Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Pemphigus

Abstract

Pemphigus is a group of IgG-mediated autoimmune diseases of stratified squamous epithelia, such as the skin and oral mucosa, in which acantholysis (the loss of cell adhesion) causes blisters and erosions. Pemphigus has three major subtypes: pemphigus vulgaris, pemphigus foliaceus and paraneoplastic pemphigus. IgG autoantibodies are characteristically raised against desmoglein 1 and desmoglein 3, which are cell–cell adhesion molecules found in desmosomes. The sites of blister formation can be physiologically explained by the anti-desmoglein autoantibody profile and tissue-specific expression pattern of desmoglein isoforms. The pathophysiological roles of T cells and B cells have been characterized in mouse models of pemphigus and patients, revealing insights into the mechanisms of autoimmunity. Diagnosis is based on clinical manifestations and confirmed with histological and immunochemical testing. The current first-line treatment is systemic corticosteroids and adjuvant therapies, including immunosuppressive agents, intravenous immunoglobulin and plasmapheresis. Rituximab, a monoclonal antibody against CD20+ B cells, is a promising therapeutic option that may soon become first-line therapy. Pemphigus is one of the best-characterized human autoimmune diseases and provides an ideal paradigm for both basic and clinical research, especially towards the development of antigen-specific immune suppression treatments for autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clinical features of pemphigus.
Figure 2: Pathogenesis of pemphigus.
Figure 3: Mechanisms of acantholysis.
Figure 4: B cell and T cell response in pemphigus.
Figure 5: Mouse models for pemphigus.
Figure 6: Immunopathological characteristics of pemphigus vulgaris, pemphigus foliaceus and paraneoplastic pemphigus.
Figure 7: Current and future therapeutic strategies for pemphigus.

Similar content being viewed by others

References

  1. Amagai, M. in Dermatology Vol. 1 Ch. 29 (eds Bolognia, J. L., Jorizzo, J. L. & Schaffer, J. V. ) 461–474 (Mosby, 2012).

    Google Scholar 

  2. Amagai, M., Klaus-Kovtun, V. & Stanley, J. R. Autoantibodies against a novel epithelial cadherin in pemphigus vulgaris, a disease of cell adhesion. Cell 67, 869–877 (1991). This study reports the cDNA cloning of a pemphigus vulgaris antigen, which turned out to be a desmosomal cadherin called desmoglein 3.

    Google Scholar 

  3. Koch, P. J. et al. Identification of desmoglein, a constitutive desmosomal glycoprotein, as a member of the cadherin family of cell adhesion molecules. Eur. J. Cell Biol. 53, 1–12 (1990).

    Google Scholar 

  4. Stanley, J. R. & Amagai, M. Pemphigus, bullous impetigo, and the staphylococcal scalded-skin syndrome. N. Engl. J. Med. 355, 1800–1810 (2006).

    Google Scholar 

  5. Anhalt, G. J. et al. Paraneoplastic pemphigus. An autoimmune mucocutaneous disease associated with neoplasia. N. Engl. J. Med. 323, 1729–1735 (1990).

    Google Scholar 

  6. Alpsoy, E., Akman-Karakas, A. & Uzun, S. Geographic variations in epidemiology of two autoimmune bullous diseases: pemphigus and bullous pemphigoid. Arch. Dermatol. Res. 307, 291–298 (2015).

    Google Scholar 

  7. Shah, A. A. et al. Development of a disease registry for autoimmune bullous diseases: initial analysis of the pemphigus vulgaris subset. Acta Derm. Venereol. 95, 86–90 (2015).

    Google Scholar 

  8. Yong, A. A. & Tey, H. L. Paraneoplastic pemphigus. Australas. J. Dermatol. 54, 241–250 (2013).

    Google Scholar 

  9. Anhalt, G. J. Paraneoplastic pemphigus. Adv. Dermatol. 12, 77–96 (1997).

    Google Scholar 

  10. Anhalt, G. J. Paraneoplastic pemphigus. J. Investig. Dermatol. Symp. Proc. 9, 29–33 (2004).

    Google Scholar 

  11. Meyer, N. & Misery, L. Geoepidemiologic considerations of auto-immune pemphigus. Autoimmun. Rev. 9, A379–A382 (2010).

    Google Scholar 

  12. Bertram, F., Brocker, E. B., Zillikens, D. & Schmidt, E. Prospective analysis of the incidence of autoimmune bullous disorders in Lower Franconia, Germany. J. Dtsch. Dermatol. Ges. 7, 434–440 (2009). This study reports the lowest known incidence of patients with pemphigus.

    Google Scholar 

  13. Michailidou, E. Z. et al. Epidemiologic survey of pemphigus vulgaris with oral manifestations in northern Greece: retrospective study of 129 patients. Int. J. Dermatol. 46, 356–361 (2007).

    Google Scholar 

  14. Tallab, T. et al. The incidence of pemphigus in the southern region of Saudi Arabia. Int. J. Dermatol. 40, 570–572 (2001).

    Google Scholar 

  15. Pisanti, S., Sharav, Y., Kaufman, E. & Posner, L. N. Pemphigus vulgaris: incidence in Jews of different ethnic groups, according to age, sex, and initial lesion. Oral Surg. Oral Med. Oral Pathol. 38, 382–387 (1974).

    Google Scholar 

  16. Asilian, A., Yoosefi, A. & Faghini, G. Pemphigus vulgaris in Iran: epidemiology and clinical profile. Skimmed 5, 69–71 (2006).

    Google Scholar 

  17. Simon, D. G., Krutchkoff, D., Kaslow, R. A. & Zarbo, R. Pemphigus in Hartford County, Connecticut, from 1972 to 1977. Arch. Dermatol. 116, 1035–1037 (1980).

    Google Scholar 

  18. Culton, D. A. et al. Advances in pemphigus and its endemic pemphigus foliaceus (Fogo Selvagem) phenotype: a paradigm of human autoimmunity. J. Autoimmun. 31, 311–324 (2008).

    Google Scholar 

  19. Zaraa, I. et al. Spectrum of autoimmune blistering dermatoses in Tunisia: an 11-year study and a review of the literature. Int. J. Dermatol. 50, 939–944 (2011).

    Google Scholar 

  20. Bastuji-Garin, S. et al. Comparative epidemiology of pemphigus in Tunisia and France. Incidence of foliaceus pemphigus in young Tunisian women. Ann. Dermatol. Venereol. 123, 337–342 (in French) (1996).

    Google Scholar 

  21. Qian, Y. et al. Cutting edge: Brazilian pemphigus foliaceus anti-desmoglein 1 autoantibodies cross-react with sand fly salivary LJM11 antigen. J. Immunol. 189, 1535–1539 (2012). This paper shows that antibodies to sand fly salivary antigens crossreact with human desmoglein 1 and, therefore, may be a trigger for endemic pemphigus foliaceus, fogo selvagem.

    Google Scholar 

  22. Qian, Y. et al. IgE anti-LJM11 sand fly salivary antigen may herald the onset of fogo selvagem in endemic Brazilian regions. J. Invest. Dermatol. 135, 913–915 (2015).

    Google Scholar 

  23. Qian, Y. et al. Overlapping IgG4 responses to self- and environmental antigens in endemic pemphigus foliaceus. J. Immunol. 196, 2041–2050 (2016).

    Google Scholar 

  24. Sinha, A. A. The genetics of pemphigus. Dermatol. Clin. 29, 381–391 (2011).

    Google Scholar 

  25. Torzecka, J. D. et al. Circulating pemphigus autoantibodies in healthy relatives of pemphigus patients: coincidental phenomenon with a risk of disease development? Arch. Dermatol. Res. 299, 239–243 (2007).

    Google Scholar 

  26. Yan, L., Wang, J. M. & Zeng, K. Association between HLA-DRB1 polymorphisms and pemphigus vulgaris: a meta-analysis. Br. J. Dermatol. 167, 768–777 (2012).

    Google Scholar 

  27. Lee, E. et al. Disease relevant HLA class II alleles isolated by genotypic, haplotypic, and sequence analysis in North American Caucasians with pemphigus vulgaris. Hum. Immunol. 67, 125–139 (2006).

    Google Scholar 

  28. Bhanusali, D. G. et al. HLA-E*0103X is associated with susceptibility to pemphigus vulgaris. Exp. Dermatol. 22, 108–112 (2013).

    Google Scholar 

  29. Sarig, O. et al. Population-specific association between a polymorphic variant in ST18, encoding a pro-apoptotic molecule, and pemphigus vulgaris. J. Invest. Dermatol. 132, 1798–1805 (2012). This is the first genome-wide association study in pemphigus vulgaris, which implicates the HLA region as well as ST18 as genomic susceptibility loci.

    Google Scholar 

  30. Vodo, D. et al. Identification of a functional risk variant for pemphigus vulgaris in the ST18 gene. PLoS Genet. 12, e1006008 (2016).

    Google Scholar 

  31. Sajda, T. et al. Multiplexed autoantigen microarrays identify HLA as a key driver of anti-desmoglein and -non-desmoglein reactivities in pemphigus. Proc. Natl Acad. Sci. USA 113, 1859–1864 (2016). References 30 and 31 provide novel important insights into the complex relationship between genetics and disease development in pemphigus.

    Google Scholar 

  32. Shah, A. A., Dey-Rao, R., Seiffert-Sinha, K. & Sinha, A. A. Increased oxidative stress in pemphigus vulgaris is related to disease activity and HLA-association. Autoimmunity 49, 248–257 (2016).

    Google Scholar 

  33. Moraes, M. E. et al. An epitope in the third hypervariable region of the DRB1 gene is involved in the susceptibility to endemic pemphigus foliaceus (fogo selvagem) in three different Brazilian populations. Tissue Antigens 49, 35–40 (1997).

    Google Scholar 

  34. Martel, P. et al. Paraneoplastic pemphigus is associated with the DRB1*03 allele. J. Autoimmun. 20, 91–95 (2003).

    Google Scholar 

  35. Liu, Q., Bu, D. F., Li, D. & Zhu, X. J. Genotyping of HLA-I and HLA-II alleles in Chinese patients with paraneoplastic pemphigus. Br. J. Dermatol. 158, 587–591 (2008).

    Google Scholar 

  36. Ruocco, V. et al. Pemphigus: etiology, pathogenesis, and inducing or triggering factors: facts and controversies. Clin. Dermatol. 31, 374–381 (2013).

    Google Scholar 

  37. Amagai, M. Desmoglein as a target in autoimmunity and infection. J. Am. Acad. Dermatol. 48, 244–252 (2003).

    Google Scholar 

  38. Amagai, M. Autoimmunity against desmosomal cadherins in pemphigus. J. Dermatol. Sci. 20, 92–102 (1999).

    Google Scholar 

  39. Mahoney, M. G. et al. Explanations for the clinical and microscopic localization of lesions in pemphigus foliaceus and vulgaris. J. Clin. Invest. 103, 461–468 (1999).

    Google Scholar 

  40. Amagai, M., Matsuyoshi, N., Wang, Z. H., Andl, C. & Stanley, J. R. Toxin in bullous impetigo and staphylococcal scalded-skin syndrome targets desmoglein 1. Nat. Med. 6, 1275–1277 (2000). This study identifies the target molecule of the exfoliative toxin produced by S. aureus as desmoglein 1, the autoantigen of pemphigus foliaceus.

    Google Scholar 

  41. Mao, X. et al. Autoimmunity to desmocollin 3 in pemphigus vulgaris. Am. J. Pathol. 177, 2724–2730 (2010).

    Google Scholar 

  42. Rafei, D. et al. IgG autoantibodies against desmocollin 3 in pemphigus sera induce loss of keratinocyte adhesion. Am. J. Pathol. 178, 718–723 (2011).

    Google Scholar 

  43. Nguyen, V. T., Ndoye, A., Shultz, L. D., Pittelkow, M. R. & Grando, S. A. Antibodies against keratinocyte antigens other than desmoglein 1 and 3 can induce pemphigus vulgaris-like lesions. J. Clin. Invest. 106, 1467–1479 (2000).

    Google Scholar 

  44. Kalantari-Dehaghi, M. et al. Pemphigus vulgaris autoantibody profiling by proteomic technique. PLoS ONE 8, e57587 (2013).

    Google Scholar 

  45. Ahmed, A. R. et al. Monopathogenic versus multipathogenic explanations of pemphigus pathophysiology. Exp. Dermatol. 25, 839–846 (2016).

    Google Scholar 

  46. Amagai, M., Nishikawa, T., Nousari, H. C., Anhalt, G. J. & Hashimoto, T. Antibodies against desmoglein 3 (pemphigus vulgaris antigen) are present in sera from patients with paraneoplastic pemphigus and cause acantholysis in vivo in neonatal mice. J. Clin. Invest. 102, 775–782 (1998).

    Google Scholar 

  47. Schepens, I. et al. The protease inhibitor alpha-2-macroglobulin-like-1 is the p170 antigen recognized by paraneoplastic pemphigus autoantibodies in human. PLoS ONE 5, e12250 (2010).

    Google Scholar 

  48. Takahashi, H. et al. Desmoglein 3-specific CD4+ T cells induce pemphigus vulgaris and interface dermatitis in mice. J. Clin. Invest. 121, 3677–3688 (2011). This study reports that desmoglein 3-specific CD4+ T cells not only help B cells to produce pathogenic autoantibodies but also induce interface dermatitis by cellular autoimmunity, as found in paraneoplastic pemphigus.

    Google Scholar 

  49. Cummins, D. L. et al. Lichenoid paraneoplastic pemphigus in the absence of detectable antibodies. J. Am. Acad. Dermatol. 56, 153–159 (2007).

    Google Scholar 

  50. Anhalt, G. J. et al. Defining the role of complement in experimental pemphigus vulgaris in mice. J. Immunol. 137, 2835–2840 (1986).

    Google Scholar 

  51. Mascaro, J. M. Jr et al. Mechanisms of acantholysis in pemphigus vulgaris: role of IgG valence. Clin. Immunol. Immunopathol. 85, 90–96 (1997).

    Google Scholar 

  52. Rock, B., Labib, R. S. & Diaz, L. A. Monovalent Fab’ immunoglobulin fragments from endemic pemphigus foliaceus autoantibodies reproduce the human disease in neonatal Balb/c mice. J. Clin. Invest. 85, 296–299 (1990).

    Google Scholar 

  53. Rock, B. et al. The pathogenic effect of IgG4 autoantibodies in endemic pemphigus foliaceus (fogo selvagem). N. Engl. J. Med. 320, 1463–1469 (1989).

    Google Scholar 

  54. Futei, Y. et al. Predominant IgG4 subclass in autoantibodies of pemphigus vulgaris and foliaceus. J. Dermatol. Sci. 26, 55–61 (2001).

    Google Scholar 

  55. Funakoshi, T. et al. Enrichment of total serum IgG4 in patients with pemphigus. Br. J. Dermatol. 167, 1245–1253 (2012).

    Google Scholar 

  56. Aalberse, R. C. & Schuurman, J. IgG4 breaking the rules. Immunology 105, 9–19 (2002).

    Google Scholar 

  57. Boggon, T. J. et al. C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296, 1308–1313 (2002).

    Google Scholar 

  58. Harrison, O. J. et al. Structural basis of adhesive binding by desmocollins and desmogleins. Proc. Natl Acad. Sci. USA 113, 7160–7165 (2016).

    Google Scholar 

  59. Tsunoda, K. et al. Induction of pemphigus phenotype by a mouse monoclonal antibody against the amino-terminal adhesive interface of desmoglein 3. J. Immunol. 170, 2170–2178 (2003).

    Google Scholar 

  60. Di Zenzo, G. et al. Pemphigus autoantibodies generated through somatic mutations target the desmoglein-3 cis-interface. J. Clin. Invest. 122, 3781–3790 (2012). This paper demonstrates that human anti-desmoglein 3 antibodies binding to the cis-adhesive desmoglein 3 interface can induce acantholysis, providing support for the steric hindrance model of pemphigus pathogenesis.

    Google Scholar 

  61. Heupel, W. M., Zillikens, D., Drenckhahn, D. & Waschke, J. Pemphigus vulgaris IgG directly inhibit desmoglein 3-mediated transinteraction. J. Immunol. 181, 1825–1834 (2008).

    Google Scholar 

  62. Sato, M., Aoyama, Y. & Kitajima, Y. Assembly pathway of desmoglein 3 to desmosomes and its perturbation by pemphigus vulgaris-IgG in cultured keratinocytes, as revealed by time-lapsed labeling immunoelectron microscopy. Lab. Invest. 80, 1583–1592 (2000).

    Google Scholar 

  63. Calkins, C. C. et al. Desmoglein endocytosis and desmosome disassembly are coordinated responses to pemphigus autoantibodies. J. Biol. Chem. 281, 7623–7634 (2006).

    Google Scholar 

  64. Mao, X., Choi, E. J. & Payne, A. S. Disruption of desmosome assembly by monovalent human pemphigus vulgaris monoclonal antibodies. J. Invest. Dermatol. 129, 908–918 (2009).

    Google Scholar 

  65. Oktarina, D. A., van der Wier, G., Diercks, G. F., Jonkman, M. F. & Pas, H. H. IgG-induced clustering of desmogleins 1 and 3 in skin of patients with pemphigus fits with the desmoglein nonassembly depletion hypothesis. Br. J. Dermatol. 165, 552–562 (2011).

    Google Scholar 

  66. Sokol, E. et al. Large-scale electron microscopy maps of patient skin and mucosa provide insight into pathogenesis of blistering diseases. J. Invest. Dermatol. 135, 1763–1770 (2015).

    Google Scholar 

  67. Waschke, J., Bruggeman, P., Baumgartner, W., Zillikens, D. & Drenckhahn, D. Pemphigus foliaceus IgG causes dissociation of desmoglein 1-containing junctions without blocking desmoglein 1 transinteraction. J. Clin. Invest. 115, 3157–3165 (2005).

    Google Scholar 

  68. Jolly, P. S. et al. p38MAPK signaling and desmoglein-3 internalization are linked events in pemphigus acantholysis. J. Biol. Chem. 285, 8936–8941 (2010).

    Google Scholar 

  69. Saito, M. et al. Signaling dependent and independent mechanisms in pemphigus vulgaris blister formation. PLoS ONE 7, e50696 (2012). This paper provides evidence that monoclonal and polyclonal antibodies contribute to acantholysis in non-redundant and complementary ways, with polyclonal serum IgG inducing signalling-dependent desmoglein clustering not observed with monoclonal antibodies.

    Google Scholar 

  70. Mao, X., Sano, Y., Park, J. M. & Payne, A. S. p38 MAPK activation is downstream of the loss of intercellular adhesion in pemphigus vulgaris. J. Biol. Chem. 286, 1283–1291 (2011).

    Google Scholar 

  71. Mao, X. et al. MAPKAP kinase 2 (MK2)-dependent and -independent models of blister formation in pemphigus vulgaris. J. Invest. Dermatol. 134, 68–76 (2014).

    Google Scholar 

  72. Bektas, M., Jolly, P. S., Berkowitz, P., Amagai, M. & Rubenstein, D. S. A pathophysiologic role for epidermal growth factor receptor in pemphigus acantholysis. J. Biol. Chem. 288, 9447–9456 (2013).

    Google Scholar 

  73. Sayar, B. S. et al. EGFR inhibitors erlotinib and lapatinib ameliorate epidermal blistering in pemphigus vulgaris in a non-linear, V-shaped relationship. Exp. Dermatol. 23, 33–38 (2014).

    Google Scholar 

  74. Waschke, J. et al. Inhibition of Rho A activity causes pemphigus skin blistering. J. Cell Biol. 175, 721–727 (2006).

    Google Scholar 

  75. Williamson, L. et al. Pemphigus vulgaris identifies plakoglobin as key suppressor of c-Myc in the skin. EMBO J. 25, 3298–3309 (2006).

    Google Scholar 

  76. Li, N., Zhao, M., Wang, J., Liu, Z. & Diaz, L. A. Involvement of the apoptotic mechanism in pemphigus foliaceus autoimmune injury of the skin. J. Immunol. 182, 711–717 (2009).

    Google Scholar 

  77. Luyet, C. et al. Preclinical studies identify non-apoptotic low-level caspase-3 as therapeutic target in pemphigus vulgaris. PLoS ONE 10, e0119809 (2015).

    Google Scholar 

  78. Chen, Y., Chernyavsky, A., Webber, R. J., Grando, S. A. & Wang, P. H. Critical role of the neonatal Fc receptor (FcRn) in the pathogenic action of antimitochondrial autoantibodies synergizing with anti-desmoglein autoantibodies in pemphigus vulgaris. J. Biol. Chem. 290, 23826–23837 (2015).

    Google Scholar 

  79. Payne, A. S. et al. Genetic and functional characterization of human pemphigus vulgaris monoclonal autoantibodies isolated by phage display. J. Clin. Invest. 115, 888–899 (2005).

    Google Scholar 

  80. Yamagami, J. et al. Homologous regions of autoantibody heavy chain complementarity-determining region 3 (H-CDR3) in patients with pemphigus cause pathogenicity. J. Clin. Invest. 120, 4111–4117 (2010).

    Google Scholar 

  81. Kamiya, K. et al. A higher correlation of the antibody activities against the calcium-dependent epitopes of desmoglein 3 quantified by ethylenediaminetetraacetic acid-treated enzyme-linked immunosorbent assay with clinical disease activities of pemphigus vulgaris. J. Dermatol. Sci. 70, 190–195 (2013).

    Google Scholar 

  82. Kawasaki, H. et al. Synergistic pathogenic effects of combined mouse monoclonal anti-desmoglein 3 IgG antibodies on pemphigus vulgaris blister formation. J. Invest. Dermatol. 126, 2621–2630 (2006).

    Google Scholar 

  83. Cho, M. J. et al. Shared VH1-46 gene usage by pemphigus vulgaris autoantibodies indicates common humoral immune responses among patients. Nat. Commun. 5, 4167 (2014). This paper demonstrates that V H 1-46 B cells require no or few somatic mutations to bind desmoglein 3 and may, therefore, be prone to desmoglein 3 autoreactivity.

    Google Scholar 

  84. Saleh, M. A. et al. Pathogenic anti-desmoglein 3 mAbs cloned from a paraneoplastic pemphigus patient by phage display. J. Invest. Dermatol. 132, 1141–1148 (2012).

    Google Scholar 

  85. Yamagami, J. et al. Antibodies to the desmoglein 1 precursor proprotein but not to the mature cell surface protein cloned from individuals without pemphigus. J. Immunol. 183, 5615–5621 (2009).

    Google Scholar 

  86. Qian, Y. et al. Antigen selection of anti-DSG1 autoantibodies during and before the onset of endemic pemphigus foliaceus. J. Invest. Dermatol. 129, 2823–2834 (2009).

    Google Scholar 

  87. Tian, C. et al. Immunodominance of the VH1-46 antibody gene segment in the primary repertoire of human rotavirus-specific B cells is reduced in the memory compartment through somatic mutation of nondominant clones. J. Immunol. 180, 3279–3288 (2008).

    Google Scholar 

  88. Cho, M. J. et al. Determinants of VH1-46 cross-reactivity to pemphigus vulgaris autoantigen desmoglein 3 and rotavirus antigen VP6. J. Immunol. 197, 1065–1073 (2016).

    Google Scholar 

  89. Hammers, C. M. et al. Persistence of anti-desmoglein 3 IgG+ B-cell clones in pemphigus patients over years. J. Invest. Dermatol. 135, 742–749 (2015).

    Google Scholar 

  90. Chan, P. T. et al. Immune response towards the amino-terminus of desmoglein 1 prevails across different activity stages in nonendemic pemphigus foliaceus. Br. J. Dermatol. 162, 1242–1250 (2010).

    Google Scholar 

  91. Ohyama, B. et al. Epitope spreading is rarely found in pemphigus vulgaris by large-scale longitudinal study using desmoglein 2-based swapped molecules. J. Invest. Dermatol. 132, 1158–1168 (2012).

    Google Scholar 

  92. Colliou, N. et al. Long-term remissions of severe pemphigus after rituximab therapy are associated with prolonged failure of desmoglein B cell response. Sci. Transl Med. 5, 175ra30 (2013).

    Google Scholar 

  93. Ahmed, A. R. et al. Major histocompatibility complex haplotype studies in Ashkenazi Jewish patients with pemphigus vulgaris. Proc. Natl Acad. Sci. USA 87, 7658–7662 (1990).

    Google Scholar 

  94. Miyagawa, S. et al. HLA-DRB1*04 and DRB1*14 alleles are associated with susceptibility to pemphigus among Japanese. J. Invest. Dermatol. 109, 615–618 (1997).

    Google Scholar 

  95. Jones, C. C., Hamilton, R. G. & Jordon, R. E. Subclass distribution of human IgG autoantibodies in pemphigus. J. Clin. Immunol. 8, 43–49 (1988).

    Google Scholar 

  96. Lin, M. S. et al. Development and characterization of desmoglein-3 specific T cells from patients with pemphigus vulgaris. J. Clin. Invest. 99, 31–40 (1997).

    Google Scholar 

  97. Hertl, M. et al. Recognition of desmoglein 3 by autoreactive T cells in pemphigus vulgaris patients and normals. J. Invest. Dermatol. 110, 62–66 (1998).

    Google Scholar 

  98. Veldman, C. et al. Dichotomy of autoreactive Th1 and Th2 cell responses to desmoglein 3 in patients with pemphigus vulgaris (PV) and healthy carriers of PV-associated HLA class II alleles. J. Immunol. 170, 635–642 (2003).

    Google Scholar 

  99. Takahashi, H. et al. Novel system evaluating in vivo pathogenicity of desmoglein 3-reactive T cell clones using murine pemphigus vulgaris. J. Immunol. 181, 1526–1535 (2008).

    Google Scholar 

  100. Veldman, C., Hohne, A., Dieckmann, D., Schuler, G. & Hertl, M. Type I regulatory T cells specific for desmoglein 3 are more frequently detected in healthy individuals than in patients with pemphigus vulgaris. J. Immunol. 172, 6468–6475 (2004).

    Google Scholar 

  101. Nousari, H. C. et al. The mechanism of respiratory failure in paraneoplastic pemphigus. N. Engl. J. Med. 340, 1406–1410 (1999).

    Google Scholar 

  102. Hoffman, M. A., Qiao, X. & Anhalt, G. J. CD8+ T lymphocytes in bronchiolitis obliterans, paraneoplastic pemphigus, and solitary Castleman's disease. N. Engl. J. Med. 349, 407–408 (2003).

    Google Scholar 

  103. Hata, T. et al. Ectopic expression of epidermal antigens renders the lung a target organ in paraneoplastic pemphigus. J. Immunol. 191, 83–90 (2013). This study shows that ectopic expression of epidermal antigens in the lungs as a form of squamous metaplasia could be a reason why fatal pulmonary involvement occurs in patients with paraneoplastic pemphigus.

    Google Scholar 

  104. Anhalt, G. J., Labib, R. S., Voorhees, J. J., Beals, T. F. & Diaz, L. A. Induction of pemphigus in neonatal mice by passive transfer of IgG from patients with the disease. N. Engl. J. Med. 306, 1189–1196 (1982).

    Google Scholar 

  105. Ellebrecht, C. T. et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353, 179–184 (2016). This paper describes a novel therapeutic strategy for antigen-specific B cell depletion in pemphigus that could avoid generalized immune suppression.

    Google Scholar 

  106. Amagai, M. et al. Use of autoantigen-knockout mice in developing an active autoimmune disease model for pemphigus. J. Clin. Invest. 105, 625–631 (2000). This study describes the active disease mouse model for pemphigus vulgaris developed with a novel versatile method using adoptive transfer of lymphocytes from autoantigen-knockout mice.

    Google Scholar 

  107. Takae, Y., Nishikawa, T. & Amagai, M. Pemphigus mouse model as a tool to evaluate various immunosuppressive therapies. Exp. Dermatol. 18, 252–260 (2009).

    Google Scholar 

  108. Amagai, M. et al. Usefulness of enzyme-linked immunosorbent assay using recombinant desmogleins 1 and 3 for serodiagnosis of pemphigus. Br. J. Dermatol. 140, 351–357 (1999).

    Google Scholar 

  109. Eming, R. et al. Pathogenic IgG antibodies against desmoglein 3 in pemphigus vulgaris are regulated by HLA-DRB1*04:02-restricted T cells. J. Immunol. 193, 4391–4399 (2014).

    Google Scholar 

  110. Yoshida, K. et al. Cutaneous type pemphigus vulgaris: a rare clinical phenotype of pemphigus. J. Am. Acad. Dermatol. 52, 839–845 (2005).

    Google Scholar 

  111. Espana, A. et al. Antibodies to the amino-terminal domain of desmoglein 1 are retained during transition from pemphigus vulgaris to pemphigus foliaceus. Eur. J. Dermatol. 24, 174–179 (2014).

    Google Scholar 

  112. Kimoto, M., Ohyama, M., Hata, Y., Amagai, M. & Nishikawa, T. A. Case of pemphigus foliaceus which occurred after five years of remission from pemphigus vulgaris. Dermatology 203, 174–176 (2001).

    Google Scholar 

  113. Zhao, C. Y., Chiang, Y. Z. & Murrell, D. F. Neonatal autoimmune blistering disease: a systematic review. Pediatr. Dermatol. 33, 367–374 (2016).

    Google Scholar 

  114. Rocha-Alvarez, R. et al. Pregnant women with endemic pemphigus foliaceus (fogo selvagem) give birth to disease-free babies. J. Invest. Dermatol. 99, 78–82 (1992).

    Google Scholar 

  115. Wu, H. et al. Protection of neonates against pemphigus foliaceus by desmoglein 3. N. Engl. J. Med. 343, 31–35 (2000).

    Google Scholar 

  116. Ishii, K. et al. Characterization of autoantibodies in pemphigus using antigen-specific enzyme-linked immunosorbent assays with baculovirus-expressed recombinant desmogleins. J. Immunol. 159, 2010–2017 (1997).

    Google Scholar 

  117. Schmidt, E. et al. Novel ELISA systems for antibodies to desmoglein 1 and 3: correlation of disease activity with serum autoantibody levels in individual pemphigus patients. Exp. Dermatol. 19, 458–463 (2010).

    Google Scholar 

  118. van Beek, N. et al. Prospective studies on the routine use of a novel multivariant enzyme-linked immunosorbent assay for the diagnosis of autoimmune bullous diseases. J. Am. Acad. Dermatol. 76, 889–894.e5 (2017).

    Google Scholar 

  119. van Beek, N. et al. Serological diagnosis of autoimmune bullous skin diseases: prospective comparison of the BIOCHIP mosaic-based indirect immunofluorescence technique with the conventional multi-step single test strategy. Orphanet J. Rare Dis. 7, 49 (2012).

    Google Scholar 

  120. Belloni-Fortina, A. et al. Detection of autoantibodies against recombinant desmoglein 1 and 3 molecules in patients with pemphigus vulgaris: correlation with disease extent at the time of diagnosis and during follow-up. Clin. Dev. Immunol. 2009, 187864 (2009).

    Google Scholar 

  121. Abasq, C. et al. ELISA testing of anti-desmoglein 1 and 3 antibodies in the management of pemphigus. Arch. Dermatol. 145, 529–535 (2009).

    Google Scholar 

  122. Schmidt, E. & Zillikens, D. Modern diagnosis of autoimmune blistering skin diseases. Autoimmun. Rev. 10, 84–89 (2010).

    Google Scholar 

  123. Kwon, E. J., Yamagami, J., Nishikawa, T. & Amagai, M. Anti-desmoglein IgG autoantibodies in patients with pemphigus in remission. J. Eur. Acad. Dermatol. Venereol. 22, 1070–1075 (2008).

    Google Scholar 

  124. Naseer, S. Y., Seiffert-Sinha, K. & Sinha, A. A. Detailed profiling of anti-desmoglein autoantibodies identifies anti-Dsg1 reactivity as a key driver of disease activity and clinical expression in pemphigus vulgaris. Autoimmunity 48, 231–241 (2015).

    Google Scholar 

  125. Anzai, H., Stanley, J. R. & Amagai, M. Production of low titers of anti-desmoglein 1 IgG autoantibodies in some patients with staphylococcal scalded skin syndrome. J. Invest. Dermatol. 126, 2139–2141 (2006).

    Google Scholar 

  126. Prussmann, W. et al. Prevalence of pemphigus and pemphigoid autoantibodies in the general population. Orphanet J. Rare Dis. 10, 63 (2015).

    Google Scholar 

  127. Probst, C. et al. Development of ELISA for the specific determination of autoantibodies against envoplakin and periplakin in paraneoplastic pemphigus. Clin. Chim. Acta 410, 13–18 (2009).

    Google Scholar 

  128. Tsuchisaka, A. et al. Epiplakin is a paraneoplastic pemphigus autoantigen and related to bronchiolitis obliterans in Japanese patients. J. Invest. Dermatol. 136, 399–408 (2016).

    Google Scholar 

  129. Murrell, D. F. et al. Consensus statement on definitions of disease endpoints and therapeutic response for pemphigus. J. Am. Acad. Dermatol. 58, 1043–1046 (2008).

    Google Scholar 

  130. Amagai, M. et al. Japanese guidelines for the management of pemphigus. J. Dermatol. 41, 471–486 (2014). This report describes current pemphigus treatment guidelines in Japan, which are based on published evidence as well as confirmatory studies in Japanese patients.

    Google Scholar 

  131. Hertl, M. et al. Pemphigus. S2 guideline for diagnosis and treatment — guided by the European Dermatology Forum (EDF) in cooperation with the European Academy of Dermatology and Venereology (EADV). J. Eur. Acad. Dermatol. Venereol. 29, 405–414 (2015). This report describes evidence-based consensus on pemphigus treatment guidelines in Europe.

    Google Scholar 

  132. Atzmony, L., Hodak, E., Gdalevich, M., Rosenbaum, O. & Mimouni, D. Treatment of pemphigus vulgaris and pemphigus foliaceus: a systematic review and meta-analysis. Am. J. Clin. Dermatol. 15, 503–515 (2014).

    Google Scholar 

  133. Martinez De Pablo, M. I. et al. Paraneoplastic pemphigus associated with non-Hodgkin B-cell lymphoma and good response to prednisone. Acta Derm. Venereol. 85, 233–235 (2005).

    Google Scholar 

  134. Hertzberg, M. S., Schifter, M., Sullivan, J. & Stapleton, K. Paraneoplastic pemphigus in two patients with B-cell non-Hodgkin's lymphoma: significant responses to cyclophosphamide and prednisolone. Am. J. Hematol. 63, 105–106 (2000).

    Google Scholar 

  135. Nousari, H. C., Brodsky, R. A., Jones, R. J., Grever, M. R. & Anhalt, G. J. Immunoablative high-dose cyclophosphamide without stem cell rescue in paraneoplastic pemphigus: report of a case and review of this new therapy for severe autoimmune disease. J. Am. Acad. Dermatol. 40, 750–754 (1999).

    Google Scholar 

  136. Becker, L. R. et al. Paraneoplastic pemphigus treated with dexamethasone/ cyclophosphamide pulse therapy. Eur. J. Dermatol. 8, 551–553 (1998).

    Google Scholar 

  137. Izaki, S. et al. Paraneoplastic pemphigus: potential therapeutic effect of plasmapheresis. Br. J. Dermatol. 134, 987–989 (1996).

    Google Scholar 

  138. Jing, L., Shan, Z., Yongchu, H., Xixue, C. & Xuejun, Z. Successful treatment of a paraneoplastic pemphigus in a teenager using plasmapheresis, corticosteroids and tumour resection. Clin. Exp. Dermatol. 36, 752–754 (2011).

    Google Scholar 

  139. Heizmann, M., Itin, P., Wernli, M., Borradori, L. & Bargetzi, M. J. Successful treatment of paraneoplastic pemphigus in follicular NHL with rituximab: report of a case and review of treatment for paraneoplastic pemphigus in NHL and CLL. Am. J. Hematol. 66, 142–144 (2001).

    Google Scholar 

  140. Vezzoli, P., Berti, E. & Marzano, A. V. Rationale and efficacy for the use of rituximab in paraneoplastic pemphigus. Expert Rev. Clin. Immunol. 4, 351–363 (2008).

    Google Scholar 

  141. Gergely, L., Varoczy, L., Vadasz, G., Remenyik, E. & Illes, A. Successful treatment of B cell chronic lymphocytic leukemia-associated severe paraneoplastic pemphigus with cyclosporin A. Acta Haematol. 109, 202–205 (2003).

    Google Scholar 

  142. Hwang, Y. Y., Chan, J. C., Trendell-Smith, N. J. & Kwong, Y. L. Recalcitrant paraneoplastic pemphigus associated with follicular dendritic cell sarcoma: response to prolonged rituximab and ciclosporin therapy. Intern. Med. J. 44, 1145–1146 (2014).

    Google Scholar 

  143. Ekback, M. & Uggla, B. Paraneoplastic pemphigus associated with chronic lymphocytic leukaemia: treatment with alemtuzumab. Leuk. Res. 36, e190–e191 (2012).

    Google Scholar 

  144. Bech, R. et al. Alemtuzumab is effective against severe chronic lymphocytic leukaemia-associated paraneoplastic pemphigus. Br. J. Dermatol. 169, 469–472 (2013).

    Google Scholar 

  145. Werth, V. P. Treatment of pemphigus vulgaris with brief, high-dose intravenous glucocorticoids. Arch. Dermatol. 132, 1435–1439 (1996).

    Google Scholar 

  146. Mignogna, M. D. et al. High-dose intravenous ‘pulse’ methylprednisone in the treatment of severe oropharyngeal pemphigus: a pilot study. J. Oral Pathol. Med. 31, 339–344 (2002).

    Google Scholar 

  147. Nguyen, V. T. et al. Pemphigus vulgaris IgG and methylprednisolone exhibit reciprocal effects on keratinocytes. J. Biol. Chem. 279, 2135–2146 (2004).

    Google Scholar 

  148. Caplan, A., Fett, N., Rosenbach, M., Werth, V. P. & Micheletti, R. G. Prevention and management of glucocorticoid-induced side effects: a comprehensive review: a review of glucocorticoid pharmacology and bone health. J. Am. Acad. Dermatol. 76, 1–9 (2017).

    Google Scholar 

  149. Thomas, C. F. Jr & Limper, A. H. Treatment and prevention of Pneumocystis pneumonia in HIV-uninfected patients. UpToDatehttps://www.uptodate.com/contents/treatment-and-prevention-of-pneumocystis-pneumonia-in-hiv-uninfected-patients (2016).

  150. Centers for Disease Control and Prevention. Targeted tuberculosis testing and interpreting tuberculin skin test results: introduction. CDChttps://www.cdc.gov/tb/publications/factsheets/testing/skintestresults.htm (2016).

  151. Almugairen, N. et al. Assessment of the rate of long-term complete remission off therapy in patients with pemphigus treated with different regimens including medium- and high-dose corticosteroids. J. Am. Acad. Dermatol. 69, 583–588 (2013).

    Google Scholar 

  152. Beissert, S. et al. A comparison of oral methylprednisolone plus azathioprine or mycophenolate mofetil for the treatment of pemphigus. Arch. Dermatol. 142, 1447–1454 (2006).

    Google Scholar 

  153. Chams-Davatchi, C. et al. Randomized controlled open-label trial of four treatment regimens for pemphigus vulgaris. J. Am. Acad. Dermatol. 57, 622–628 (2007).

    Google Scholar 

  154. Beissert, S. et al. Treating pemphigus vulgaris with prednisone and mycophenolate mofetil: a multicenter, randomized, placebo-controlled trial. J. Invest. Dermatol. 130, 2041–2048 (2010).

    Google Scholar 

  155. Ioannides, D., Apalla, Z., Lazaridou, E. & Rigopoulos, D. Evaluation of mycophenolate mofetil as a steroid-sparing agent in pemphigus: a randomized, prospective study. J. Eur. Acad. Dermatol. Venereol. 26, 855–860 (2012).

    Google Scholar 

  156. Chams-Davatchi, C. et al. Randomized double blind trial of prednisolone and azathioprine, versus prednisolone and placebo, in the treatment of pemphigus vulgaris. J. Eur. Acad. Dermatol. Venereol. 27, 1285–1292 (2013).

    Google Scholar 

  157. Kotlyar, D. S. et al. Risk of lymphoma in patients with inflammatory bowel disease treated with azathioprine and 6-mercaptopurine: a meta-analysis. Clin. Gastroenterol. Hepatol. 13, 847–858.e4 (2015).

    Google Scholar 

  158. Robson, R., Cecka, J. M., Opelz, G., Budde, M. & Sacks, S. Prospective registry-based observational cohort study of the long-term risk of malignancies in renal transplant patients treated with mycophenolate mofetil. Am. J. Transplant. 5, 2954–2960 (2005).

    Google Scholar 

  159. MacPhee, I. A. et al. Pharmacokinetics of mycophenolate mofetil in patients with end-stage renal failure. Kidney Int. 57, 1164–1168 (2000).

    Google Scholar 

  160. Kaplan, B., Gaston, R. S., Meier-Kriesche, H. U., Bloom, R. D. & Shaw, L. M. Mycophenolic acid exposure in high- and low-weight renal transplant patients after dosing with mycophenolate mofetil in the Opticept trial. Ther. Drug Monit. 32, 224–227 (2010).

    Google Scholar 

  161. Joly, P. et al. First-line rituximab combined with short-term prednisone versus prednisone alone for the treatment of pemphigus (Ritux 3): a prospective, multicentre, parallel-group, open-label randomised trial. Lancethttp://dx.doi.org/10.1016/S0140-6736(17)30070-3 (2017). This study demonstrates the remarkable efficacy of rituximab as a first-line therapy for pemphigus.

  162. Joly, P. et al. A single cycle of rituximab for the treatment of severe pemphigus. N. Engl. J. Med. 357, 545–552 (2007).

    Google Scholar 

  163. Ahmed, A. R., Spigelman, Z., Cavacini, L. A. & Posner, M. R. Treatment of pemphigus vulgaris with rituximab and intravenous immune globulin. N. Engl. J. Med. 355, 1772–1779 (2006).

    Google Scholar 

  164. Ahmed, A. R., Kaveri, S. & Spigelman, Z. Long-term remissions in recalcitrant pemphigus vulgaris. N. Engl. J. Med. 373, 2693–2694 (2015).

    Google Scholar 

  165. Feldman, R. J. & Ahmed, A. R. Relevance of rituximab therapy in pemphigus vulgaris: analysis of current data and the immunologic basis for its observed responses. Expert. Rev. Clin. Immunol. 7, 529–541 (2011).

    Google Scholar 

  166. Wang, H. H., Liu, C. W., Li, Y. C. & Huang, Y. C. Efficacy of rituximab for pemphigus: a systematic review and meta-analysis of different regimens. Acta Derm. Venereol. 95, 928–932 (2015).

    Google Scholar 

  167. Lunardon, L. et al. Adjuvant rituximab therapy of pemphigus: a single-center experience with 31 patients. Arch. Dermatol. 148, 1031–1036 (2012).

    Google Scholar 

  168. Lunardon, L. & Payne, A. S. Inhibitory human antichimeric antibodies to rituximab in a patient with pemphigus. J. Allergy Clin. Immunol. 130, 800–803 (2012).

    Google Scholar 

  169. Buch, M. H. et al. Updated consensus statement on the use of rituximab in patients with rheumatoid arthritis. Ann. Rheum. Dis. 70, 909–920 (2011).

    Google Scholar 

  170. Tony, H. P. et al. Safety and clinical outcomes of rituximab therapy in patients with different autoimmune diseases: experience from a national registry (GRAID). Arthritis Res. Ther. 13, R75 (2011).

    Google Scholar 

  171. Kasperkiewicz, M. et al. Efficacy and safety of rituximab in pemphigus: experience of the German Registry of Autoimmune Diseases. J. Dtsch. Dermatol. Ges. 10, 727–732 (2012).

    Google Scholar 

  172. Li, N. et al. Complete FcRn dependence for intravenous Ig therapy in autoimmune skin blistering diseases. J. Clin. Invest. 115, 3440–3450 (2005).

    Google Scholar 

  173. Paquin Proulx, D., Aubin, E., Lemieux, R. & Bazin, R. Inhibition of B cell-mediated antigen presentation by intravenous immunoglobulins (IVIg). Clin. Immunol. 135, 422–429 (2010).

    Google Scholar 

  174. Baker, K., Rath, T., Pyzik, M. & Blumberg, R. S. The role of FcRn in antigen presentation. Front. Immunol. 5, 408 (2014).

    Google Scholar 

  175. Nimmerjahn, F. & Ravetch, J. V. The antiinflammatory activity of IgG: the intravenous IgG paradox. J. Exp. Med. 204, 11–15 (2007).

    Google Scholar 

  176. Amagai, M. et al. A randomized double-blind trial of intravenous immunoglobulin for pemphigus. J. Am. Acad. Dermatol. 60, 595–603 (2009). This study reports the first placebo-controlled, randomized, multicentre clinical trial for pemphigus and demonstrates the efficacy of intravenous immunoglobulin.

    Google Scholar 

  177. Cunningham-Rundles, C., Zhou, Z., Mankarious, S. & Courter, S. Long-term use of IgA-depleted intravenous immunoglobulin in immunodeficient subjects with anti-IgA antibodies. J. Clin. Immunol. 13, 272–278 (1993).

    Google Scholar 

  178. Caress, J. B., Cartwright, M. S., Donofrio, P. D. & Peacock, J. E. Jr. The clinical features of 16 cases of stroke associated with administration of IVIg. Neurology 60, 1822–1824 (2003).

    Google Scholar 

  179. Basta, M. Intravenous immunoglobulin-related thromboembolic events — an accusation that proves the opposite. Clin. Exp. Immunol. 178 (Suppl. 1), 153–155 (2014).

    Google Scholar 

  180. Guillaume, J. C. et al. Controlled study of plasma exchange in pemphigus. Arch. Dermatol. 124, 1659–1663 (1988).

    Google Scholar 

  181. Turner, M. S., Sutton, D. & Sauder, D. N. The use of plasmapheresis and immuosupression in the treatment of pemphigus vulgaris. J. Am. Acad. Dermatol. 43, 1058–1064 (2000).

    Google Scholar 

  182. Behzad, M. et al. Combined treatment with immunoadsorption and rituximab leads to fast and prolonged clinical remission in difficult-to-treat pemphigus vulgaris. Br. J. Dermatol. 166, 844–852 (2012).

    Google Scholar 

  183. Kasperkiewicz, M. et al. Treatment of severe pemphigus with a combination of immunoadsorption, rituximab, pulsed dexamethasone and azathioprine/mycophenolate mofetil: a pilot study of 23 patients. Br. J. Dermatol. 166, 154–160 (2012).

    Google Scholar 

  184. Langan, S. M. et al. Bullous pemphigoid and pemphigus vulgaris — incidence and mortality in the UK: population based cohort study. BMJ 337, a180 (2008).

    Google Scholar 

  185. Huang, Y. H., Kuo, C. F., Chen, Y. H. & Yang, Y. W. Incidence, mortality, and causes of death of patients with pemphigus in Taiwan: a nationwide population-based study. J. Invest. Dermatol. 132, 92–97 (2012).

    Google Scholar 

  186. Hsu, D. Y., Brieva, J., Sinha, A. A., Langan, S. M. & Silverberg, J. I. Comorbidities and inpatient mortality for pemphigus in the USA. Br. J. Dermatol. 174, 1290–1298 (2016).

    Google Scholar 

  187. Leshem, Y. A., Katzenelson, V., Yosipovitch, G., David, M. & Mimouni, D. Autoimmune diseases in patients with pemphigus and their first-degree relatives. Int. J. Dermatol. 50, 827–831 (2011).

    Google Scholar 

  188. Parameswaran, A., Attwood, K., Sato, R., Seiffert-Sinha, K. & Sinha, A. A. Identification of a new disease cluster of pemphigus vulgaris with autoimmune thyroid disease, rheumatoid arthritis and type I diabetes. Br. J. Dermatol. 172, 729–738 (2015).

    Google Scholar 

  189. Leger, S. et al. Prognostic factors of paraneoplastic pemphigus. Arch. Dermatol. 148, 1165–1172 (2012).

    Google Scholar 

  190. Martin, L. & Murrell, D. F. Measuring the immeasurable: a systematic review of outcome measures in pemphigus. Australas. J. Dermatol. 47, A32–A33(2006).

    Google Scholar 

  191. Zhao, C. Y. & Murrell, D. F. Outcome measures for autoimmune blistering diseases. J. Dermatol. 42, 31–36 (2015). This paper reviews all the standardized and validated outcome measures in pemphigus.

    Google Scholar 

  192. Rosenbach, M. et al. Reliability and convergent validity of two outcome instruments for pemphigus. J. Invest. Dermatol. 129, 2404–2410 (2008). The PDAI is widely considered as the most reliable and valid pemphigus disease activity index for use in clinical trials.

    Google Scholar 

  193. Pfütze, M., Niedermeier, A., Hertl, M. & Eming, R. Introducing a novel autoimmune bullous skin disorder intensity score (ABSIS) in pemphigus. Eur. J. Dermatol. 17, 4–11 (2007). The ABSIS is a pemphigus disease activity scoring system that is commonly used in clinical and translational research studies in pemphigus.

    Google Scholar 

  194. Shimizu, T. et al. Grading criteria for disease severity by pemphigus disease area index. J. Dermatol. 41, 969–973 (2014).

    Google Scholar 

  195. Boulard, C. et al. Calculation of cutoff values based on the ABSIS and PDAI pemphigus scoring systems for defining moderate, significant, and extensive types of pemphigus. Br. J. Dermatol. 175, 142–149 (2016).

    Google Scholar 

  196. The WHOQOL Group. The World Health Organization Quality of Life assessment (WHOQOL): position paper from the World Health Organization. Soc. Sci. Med. 41, 1403–1409 (1995).

    Google Scholar 

  197. Rencz, F. et al. Health-related quality of life and its determinants in pemphigus: a systematic review and meta-analysis. Br. J. Dermatol. 173, 1076–1080 (2015). This paper provides an overview of studies on quality of life in pemphigus.

    Google Scholar 

  198. Tabolli, S. et al. Burden of disease during quiescent periods in patients with pemphigus. Br. J. Dermatol. 170, 1087–1091 (2014).

    Google Scholar 

  199. Sebaratnam, D. F. et al. Development of a quality-of-life instrument for autoimmune bullous disease: the Autoimmune Bullous Disease Quality of Life questionnaire. JAMA Dermatol. 149, 1186–1191 (2013). The ABQOL is the major quality-of-life index in use for patients with an autoimmune blistering disease.

    Google Scholar 

  200. Tjokrowidjaja, A. et al. The development and validation of the treatment of autoimmune bullous disease quality of life questionnaire, a tool to measure the quality of life impacts of treatments used in patients with autoimmune blistering disease. Br. J. Dermatol. 169, 1000–1006 (2013).

    Google Scholar 

  201. Sebaratnam, D. F., Okawa, J., Payne, A., Murrell, D. F. & Werth, V. P. Reliability of the autoimmune bullous disease quality of life (ABQOL) questionnaire in the USA. Qual. Life Res. 24, 2257–2260 (2015).

    Google Scholar 

  202. Dey-Rao, R., Seiffert-Sinha, K. & Sinha, A. A. Genome-wide expression analysis suggests unique disease-promoting and disease-preventing signatures in pemphigus vulgaris. Genes Immun. 14, 487–499 (2013).

    Google Scholar 

  203. Schmidt, T. et al. Induction of T regulatory cells by the superagonistic anti-CD28 antibody D665 leads to decreased pathogenic IgG autoantibodies against desmoglein 3 in a HLA-transgenic mouse model of pemphigus vulgaris. Exp. Dermatol. 25, 293–298 (2016).

    Google Scholar 

  204. Hata, T. et al. Transgenic rescue of desmoglein 3 null mice with desmoglein 1 to develop a syngeneic mouse model for pemphigus vulgaris. J. Dermatol. Sci. 63, 33–39 (2011).

    Google Scholar 

  205. Luo, J. & Lindstrom, J. AChR-specific immunosuppressive therapy of myasthenia gravis. Biochem. Pharmacol. 97, 609–619 (2015).

    Google Scholar 

  206. Lutterotti, A. et al. Antigen-specific tolerance by autologous myelin peptide-coupled cells: a phase 1 trial in multiple sclerosis. Sci. Transl Med. 5, 188ra75 (2013).

    Google Scholar 

  207. MacDonald, K. G. et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J. Clin. Invest. 126, 1413–1424 (2016).

    Google Scholar 

  208. Stahley, S. N. et al. Super-resolution microscopy reveals altered desmosomal protein organization in tissue from patients with pemphigus vulgaris. J. Invest. Dermatol. 136, 59–66 (2016).

    Google Scholar 

  209. Ellebrecht, C. T. et al. Subcutaneous veltuzumab, a humanized anti-CD20 antibody, for treatment of refractory pemphigus vulgaris. JAMA Dermatol. 150, 1331–1335 (2014).

    Google Scholar 

  210. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02383589 (2017).

  211. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT01939899 (2016).

  212. Huang, A., Madan, R. K. & Levitt, J. Future therapies for pemphigus vulgaris: rituximab and beyond. J. Am. Acad. Dermatol. 74, 746–753 (2016).

    Google Scholar 

  213. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02704429 (2016).

  214. Hill, R. J. S. et al. Discovery of PRN1008, a novel, reversible covalent BTK inhibitor in clinical development for rheumatoid arthritis [abstract]. Arthritis Rheumatol. 67 (Suppl. 10), 1671 (2015).

    Google Scholar 

  215. Avery, D. T. et al. BAFF selectively enhances the survival of plasmablasts generated from human memory B cells. J. Clin. Invest. 112, 286–297 (2003).

    Google Scholar 

  216. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT01930175 (2017).

  217. Schaeffeler, E. et al. Comprehensive analysis of thiopurine S-methyltransferase phenotype–genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics 14, 407–417 (2004).

    Google Scholar 

  218. Coenen, M. J. et al. Identification of patients with variants in TPMT and dose reduction reduces hematologic events during thiopurine treatment of inflammatory bowel disease. Gastroenterology 149, 907–917.e7 (2015).

    Google Scholar 

  219. Sanderson, J. D. TPMT testing before starting azathioprine or mercaptopurine: surely just do it? Gastroenterology 149, 850–853 (2015).

    Google Scholar 

  220. Yang, S.-K. et al. A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia. Nat. Genet. 46, 1017–1020 (2014).

    Google Scholar 

  221. Wu, J. et al. A novel polymorphism of FcγRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J. Clin. Invest. 100, 1059–1070 (1997).

    Google Scholar 

  222. Dall’Ozzo, S. et al. Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration-effect relationship. Cancer Res. 64, 4664–4669 (2004).

    Google Scholar 

  223. Anolik, J. H. et al. The relationship of FcγRIIIa genotype to degree of B cell depletion by rituximab in the treatment of systemic lupus erythematosus. Arthritis Rheum. 48, 455–459 (2003).

    Google Scholar 

  224. Weng, W. K. & Levy, R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J. Clin. Oncol. 21, 3940–3947 (2003).

    Google Scholar 

  225. Farag, S. S. et al. FcγRIIIa and FcγRIIa polymorphisms do not predict response to rituximab in B-cell chronic lymphocytic leukemia. Blood 103, 1472–1474 (2004).

    Google Scholar 

  226. Weng, W. K., Weng, W. K. & Levy, R. Immunoglobulin G Fc receptor polymorphisms do not correlate with response to chemotherapy or clinical course in patients with follicular lymphoma. Leuk. Lymphoma 50, 1494–1500 (2009).

    Google Scholar 

  227. Werth, V. P. et al. Multicenter randomized, double-blind, placebo-controlled, clinical trial of dapsone as a glucocorticoid-sparing agent in maintenance-phase pemphigus vulgaris. Arch. Dermatol. 144, 25–32 (2008).

    Google Scholar 

  228. Peters, A. L. & Van Noorden, C. J. Glucose-6-phosphate dehydrogenase deficiency and malaria: cytochemical detection of heterozygous G6PD deficiency in women. J. Histochem. Cytochem. 57, 1003–1011 (2009).

    Google Scholar 

  229. Tran, K. D., Wolverton, J. E. & Soter, N. A. Methotrexate in the treatment of pemphigus vulgaris: experience in 23 patients. Br. J. Dermatol. 169, 916–921 (2013).

    Google Scholar 

  230. Barthelemy, H. et al. Treatment of nine cases of pemphigus vulgaris with cyclosporine. J. Am. Acad. Dermatol. 18, 1262–1266 (1988).

    Google Scholar 

  231. Campolmi, P. et al. The role of cyclosporine A in the treatment of pemphigus erythematosus. Int. J. Dermatol. 30, 890–892 (1991).

    Google Scholar 

  232. Olszewska, M. et al. Efficacy and safety of cyclophosphamide, azathioprine, and cyclosporine (ciclosporin) as adjuvant drugs in pemphigus vulgaris. Am. J. Clin. Dermatol. 8, 85–92 (2007).

    Google Scholar 

  233. Ioannides, D., Chrysomallis, F. & Bystryn, J. C. Ineffectiveness of cyclosporine as an adjuvant to corticosteroids in the treatment of pemphigus. Arch. Dermatol. 136, 868–872 (2000).

    Google Scholar 

  234. Sharma, V. K. & Khandpur, S. Evaluation of cyclophosphamide pulse therapy as an adjuvant to oral corticosteroid in the management of pemphigus vulgaris. Clin. Exp. Dermatol. 38, 659–664 (2013).

    Google Scholar 

  235. Amagai, M., Tsunoda, K., Zillikens, D., Nagai, T. & Nishikawa, T. The clinical phenotype of pemphigus is defined by the anti-desmoglein autoantibody profile. J. Am. Acad. Dermatol. 40, 167–170 (1999).

    Google Scholar 

  236. Berkowitz, P. et al. p38MAPK inhibition prevents disease in pemphigus vulgaris mice. Proc. Natl Acad. Sci. USA 103, 12855–12860 (2006).

    Google Scholar 

  237. Berkowitz, P., Chua, M., Liu, Z., Diaz, L. A. & Rubenstein, D. S. Autoantibodies in the autoimmune disease pemphigus foliaceus induce blistering via p38 mitogen-activated protein kinase-dependent signaling in the skin. Am. J. Pathol. 173, 1628–1636 (2008).

    Google Scholar 

  238. Koch, P. J. et al. Desmoglein 3 anchors telogen hair in the follicle. J. Cell Sci. 111, 2529–2537 (1998).

    Google Scholar 

Download references

Acknowledgements

The authors thank R. Eming and M. Hertl (Philipps University of Marburg, Germany) for kindly providing the histology image in Figure 5c.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (M.A.); Epidemiology (M.K. and D.Z.); Mechanisms/pathophysiology (M.A., C.T.E., H.T., J.Y. and A.S.P.); Diagnosis, screening and prevention (M.K. and D.Z.); Management (C.T.E. and A.S.P.); Quality of life (M.K. and D.Z.); Outlook (C.T.E. and A.S.P.); Overview of the Primer (M.A.). M.K., C.T.E. and H.T. contributed equally to this work.

Corresponding author

Correspondence to Masayuki Amagai.

Ethics declarations

Competing interests

M.A. receives speaker honoraria and grants from Nihon Pharmaceutical, research support from Medical & Biological Laboratories, Health Sciences Research Grants for Research on Rare and Intractable Diseases from Ministry of Health, Labour, and Welfare, and grants from Japan Society for the Promotion of Science and Agency for Medical Research and Development. H.T. receives grants from Japan Society for the Promotion of Science. A.S.P. is a consultant for Syntimmune and TG Therapeutics and receives grants or research support from the US NIH (R01-AR057001, R56-AR064220 and R01-068288), the Dermatology Foundation and Sanofi. She is co-inventor on a patent related to chimeric immunoreceptor therapy of pemphigus. The content is solely the responsibility of the authors and does not necessarily represent the official views of the US NIH. C.T.E. receives grants or research support from Deutsche Forschungsgemeinschaft (EL711/1-1) and is co-inventor on a patent related to chimeric immunoreceptor therapy of pemphigus. D.Z. is an advisory board member for Roche Pharma, and a consultant for Euroimmun, Almirall, UCB, Fresenius and arGEN-X. He received speakers honoraria and/or travel/accommodations/meeting compensation from Biotest, Fresenius, Miltenyi, Roche Pharma, Biogen Idec, AbbVie, UCB, Janssen and grants or research support from Euroimmun, Miltenyi, Fresenius, Biotest, Dompe, Almirall, Biogen and Roche. He holds the patent Euroimmun: DE 10 2006 059 574 A1. M.K. and J.Y. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasperkiewicz, M., Ellebrecht, C., Takahashi, H. et al. Pemphigus. Nat Rev Dis Primers 3, 17026 (2017). https://doi.org/10.1038/nrdp.2017.26

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2017.26

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing