in patients with advanced CLDN18.2+ gastric and gastroesophageal junction (GEJ) adenocarcinoma. Ann. Oncol. 27, 207–242 (2016).

    Google Scholar 

  165. Al-Batran, S.-E. et al. FAST: an international, multicenter, randomized, phase II trial of epirubicin, oxaliplatin, and capecitabine (EOX) with or without IMAB362, a first-in-class anti-CLDN18.2 antibody, as first-line therapy in patients with advanced CLDN18.2+ gastric and gastroesophageal junction (GEJ) adenocarcinoma [abstract]. J. Clin. Oncol. 34 (Suppl.), LBA4001 (2016).

    Google Scholar 

  166. Catenacci, D. V. Next-generation clinical trials: novel strategies to address the challenge of tumor molecular heterogeneity. Mol. Oncol. 9, 967–996 (2015).

    CAS  PubMed  Google Scholar 

  167. Lee, J. et al. Phase III trial comparing capecitabine plus cisplatin versus capecitabine plus cisplatin with concurrent capecitabine radiotherapy in completely resected gastric cancer with D2 lymph node dissection: the ARTIST trial. J. Clin. Oncol. 30, 268–273 (2012).

    CAS  PubMed  Google Scholar 

  168. Noh, S. H. et al. Adjuvant capecitabine plus oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): 5-year follow-up of an open-label, randomised phase 3 trial. Lancet Oncol. 15, 1389–1396 (2014). The CLASSIC trial data demonstrate a survival advantage using systemic combination adjuvant therapy after resection of GAC.

    CAS  PubMed  Google Scholar 

  169. Sakuramoto, S. et al. Adjuvant chemotherapy for gastric cancer with S-1, an oral fluoropyrimidine. N. Engl. J. Med. 357, 1810–1820 (2007). The ACT-GC trial data demonstrate a survival advantage using systemic single-agent adjuvant therapy after resection of GAC.

    CAS  PubMed  Google Scholar 

  170. Cunningham, D. et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N. Engl. J. Med. 355, 11–20 (2006).

    CAS  PubMed  Google Scholar 

  171. Verheij, M. et al. A multicenter randomized phase III trial of neo-adjuvant chemotherapy followed by surgery and chemotherapy or by surgery and chemoradiotherapy in resectable gastric cancer: first results from the CRITICS study [abstract]. J. Clin. Oncol. 34 (Suppl.), 4000 (2016).

    Google Scholar 

  172. Leong, T. et al. TOPGEAR: a randomised phase III trial of perioperative ECF chemotherapy versus preoperative chemoradiation plus perioperative ECF chemotherapy for resectable gastric cancer (an international, intergroup trial of the AGITG/TROG/EORTC/NCIC CTG). BMC Cancer 15, 532 (2015).

    PubMed  PubMed Central  Google Scholar 

  173. Shan, B., Shan, L., Morris, D., Golani, S. & Saxena, A. Systematic review on quality of life outcomes after gastrectomy for gastric carcinoma. J. Gastrointest. Oncol. 6, 544–560 (2015).

    PubMed  PubMed Central  Google Scholar 

  174. Al-Batran, S. E. & Ajani, J. A. Impact of chemotherapy on quality of life in patients with metastatic esophagogastric cancer. Cancer 116, 2511–2518 (2010).

    CAS  PubMed  Google Scholar 

  175. Satoh, T. et al. Quality of life in the trastuzumab for gastric cancer trial. Oncologist 19, 712–719 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Al-Batran, S. E. et al. Quality-of-life and performance status results from the phase III RAINBOW study of ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated gastric or gastroesophageal junction adenocarcinoma. Ann. Oncol. 27, 673–679 (2016).

    PubMed  PubMed Central  Google Scholar 

  177. Miki, K., Fujishiro, M., Kodashima, S. & Yahagi, N. Long-term results of gastric cancer screening using the serum pepsinogen test method among an asymptomatic middle-aged Japanese population. Dig. Endosc. 21, 78–81 (2009).

    PubMed  Google Scholar 

  178. Yeh, J. M., Hur, C., Ward, Z., Schrag, D. & Goldie, S. J. Gastric adenocarcinoma screening and prevention in the era of new biomarker and endoscopic technologies: a cost-effectiveness analysis. Gut 65, 563–574 (2016).

    CAS  PubMed  Google Scholar 

  179. Wadhwa, R. et al. Gastric cancer-molecular and clinical dimensions. Nat. Rev. Clin. Oncol. 10, 643–655 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. De Mattos-Arruda, L. et al. Circulating tumour cells and cell-free DNA as tools for managing breast cancer. Nat. Rev. Clin. Oncol. 10, 377–389 (2013).

    CAS  PubMed  Google Scholar 

  181. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Janjigian, Y. et al. CheckMate-032: phase I/II, open-label study of safety and activity of nivolumab (nivo) alone or with ipilimumab (ipi) in advanced and metastatic (A/M) gastric cancer (GC) [abstract]. J. Clin. Oncol. 34 (Suppl.), 4010 (2016).

    Google Scholar 

  183. Ralph, C. et al. Modulation of lymphocyte regulation for cancer therapy: a phase II trial of tremelimumab in advanced gastric and esophageal adenocarcinoma. Clin. Cancer Res. 16, 1662–1672 (2010).

    CAS  PubMed  Google Scholar 

  184. Moehler, M. et al. A randomized, open-label, two-arm phase II trial comparing the efficacy of sequential ipilimumab (ipi) versus best supportive care (BSC) following first-line (1L) chemotherapy in patients with unresectable, locally advanced/metastatic (A/M) gastric or gastro-esophageal junction (G/GEJ) cancer [abstract]. J. Clin. Oncol. 34 (Suppl.), 4011 (2016).

    Google Scholar 

  185. Muro, K. et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol. 17, 717–726 (2016).

    CAS  PubMed  Google Scholar 

  186. Doi, T. et al. Updated results for the advanced esophageal carcinoma cohort of the phase Ib KEYNOTE-028 study of pembrolizumab (MK-3475) [abstract]. J. Clin. Oncol. 34 (Suppl. 4), 7 (2016).

    Google Scholar 

  187. Ribas, A. et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 16, 908–918 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Chatterjee, M. et al. Systematic evaluation of pembrolizumab dosing in patients with advanced non-small-cell lung cancer. Ann. Oncol. 27, 1291–1298 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Chung, H. et al. Safety, PD-L1 expression, and clinical activity of avelumab (MSB0010718C), an anti-PD-L1 antibody, in patients with advanced gastric or gastroesophageal junction cancer [abstract]. J. Clin. Oncol. 34 (Suppl. 4S), 167 (2016).

    Google Scholar 

  190. Segal, N. et al. A phase I multi-arm dose-expansion study of the anti-programmed cell death-ligand-1 (PD-L1) antibody MEDI4736: preliminary data. Ann. Oncol. 25, iv365 (2014).

    Google Scholar 

  191. Kang, Y.-K. et al. Nivolumab (ONO-4538/BMS-936558) as salvage treatment after second or later-line chemotherapy for advanced gastric or gastro-esophageal junction cancer (AGC): a double-blinded, randomized, phase III trial [abstract]. J. Clin. Oncol. 35 (Suppl. 4S), 2 (2017). Data in abstract form of a randomized trial that demonstrate a survival advantage in the third or later lines of therapy with nivolumab versus placebo in advanced-stage GAC.

    Google Scholar 

  192. Zhang, M. et al. The clinicopathological and prognostic significance of PD-L1 expression in gastric cancer: a meta-analysis of 10 studies with 1,901 patients. Sci. Rep. 6, 37933 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Morello, A., Sadelain, M. & Adusumilli, P. S. Mesothelin-targeted CARs: driving T cells to solid tumors. Cancer Discov. 6, 133–146 (2016).

    CAS  PubMed  Google Scholar 

  194. Lieto, E. et al. Expression of vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) is an independent prognostic indicator of worse outcome in gastric cancer patients. Ann. Surg. Oncol. 15, 69–79 (2008).

    PubMed  Google Scholar 

  195. Janakiram, M. et al. Expression, clinical significance, and receptor identification of the newest B7 family member HHLA2 protein. Clin. Cancer Res. 21, 2359–2366 (2015).

    CAS  PubMed  Google Scholar 

  196. Markwick, L. J. et al. Blockade of PD1 and TIM3 restores innate and adaptive immunity in patients with acute alcoholic hepatitis. Gastroenterology 148, 590–602.e10 (2015).

    CAS  PubMed  Google Scholar 

  197. Kouo, T. et al. Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunol. Res. 3, 412–423 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Romero, D. Immunotherapy: PD-1 says goodbye, TIM-3 says hello. Nat. Rev. Clin. Oncol. 13, 202–203 (2016).

    PubMed  Google Scholar 

  199. Koyama, S. et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun. 7, 10501 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Xiao, Y. & Freeman, G. J. A new B7:CD28 family checkpoint target for cancer immunotherapy: HHLA2. Clin. Cancer Res. 21, 2201–2203 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Kim, Y. et al. Randomized phase II study of nimotuzumab, an anti-EGFR antibody, plus irinotecan in patients with 5-fluorouracil-based regimen-refractory advanced or recurrent gastric cancer in Korea and Japan: preliminary results [abstract]. J. Clin. Oncol. 29 (Suppl. 4), 87 (2011).

    Google Scholar 

  202. Enzinger, P. C. et al. Multicenter double-blind randomized phase II: FOLFOX + ziv-aflibercept/placebo for patients (pts) with chemo-naive metastatic esophagogastric adenocarcinoma (MEGA) [abstract]. J. Clin. Oncol. 34 (Suppl. 4S), 4 (2016).

    Google Scholar 

  203. Pavlakis, N. et al. Regorafenib for the treatment of advanced gastric cancer (INTEGRATE): a multinational placebo-controlled phase II trial. J. Clin. Oncol. 34, 2728–2735 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Ramanathan, R. K. et al. Phase 2 study of MK-2206, an allosteric inhibitor of AKT, as second-line therapy for advanced gastric and gastroesophageal junction cancer: a SWOG cooperative group trial (S1005). Cancer 121, 2193–2197 (2015).

    CAS  PubMed  Google Scholar 

  205. Hecht, J. R. et al. Lapatinib in combination with capecitabine plus oxaliplatin in human epidermal growth factor receptor 2-positive advanced or metastatic gastric, esophageal, or gastroesophageal adenocarcinoma: TRIO-013/LOGiC — a randomized phase III trial. J. Clin. Oncol. 34, 443–451 (2016).

    CAS  PubMed  Google Scholar 

  206. Satoh, T. et al. Lapatinib plus paclitaxel versus paclitaxel alone in the second-line treatment of HER2-amplified advanced gastric cancer in Asian populations: TyTAN — a randomized, phase III study. J. Clin. Oncol. 32, 2039–2049 (2014).

    CAS  PubMed  Google Scholar 

  207. Shah, M. A. et al. METGastric: a phase III study of onartuzumab plus mFOLFOX6 in patients with metastatic HER2-negative (HER2,) and MET-positive (MET+) adenocarcinoma of the stomach or gastroesophageal junction (GEC) [abstract]. J. Clin. Oncol. 33 (Suppl.), 4012 (2015).

    Google Scholar 

  208. Van Cutsem, E. et al. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a biomarker evaluation from the AVAGAST randomized phase III trial. J. Clin. Oncol. 30, 2119–2127 (2012).

    CAS  PubMed  Google Scholar 

  209. Ohtsu, A. et al. Everolimus for previously treated advanced gastric cancer: results of the randomized, double-blind, phase III GRANITE-1 study. J. Clin. Oncol. 31, 3935–3943 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Bang, Y. J. et al. Randomized, double-blind phase II trial with prospective classification by ATM protein level to evaluate the efficacy and tolerability of olaparib plus paclitaxel in patients with recurrent or metastatic gastric cancer. J. Clin. Oncol. 33, 3858–3865 (2015).

    CAS  PubMed  Google Scholar 

  211. Bruzzi, J. F. et al. Detection of interval distant metastases: clinical utility of integrated CT-PET imaging in patients with esophageal carcinoma after neoadjuvant therapy. Cancer 109, 125–134 (2007).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (J.A.A.); Epidemiology (D.F.); Mechanisms/pathophysiology (S.S., D.F. and J.A.A.); Diagnosis, screening and prevention (T.S. and D.F.); Management (T.S., J.L. and Y.Y.J.); Quality of life (J.L. and J.A.A.); Outlook (J.A.A.); Overview of Primer (J.A.A.).

Corresponding author

Correspondence to Jaffer A. Ajani.

Ethics declarations

Competing interests

J.A.A. has received research grants from Taiho Pharma, Genentech, Roche, Bristol-Myers Squibb, Takeda, Gilead, Merck USA, FivePrime, Lilly and DeltaFly Pharma, and honoraria from Taiho, Celgene, Bristol-Myers Squibb and Roche. Y.Y.J. has received research funding from Boehringer Ingelheim, Greentech, Bayer, Merk, Lilly, Pfizer and BristolMyers Squibb. All other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajani, J., Lee, J., Sano, T. et al. Gastric adenocarcinoma. Nat Rev Dis Primers 3, 17036 (2017). https://doi.org/10.1038/nrdp.2017.36

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2017.36

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer