Abstract
Kidney stones are mineral deposits in the renal calyces and pelvis that are found free or attached to the renal papillae. They contain crystalline and organic components and are formed when the urine becomes supersaturated with respect to a mineral. Calcium oxalate is the main constituent of most stones, many of which form on a foundation of calcium phosphate called Randall's plaques, which are present on the renal papillary surface. Stone formation is highly prevalent, with rates of up to 14.8% and increasing, and a recurrence rate of up to 50% within the first 5 years of the initial stone episode. Obesity, diabetes, hypertension and metabolic syndrome are considered risk factors for stone formation, which, in turn, can lead to hypertension, chronic kidney disease and end-stage renal disease. Management of symptomatic kidney stones has evolved from open surgical lithotomy to minimally invasive endourological treatments leading to a reduction in patient morbidity, improved stone-free rates and better quality of life. Prevention of recurrence requires behavioural and nutritional interventions, as well as pharmacological treatments that are specific for the type of stone. There is a great need for recurrence prevention that requires a better understanding of the mechanisms involved in stone formation to facilitate the development of more-effective drugs.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 1 digital issues and online access to articles
$119.00 per year
only $119.00 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Khan, S. R. Nephrocalcinosis in animal models with and without stones. Urol. Res. 38, 429–438 (2010).
Finlayson, B. Physicochemical aspects of urolithiasis. Kidney Int. 13, 344–360 (1978).
Evan, A. P. Physiopathology and etiology of stone formation in the kidney and the urinary tract. Pediatr. Nephrol. 25, 831–841 (2010).
Tattevin, P. et al. Increased risk of renal stones in patients treated with atazanavir. Clin. Infect. Dis. 56, 1186 (2013).
Izzedine, H., Lescure, F. X. & Bonnet, F. HIV medication-based urolithiasis. Clin. Kidney J. 7, 121–126 (2014).
Raheem, O. A. et al. Prevalence of nephrolithiasis in human immunodeficiency virus infected patients on the highly active antiretroviral therapy. J. Endourol. 26, 1095–1098 (2012).
Bischoff, K. & Rumbeiha, W. K. Pet food recalls and pet food contaminants in small animals. Vet. Clin. North Am. Small Anim. Pract. 42, 237–250 (2012).
Cianciolo, R. E. et al. Clinicopathologic, histologic, and toxicologic findings in 70 cats inadvertently exposed to pet food contaminated with melamine and cyanuric acid. J. Am. Vet. Med. Assoc. 233, 729–737 (2008).
Gabriels, G., Lambert, M., Smith, P., Wiesner, L. & Hiss, D. Melamine contamination in nutritional supplements — is it an alarm bell for the general consumer, athletes, and ‘Weekend Warriors’? Nutr. J. 14, 69 (2015).
Ding, J. Childhood urinary stones induced by melamine-tainted formula: how much we know, how much we don't know. Kidney Int. 75, 780–782 (2009).
Fink, H. A. et al. Medical management to prevent recurrent nephrolithiasis in adults: a systematic review for an American College of Physicians Clinical Guideline. Ann. Intern. Med. 158, 535–543 (2013).
Scales, C. D., Smith, A. C., Hanley, J. M. & Saigal, C. S. Prevalence of kidney stones in the United States. Eur. Urol. 62, 160–165 (2012).
Obligado, S. H. & Goldfarb, D. S. The association of nephrolithiasis with hypertension and obesity: a review. Am. J. Hypertens. 21, 257–264 (2008).
Brikowski, T. H., Lotan, Y. & Pearle, M. S. Climate-related increase in the prevalence of urolithiasis in the United States. Proc. Natl Acad. Sci. USA 105, 9841–9846 (2008).
Taylor, E. N., Stampfer, M. J. & Curhan, G. C. Obesity, weight gain, and the risk of kidney stones. JAMA 293, 455–462 (2005).
Daudon, M. & Jungers, P. Diabetes and nephrolithiasis. Curr. Diab. Rep. 7, 443–448 (2007).
Lieske, J. C. et al. Diabetes mellitus and the risk of urinary tract stones: a population-based case–control study. Am. J. Kidney Dis. 48, 897–904 (2006).
Taylor, E. N., Stampfer, M. J. & Curhan, G. C. Diabetes mellitus and the risk of nephrolithiasis. Kidney Int. 68, 1230–1235 (2005).
Strazzullo, P. et al. Past history of nephrolithiasis and incidence of hypertension in men: a reappraisal based on the results of the Olivetti Prospective Heart study. Nephrol. Dial. Transplant. 16, 2232–2235 (2001).
Johri, N. et al. An update and practical guide to renal stone management. Nephron Clin. Pract. 116, c159–c171 (2010).
Cappuccio, F. P., Strazzullo, P. & Mancini, M. Kidney stones and hypertension: population based study of an independent clinical association. BMJ 300, 1234–1236 (1990).
Rule, A. D., Krambeck, A. E. & Lieske, J. C. Chronic kidney disease in kidney stone formers. Clin. J. Am. Soc. Nephrol. 6, 2069–2075 (2011).
El-Zoghby, Z. M. et al. Urolithiasis and the risk of ESRD. Clin. J. Am. Soc. Nephrol. 7, 1409–1415 (2012).
Shoag, J., Halpern, J., Goldfarb, D. S. & Eisner, B. H. Risk of chronic and end stage kidney disease in patients with nephrolithiasis. J. Urol. 192, 1440–1445 (2014).
Keddis, M. T. & Rule, A. D. Nephrolithiasis and loss of kidney function. Curr. Opin. Nephrol. Hypertens. 22, 390–396 (2013).
Department of Health and Human Services USA, National Institutes of Health & National Institute of Diabetes and Digestive and Kidney Diseases. Urologic Diseases in America (US Government Printing Office, 2012).
Romero, V., Akpinar, H. & Assimos, D. G. Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev. Urol. 12, e86–e96 (2010).
Stamatelou, K. K., Francis, M. E., Jones, C. A., Nyberg, L. M. & Curhan, G. C. Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int. 63, 1817–1823 (2003).
Turney, B. W., Reynard, J. M., Noble, J. G. & Keoghane, S. R. Trends in urological stone disease. BJU Int. 109, 1082–1087 (2012).
Scales, C. D. et al. Changing gender prevalence of stone disease. J. Urol. 177, 979–982 (2007).
Lieske, J. C. et al. Renal stone epidemiology in Rochester, Minnesota: an update. Kidney Int. 69, 760–764 (2006).
Strope, S. A., Wolf, J. S. & Hollenbeck, B. K. Changes in gender distribution of urinary stone disease. Urology 75, 543–546.e1 (2010).
Ordon, M. et al. A population based study of the changing demographics of patients undergoing definitive treatment for kidney stone disease. J. Urol. 193, 869–874 (2015).
Curhan, G. C., Rimm, E. B., Willett, W. C. & Stampfer, M. J. Regional variation in nephrolithiasis incidence and prevalence among United States men. J. Urol. 151, 838–841 (1994).
Soucie, J. M., Thun, M. J., Coates, R. J., McClellan, W. & Austin, H. Demographic and geographic variability of kidney stones in the United States. Kidney Int. 46, 893–899 (1994).
Mandel, N. S. & Mandel, G. S. Urinary tract stone disease in the United States veteran population. II. Geographical analysis of variations in composition. J. Urol. 142, 1516–1521 (1989).
Mandel, N. S. & Mandel, G. S. Urinary tract stone disease in the United States veteran population. I. Geographical frequency of occurrence. J. Urol. 142, 1513–1515 (1989).
Curhan, G. C., Willett, W. C., Rimm, E. B., Speizer, F. E. & Stampfer, M. J. Body size and risk of kidney stones. J. Am. Soc. Nephrol. 9, 1645–1652 (1998).
Sorensen, M. D. et al. Activity, energy intake, obesity, and the risk of incident kidney stones in postmenopausal women: a report from the Women's Health Initiative. J. Am. Soc. Nephrol. 25, 362–369 (2014).
Chung, S.-D., Chen, Y.-K. & Lin, H.-C. Increased risk of diabetes in patients with urinary calculi: a 5-year followup study. J. Urol. 186, 1888–1893 (2011).
West, B. et al. Metabolic syndrome and self-reported history of kidney stones: the National Health and Nutrition Examination Survey (NHANES III)1988–1994. Am. J. Kidney Dis. 51, 741–747 (2008).
Jeong, I. G. et al. Association between metabolic syndrome and the presence of kidney stones in a screened population. Am. J. Kidney Dis. 58, 383–388 (2011).
Ferraro, P. M. et al. History of kidney stones and the risk of coronary heart disease. JAMA 310, 408–415 (2013).
Alexander, R. T. et al. Kidney stones and cardiovascular events: a cohort study. Clin. J. Am. Soc. Nephrol. 9, 506–512 (2014).
Rule, A. D. et al. Kidney stones associate with increased risk for myocardial infarction. J. Am. Soc. Nephrol. 21, 1641–1644 (2010).
Khan, S. R. & Hackett, R. L. Role of organic matrix in urinary stone formation: an ultrastructural study of crystal matrix interface of calcium oxalate monohydrate stones. J. Urol. 150, 239–245 (1993).
Ryall, R. L., Chauvet, M. C. & Grover, P. K. Intracrystalline proteins and urolithiasis: a comparison of the protein content and ultrastructure of urinary calcium oxalate monohydrate and dihydrate crystals. BJU Int. 96, 654–663 (2005).
McKee, M. D., Nanci, A. & Khan, S. R. Ultrastructural immunodetection of osteopontin and osteocalcin as major matrix components of renal calculi. J. Bone Miner. Res. 10, 1913–1929 (1995).
Khan, S. R. & Kok, D. J. Modulators of urinary stone formation. Front. Biosci. 9, 1450–1482 (2004).
Atmani, F. & Khan, S. R. Role of urinary bikunin in the inhibition of calcium oxalate crystallization. J. Am. Soc. Nephrol. 10, S385–S388 (1999).
Ryall, R. L. Macromolecules and urolithiasis: parallels and paradoxes. Nephron Physiol. 98, 37–42 (2004).
Khan, S. R. et al. Lipids and membranes in the organic matrix of urinary calcific crystals and stones. Calcif. Tissue Int. 59, 357–365 (1996).
Khan, S. R. & Glenton, P. A. Increased urinary excretion of lipids by patients with kidney stones. Br. J. Urol. 77, 506–511 (1996).
Khan, S. R., Glenton, P. A., Backov, R. & Talham, D. R. Presence of lipids in urine, crystals and stones: implications for the formation of kidney stones. Kidney Int. 62, 2062–2072 (2002).
Khan, S. R., Shevock, P. N. & Hackett, R. L. In vitro precipitation of calcium oxalate in the presence of whole matrix or lipid components of the urinary stones. J. Urol. 139, 418–422 (1988).
Khan, S. R., Shevock, P. N. & Hackett, R. L. Membrane-associated crystallization of calcium oxalate in vitro. Calcif. Tissue Int. 46, 116–120 (1990).
Hunter, G. K. Role of osteopontin in modulation of hydroxyapatite formation. Calcif. Tissue Int. 93, 348–354 (2013).
Khan, S. R., Johnson, J. M., Peck, A. B., Cornelius, J. G. & Glenton, P. A. Expression of osteopontin in rat kidneys: induction during ethylene glycol induced calcium oxalate nephrolithiasis. J. Urol. 168, 1173–1181 (2002).
Khan, S. R., Joshi, S., Wang, W. & Peck, A. B. Regulation of macromolecular modulators of urinary stone formation by reactive oxygen species: transcriptional study in an animal model of hyperoxaluria. Am. J. Physiol. Renal Physiol. 306, F1285–F1295 (2014). This is the first study to demonstrate the involvement of reactive oxygen species in the regulation of macromolecular production.
Aihara, K., Byer, K. J. & Khan, S. R. Calcium phosphate-induced renal epithelial injury and stone formation: involvement of reactive oxygen species. Kidney Int. 64, 1283–1291 (2003).
Daudon, M., Doré, J.-C., Jungers, P. & Lacour, B. Changes in stone composition according to age and gender of patients: a multivariate epidemiological approach. Urol. Res. 32, 241–247 (2004).
Khan, S. R. & Hackett, R. L. Identification of urinary stone and sediment crystals by scanning electron microscopy and X-ray microanalysis. J. Urol. 135, 818–825 (1986).
Siener, R., Netzer, L. & Hesse, A. Determinants of brushite stone formation: a case–control study. PLoS ONE 8, e78996 (2013).
Sakhaee, K., Adams-Huet, B., Moe, O. W. & Pak, C. Y. C. Pathophysiologic basis for normouricosuric uric acid nephrolithiasis. Kidney Int. 62, 971–979 (2002).
Fellström, B. et al. The influence of a high dietary intake of purine-rich animal protein on urinary urate excretion and supersaturation in renal stone disease. Clin. Sci. (Lond.) 64, 399–405 (1983).
Grases, F., Villacampa, A. I., Costa-Bauzá, A. & Söhnel, O. Uric acid calculi: types, etiology and mechanisms of formation. Clin. Chim. Acta 302, 89–104 (2000).
Khan, S. R., Hackett, R. L. & Finlayson, B. Morphology of urinary stone particles resulting from ESWL treatment. J. Urol. 136, 1367–1372 (1986).
Griffith, D. P. & Osborne, C. A. Infection (urease) stones. Miner. Electrolyte Metab. 13, 278–285 (1987).
Biyani, C. S. & Cartledge, J. J. Cystinuria — diagnosis and management. EAU–EBU Updat. Ser. 4, 175–183 (2006).
Robertson, W. G., Peacock, M. & Nordin, B. E. Calcium oxalate crystalluria and urine saturation in recurrent renal stone-formers. Clin. Sci. 40, 365–374 (1971).
Finlayson, B. & Reid, F. The expectation of free and fixed particles in urinary stone disease. Invest. Urol. 15, 442–448 (1978).
Robertson, W. G. Measurement of ionized calcium in biological fluids. Clin. Chim. Acta 24, 149–157 (1969).
Werness, P. G., Brown, C. M., Smith, L. H. & Finlayson, B. EQUIL2: a BASIC computer program for the calculation of urinary saturation. J. Urol. 134, 1242–1244 (1985).
May, P. M. & Muray, K. JESS, a joint expert speciation system-II. The thermodynamic database. Talanta 38, 1419–1426 (1991).
Brown, C. M., Ackermann, D. K. & Purich, D. L. EQUIL93: a tool for experimental and clinical urolithiasis. Urol. Res. 22, 119–126 (1994).
Robertson, W. G. Factors affecting the precipitation of calcium phosphate in vitro. Calcif. Tissue Res. 11, 311–322 (1973).
Kok, D. J. & Khan, S. R. Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int. 46, 847–854 (1994).
Robertson, W. G. Potential role of fluctuations in the composition of renal tubular fluid through the nephron in the initiation of Randall's plugs and calcium oxalate crystalluria in a computer model of renal function. Urolithiasis 43 (Suppl. 1), 93–107 (2015).
Fleisch, H. & Bisaz, S. The inhibitory effect of pyrophosphate on calcium oxalate precipitation and its relation to urolithiasis. Experientia 20, 276–277 (1964).
Fleisch, H. & Bisaz, S. Isolation from urine of pyrophosphate, a calcification inhibitor. Am. J. Physiol. 203, 671–675 (1962).
Asplin, J. R., Mandel, N. S. & Coe, F. L. Evidence of calcium phosphate supersaturation in the loop of Henle. Am. J. Physiol. 270, F604–F613 (1996).
Khan, S. R. & Hackett, R. L. Developmental morphology of calcium oxalate foreign body stones in rats. Calcif. Tissue Int. 37, 165–173 (1985).
Khan, S. R. & Hackett, R. L. Urolithogenesis of mixed foreign body stones. J. Urol. 138, 1321–1328 (1987).
Linnes, M. P. et al. Phenotypic characterization of kidney stone formers by endoscopic and histological quantification of intrarenal calcification. Kidney Int. 84, 818–825 (2013).
Wang, X. et al. Distinguishing characteristics of idiopathic calcium oxalate kidney stone formers with low amounts of Randall's plaque. Clin. J. Am. Soc. Nephrol. 9, 1757–1763 (2014).
Khan, S. R. Experimental calcium oxalate nephrolithiasis and the formation of human urinary stones. Scanning Microsc. 9, 89–100; discussion 100–101 (1995).
Randall, A. The etiology of primary renal calculus. Int. Abstr. Surg. 71, 209–240 (1940).
Khan, S. R. & Canales, B. K. Unified theory on the pathogenesis of Randall's plaques and plugs. Urolithiasis 43 (Suppl. 1), 109–123 (2015).
Bushinsky, D. A., Frick, K. K. & Nehrke, K. Genetic hypercalciuric stone-forming rats. Curr. Opin. Nephrol. Hypertens. 15, 403–418 (2006).
Khan, S. R. & Canales, B. K. Ultrastructural investigation of crystal deposits in Npt2a knockout mice: are they similar to human Randall's plaques? J. Urol. 186, 1107–1113 (2011).
Khan, S. R. & Hackett, R. L. Retention of calcium oxalate crystals in renal tubules. Scanning Microsc. 5, 707–711; discussion 711–712 (1991).
Khan, S. R., Finlayson, B. & Hackett, R. L. Experimental calcium oxalate nephrolithiasis in the rat. Role of the renal papilla. Am. J. Pathol. 107, 59–69 (1982).
Evan, A. P. et al. Crystal-associated nephropathy in patients with brushite nephrolithiasis. Kidney Int. 67, 576–591 (2005).
Evan, A. P. et al. Renal crystal deposits and histopathology in patients with cystine stones. Kidney Int. 69, 2227–2235 (2006).
Evan, A. P. et al. Renal intratubular crystals and hyaluronan staining occur in stone formers with bypass surgery but not with idiopathic calcium oxalate stones. Anat. Rec. (Hoboken) 291, 325–334 (2008).
Coe, F. L., Evan, A. P., Lingeman, J. E. & Worcester, E. M. Plaque and deposits in nine human stone diseases. Urol. Res. 38, 239–247 (2010).
Evan, A. P., Worcester, E. M., Coe, F. L., Williams, J. & Lingeman, J. E. Mechanisms of human kidney stone formation. Urolithiasis 43 (Suppl. 1), 19–32 (2015).
Evan, A. E. et al. Histopathology and surgical anatomy of patients with primary hyperparathyroidism and calcium phosphate stones. Kidney Int. 74, 223–229 (2008).
Khan, S. R., Finlayson, B. & Hackett, R. Renal papillary changes in patient with calcium oxalate lithiasis. Urology 23, 194–199 (1984).
Khan, S. R., Rodriguez, D. E., Gower, L. B. & Monga, M. Association of Randall plaque with collagen fibers and membrane vesicles. J. Urol. 187, 1094–1100 (2012). This is the first study to discuss the initiation of Randall's plaque through the deposition of CaP in membrane-bound vesicles and plaque growth via the renal interstitium by mineralization of collagen fibres.
Coe, F. L., Evan, A. P., Worcester, E. M. & Lingeman, J. E. Three pathways for human kidney stone formation. Urol. Res. 38, 147–160 (2010).
Randall, A. Recent advances in knowledge relating to the formation, recognition and treatment of kidney calculi. Bull. N. Y. Acad. Med. 20, 473–484 (1944).
Cooke, S. A. The site of calcification in the human renal papilla. Br. J. Surg. 57, 890–896 (1970).
Evan, A. P. et al. Randall's plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J. Clin. Invest. 111, 607–616 (2003).
Stoller, M. L., Low, R. K., Shami, G. S., McCormick, V. D. & Kerschmann, R. L. High resolution radiography of cadaveric kidneys: unraveling the mystery of Randall's plaque formation. J. Urol. 156, 1263–1266 (1996). This paper provided the first suggestion that plaques might start in the vasa recta.
Stoller, M. L., Meng, M. V., Abrahams, H. M. & Kane, J. P. The primary stone event: a new hypothesis involving a vascular etiology. J. Urol. 171, 1920–1924 (2004).
Haggitt, R. C. & Pitcock, J. A. Renal medullary calcifications: a light and electron microscopic study. J. Urol. 106, 342–347 (1971).
Weller, R. O., Nester, B. & Cooke, S. A. Calcification in the human renal papilla: an electron-microscope study. J. Pathol. 107, 211–216 (1972).
Miller, N. L. et al. A formal test of the hypothesis that idiopathic calcium oxalate stones grow on Randall's plaque. BJU Int. 103, 966–971 (2009).
Evan, A. P. et al. Apatite plaque particles in inner medulla of kidneys of calcium oxalate stone formers: osteopontin localization. Kidney Int. 68, 145–154 (2005).
Evan, A. P. et al. Renal inter-α-trypsin inhibitor heavy chain 3 increases in calcium oxalate stone-forming patients. Kidney Int. 72, 1503–1511 (2007).
Evan, A., Lingeman, J., Coe, F. L. & Worcester, E. Randall's plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int. 69, 1313–1318 (2006).
Carpentier, X. et al. High Zn content of Randall's plaque: a μ-X-ray fluorescence investigation. J. Trace Elem. Med. Biol. 25, 160–165 (2011).
Evan, A. P., Lingeman, J. E., Coe, F. L. & Worcester, E. M. Role of interstitial apatite plaque in the pathogenesis of the common calcium oxalate stone. Semin. Nephrol. 28, 111–119 (2008).
Khan, S. R. & Gambaro, G. Role of osteogenesis in the formation of Randall's plaques. Anat. Rec. (Hoboken) 299, 5–7 (2015).
Mezzabotta, F. et al. Spontaneous calcification process in primary renal cells from a medullary sponge kidney patient harbouring a GDNF mutation. J. Cell. Mol. Med. 19, 889–902 (2015).
Khan, S. R., Glenton, P. A. & Byer, K. J. Modeling of hyperoxaluric calcium oxalate nephrolithiasis: experimental induction of hyperoxaluria by hydroxy-l-proline. Kidney Int. 70, 914–923 (2006).
Meyer, J. L., Bergert, J. H. & Smith, L. H. Epitaxial relationships in urolithiasis: the calcium oxalate monohydrate–hydroxyapatite system. Clin. Sci. Mol. Med. 49, 369–374 (1975).
Sethman, I., Grohe, B. & Kleebe, H.-J. Replacement of hydroxyapatite by whewellite: implications for kidney stone formation. Miner. Mag. 78, 91–100 (2014).
Højgaard, I., Fornander, A. M., Nilsson, M. A. & Tiselius, H. G. The effect of pH changes on the crystallization of calcium salts in solutions with an ion composition corresponding to that in the distal tubule. Urol. Res. 27, 409–416 (1999).
Tiselius, H.-G. A hypothesis of calcium stone formation: an interpretation of stone research during the past decades. Urol. Res. 39, 231–243 (2011).
Borden, T. A. & Lyon, E. S. The effects of magnesium and pH on experimental calcium oxalate stone disease. Invest. Urol. 6, 412–422 (1969).
Meyer, J. L. & Smith, L. H. Growth of calcium oxalate crystals. II. Inhibition by natural urinary crystal growth inhibitors. Invest. Urol. 13, 36–39 (1975).
Meyer, J. L., McCall, J. T. & Smith, L. H. Inhibition of calcium phosphate crystallization by nucleoside phosphates. Calcif. Tissue Res. 15, 287–293 (1974).
Howard, J. E., Thomas, W. C., Barker, L. M., Smith, L. H. & Wadkins, C. L. The recognition and isolation from urine and serum of a peptide inhibitor to calcification. Johns Hopkins Med. J. 120, 119–136 (1967).
Robertson, W. G., Peacock, M. & Nordin, B. E. Inhibitors of the growth and aggregation of calcium oxalate crystals in vitro. Clin. Chim. Acta 43, 31–37 (1973).
Ryall, R. L., Harnett, R. M. & Marshall, V. R. The effect of urine, pyrophosphate, citrate, magnesium and glycosaminoglycans on the growth and aggregation of calcium oxalate crystals in vitro. Clin. Chim. Acta 112, 349–356 (1981).
Robertson, W. G., Scurr, D. S. & Bridge, C. M. Factors influencing the crystallisation of calcium oxalate in urine — critique. J. Cryst. Growth 53, 182–194 (1981).
Worcester, E. M., Nakagawa, Y. & Coe, F. L. Glycoprotein calcium oxalate crystal growth inhibitor in urine. Miner. Electrolyte Metab. 13, 267–272 (1987).
Nakagawa, Y., Ahmed, M., Hall, S. L., Deganello, S. & Coe, F. L. Isolation from human calcium oxalate renal stones of nephrocalcin, a glycoprotein inhibitor of calcium oxalate crystal growth. Evidence that nephrocalcin from patients with calcium oxalate nephrolithiasis is deficient in gamma-carboxyglutamic acid. J. Clin. Invest. 79, 1782–1787 (1987).
Hess, B., Nakagawa, Y. & Coe, F. L. Inhibition of calcium oxalate monohydrate crystal aggregation by urine proteins. Am. J. Physiol. 257, F99–F106 (1989).
Shiraga, H. et al. Inhibition of calcium oxalate crystal growth in vitro by uropontin: another member of the aspartic acid-rich protein superfamily. Proc. Natl Acad. Sci. USA 89, 426–430 (1992).
Tsuji, H. et al. Urinary concentration of osteopontin and association with urinary supersaturation and crystal formation. Int. J. Urol. 14, 630–634 (2007).
Pillay, S. N., Asplin, J. R. & Coe, F. L. Evidence that calgranulin is produced by kidney cells and is an inhibitor of calcium oxalate crystallization. Am. J. Physiol. 275, F255–F261 (1998).
Morse, R. M. & Resnick, M. I. A new approach to the study of urinary macromolecules as a participant in calcium oxalate crystallization. J. Urol. 139, 869–873 (1988).
Dussol, B. et al. Analysis of the soluble organic matrix of five morphologically different kidney stones. Evidence for a specific role of albumin in the constitution of the stone protein matrix. Urol. Res. 23, 45–51 (1995).
Stapleton, A. M. et al. Further evidence linking urolithiasis and blood coagulation: urinary prothrombin fragment 1 is present in stone matrix. Kidney Int. 49, 880–888 (1996).
Grover, P. K. & Ryall, R. L. Inhibition of calcium oxalate crystal growth and aggregation by prothrombin and its fragments in vitro: relationship between protein structure and inhibitory activity. Eur. J. Biochem. 263, 50–56 (1999).
Dawson, C. J., Grover, P. K. & Ryall, R. L. Inter-alpha-inhibitor in urine and calcium oxalate urinary crystals. Br. J. Urol. 81, 20–26 (1998).
Robertson, W. G. A risk factor model of stone-formation. Front. Biosci. 8, s1330–s1338 (2003).
Spector, A. R., Gray, A. & Prien, E. L. Kidney stone matrix. Differences in acidic protein composition. Invest. Urol. 13, 387–389 (1976).
Lian, J. B., Prien, E. L., Glimcher, M. J. & Gallop, P. M. The presence of protein-bound gamma-carboxyglutamic acid in calcium-containing renal calculi. J. Clin. Invest. 59, 1151–1157 (1977).
Jones, W. T. & Resnick, M. I. The characterization of soluble matrix proteins in selected human renal calculi using two-dimensional polyacrylamide gel electrophoresis. J. Urol. 144, 1010–1014 (1990).
Rose, G. A. & Sulaiman, S. Tamm–Horsfall mucoproteins promote calcium oxalate crystal formation in urine: quantitative studies. J. Urol. 127, 177–179 (1982).
Robertson, W. G. & Scurr, D. S. Modifiers of calcium oxalate crystallization found in urine. I. Studies with a continuous crystallizer using an artificial urine. J. Urol. 135, 1322–1326 (1986).
Grover, P. K., Ryall, R. L. & Marshall, V. R. Does Tamm–Horsfall mucoprotein inhibit or promote calcium oxalate crystallization in human urine? Clin. Chim. Acta 190, 223–238 (1990).
Bagga, H. S., Chi, T., Miller, J. & Stoller, M. L. New insights into the pathogenesis of renal calculi. Urol. Clin. North Am. 40, 1–12 (2013).
Fabris, A. et al. The relationship between calcium kidney stones, arterial stiffness and bone density: unraveling the stone–bone–vessel liaison. J. Nephrol. 28, 549–555 (2015).
Gambaro, G. et al. Crystals, Randall's plaques and renal stones: do bone and atherosclerosis teach us something? J. Nephrol. 17, 774–777 (2004).
Reiner, A. P. et al. Kidney stones and subclinical atherosclerosis in young adults: the CARDIA study. J. Urol. 185, 920–925 (2011).
Taylor, E. R. & Stoller, M. L. Vascular theory of the formation of Randall plaques. Urolithiasis 43 (Suppl. 1), 41–45 (2015).
Moe, S. M. & Chen, N. X. Mechanisms of vascular calcification in chronic kidney disease. J. Am. Soc. Nephrol. 19, 213–216 (2008).
Shanahan, C. M. Mechanisms of vascular calcification in renal disease. Clin. Nephrol. 63, 146–157 (2005).
Shanahan, C. M., Crouthamel, M. H., Kapustin, A. & Giachelli, C. M. Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ. Res. 109, 697–711 (2011).
Kapustin, A. N. et al. Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization. Circ. Res. 109, e1–e12 (2011).
Shroff, R. C. & Shanahan, C. M. The vascular biology of calcification. Semin. Dial. 20, 103–109 (2007).
Tada, Y. et al. Advanced glycation end products-induced vascular calcification is mediated by oxidative stress: functional roles of NAD(P)H-oxidase. Horm. Metab. Res. 45, 267–272 (2013).
Byon, C. H. et al. Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor Runx2 by AKT signaling. J. Biol. Chem. 283, 15319–15327 (2008).
Murshed, M. & McKee, M. D. Molecular determinants of extracellular matrix mineralization in bone and blood vessels. Curr. Opin. Nephrol. Hypertens. 19, 359–365 (2010).
Jia, Z. et al. Does crystal deposition in genetic hypercalciuric rat kidney tissue share similarities with bone formation? Urology 83, 509.e7–509.14 (2014).
Naito, Y. et al. Morphological analysis of renal cell culture models of calcium phosphate stone formation. Urol. Res. 25, 59–65 (1997).
Kageyama, S. et al. Microlith formation in vitro by Madin Darby canine kidney (MDCK) cells. Int. J. Urol. 3, 23–26 (1996).
Thamilselvan, S., Byer, K. J., Hackett, R. L. & Khan, S. R. Free radical scavengers, catalase and superoxide dismutase provide protection from oxalate-associated injury to LLC-PK1 and MDCK cells. J. Urol. 164, 224–229 (2000).
Thamilselvan, S., Hackett, R. L. & Khan, S. R. Lipid peroxidation in ethylene glycol induced hyperoxaluria and calcium oxalate nephrolithiasis. J. Urol. 157, 1059–1063 (1997).
Joshi, S., Saylor, B. T., Wang, W., Peck, A. B. & Khan, S. R. Apocynin-treatment reverses hyperoxaluria induced changes in NADPH oxidase system expression in rat kidneys: a transcriptional study. PLoS ONE 7, e47738 (2012).
Zuo, J., Khan, A., Glenton, P. A. & Khan, S. R. Effect of NADPH oxidase inhibition on the expression of kidney injury molecule and calcium oxalate crystal deposition in hydroxy-l-proline-induced hyperoxaluria in the male Sprague-Dawley rats. Nephrol. Dial. Transplant. 26, 1785–1796 (2011).
Khan, S. R., Khan, A. & Byer, K. J. Temporal changes in the expression of mRNA of NADPH oxidase subunits in renal epithelial cells exposed to oxalate or calcium oxalate crystals. Nephrol. Dial. Transplant. 26, 1778–1785 (2011).
Joshi, S., Clapp, W. L., Wang, W. & Khan, S. R. Osteogenic changes in kidneys of hyperoxaluric rats. Biochim. Biophys. Acta 1852, 2000–2012 (2015). The results of this study show osteogenic changes in the kidneys of hyperoxaluric rats.
Kanno, T. et al. The efficacy of ultrasonography for the detection of renal stone. Urology 84, 285–288 (2014).
Kanno, T. et al. Determining the efficacy of ultrasonography for the detection of ureteral stone. Urology 84, 533–537 (2014).
Heidenreich, A., Desgrandschamps, F. & Terrier, F. Modern approach of diagnosis and management of acute flank pain: review of all imaging modalities. Eur. Urol. 41, 351–362 (2002).
Johnston, R., Lin, A., Du, J. & Mark, S. Comparison of kidney–ureter–bladder abdominal radiography and computed tomography scout films for identifying renal calculi. BJU Int. 104, 670–673 (2009).
Worster, A., Preyra, I., Weaver, B. & Haines, T. The accuracy of noncontrast helical computed tomography versus intravenous pyelography in the diagnosis of suspected acute urolithiasis: a meta-analysis. Ann. Emerg. Med. 40, 280–286 (2002).
Wiesenthal, J. D., Ghiculete, D., D' A Honey, R. J. & Pace, K. T. Evaluating the importance of mean stone density and skin-to-stone distance in predicting successful shock wave lithotripsy of renal and ureteric calculi. Urol. Res. 38, 307–313 (2010).
Primiano, A. et al. FT-IR analysis of urinary stones: a helpful tool for clinician comparison with the chemical spot test. Dis. Markers 2014, 176165 (2014).
Gambaro, G., Reis-Santos, J. M. & Rao, N. Nephrolithiasis: why doesn't our ‘learning’ progress? Eur. Urol. 45, 547–556; discussion 556 (2004).
Eisner, B. H., Sheth, S., Dretler, S. P., Herrick, B. & Pais, V. M. Abnormalities of 24-hour urine composition in first-time and recurrent stone-formers. Urology 80, 776–779 (2012).
Rodgers, A. L., Allie-Hamdulay, S., Jackson, G. & Tiselius, H.-G. Simulating calcium salt precipitation in the nephron using chemical speciation. Urol. Res. 39, 245–251 (2011).
Sakhaee, K., Maalouf, N. M., Kumar, R., Pasch, A. & Moe, O. W. Nephrolithiasis-associated bone disease: pathogenesis and treatment options. Kidney Int. 79, 393–403 (2011). This is an updated overview of the epidemiology and mechanisms of MBD in patients with nephrolithiasis. The effect of treatments for renal stone prevention on the associated MBD and the effect of treatments addressing the bone-on-the-stone disease are thoroughly discussed.
Ferraro, P. M., D'Addessi, A. & Gambaro, G. When to suspect a genetic disorder in a patient with renal stones, and why. Nephrol. Dial. Transplant. 28, 811–820 (2013).
Kang, H. W. et al. Effect of renal insufficiency on stone recurrence in patients with urolithiasis. J. Korean Med. Sci. 29, 1132–1137 (2014).
Kristensen, C., Parks, J. H., Lindheimer, M. & Coe, F. L. Reduced glomerular filtration rate and hypercalciuria in primary struvite nephrolithiasis. Kidney Int. 32, 749–753 (1987).
Evan, A. P. et al. Contrasting histopathology and crystal deposits in kidneys of idiopathic stone formers who produce hydroxy apatite, brushite, or calcium oxalate stones. Anat. Rec. (Hoboken) 297, 731–748 (2014).
Ascenti, G. et al. Stone-targeted dual-energy CT: a new diagnostic approach to urinary calculosis. AJR Am. J. Roentgenol. 195, 953–958 (2010).
Halbritter, J. et al. Fourteen monogenic genes account for 15% of nephrolithiasis/nephrocalcinosis. J. Am. Soc. Nephrol. 26, 543–551 (2015).
Gambaro, G. et al. Genetics of hypercalciuria and calcium nephrolithiasis: from the rare monogenic to the common polygenic forms. Am. J. Kidney Dis. 44, 963–986 (2004).
Pak, C. Y. et al. Prevention of stone formation and bone loss in absorptive hypercalciuria by combined dietary and pharmacological interventions. J. Urol. 169, 465–469 (2003).
Fabris, A. et al. Bone disease in medullary sponge kidney and effect of potassium citrate treatment. Clin. J. Am. Soc. Nephrol. 4, 1974–1979 (2009). Treatment with potassium citrate not only decreased stone recurrences but also improved mineral bone density in a cohort of patients with medullary sponge kidney. The effect was probably due to the amelioration of the subtle metabolic acidosis in patients with medullary sponge kidney.
Hosking, D. H., Erickson, S. B., Van den Berg, C. J., Wilson, D. M. & Smith, L. H. The stone clinic effect in patients with idiopathic calcium urolithiasis. J. Urol. 130, 1115–1118 (1983).
Borghi, L. et al. Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: a 5-year randomized prospective study. J. Urol. 155, 839–843 (1996).
Borghi, L. et al. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N. Engl. J. Med. 346, 77–84 (2002).
Meschi, T. et al. The effect of fruits and vegetables on urinary stone risk factors. Kidney Int. 66, 2402–2410 (2004).
Ferraro, P. M., Taylor, E. N., Gambaro, G. & Curhan, G. C. Soda and other beverages and the risk of kidney stones. Clin. J. Am. Soc. Nephrol. 8, 1389–1395 (2013). This is a robust observational study in the general population (the three health professionals Channing cohorts) that showed that soda beverages increase the risk of becoming a stone former.
Bushinsky, D. A. et al. Increased dietary oxalate does not increase urinary calcium oxalate saturation in hypercalciuric rats. Kidney Int. 55, 602–612 (1999).
Pearle, M. S. et al. Medical management of kidney stones: AUA guideline. J. Urol. 192, 316–324 (2014).
Yendt, E. R. & Cohanim, M. Prevention of calcium stones with thiazides. Kidney Int. 13, 397–409 (1978).
Ettinger, B., Tang, A., Citron, J. T., Livermore, B. & Williams, T. Randomized trial of allopurinol in the prevention of calcium oxalate calculi. N. Engl. J. Med. 315, 1386–1389 (1986).
Arowojolu, O. & Goldfarb, D. S. Treatment of calcium nephrolithiasis in the patient with hyperuricosuria. J. Nephrol. 27, 601–605 (2014).
Pak, C. Y., Sakhaee, K. & Fuller, C. J. Physiological and physiochemical correction and prevention of calcium stone formation by potassium citrate therapy. Trans. Assoc. Am. Physicians 96, 294–305 (1983).
Barcelo, P., Wuhl, O., Servitge, E., Rousaud, A. & Pak, C. Y. Randomized double-blind study of potassium citrate in idiopathic hypocitraturic calcium nephrolithiasis. J. Urol. 150, 1761–1764 (1993).
Ettinger, B. et al. Potassium-magnesium citrate is an effective prophylaxis against recurrent calcium oxalate nephrolithiasis. J. Urol. 158, 2069–2073 (1997).
Sakhaee, K., Nicar, M., Hill, K. & Pak, C. Y. Contrasting effects of potassium citrate and sodium citrate therapies on urinary chemistries and crystallization of stone-forming salts. Kidney Int. 24, 348–352 (1983).
Preminger, G. M., Sakhaee, K., Skurla, C. & Pak, C. Y. Prevention of recurrent calcium stone formation with potassium citrate therapy in patients with distal renal tubular acidosis. J. Urol. 134, 20–23 (1985).
Fabris, A. et al. Long-term treatment with potassium citrate and renal stones in medullary sponge kidney. Clin. J. Am. Soc. Nephrol. 5, 1663–1668 (2010).
Skolarikos, A. et al. Metabolic evaluation and recurrence prevention for urinary stone patients: EAU guidelines. Eur. Urol. 67, 750–763 (2015).
Daudon, M. et al. Cystine crystal volume determination: a useful tool in the management of cystinuric patients. Urol. Res. 31, 207–211 (2003).
Goldfarb, D. S., Coe, F. L. & Asplin, J. R. Urinary cystine excretion and capacity in patients with cystinuria. Kidney Int. 69, 1041–1047 (2006).
Dello Strologo, L., Laurenzi, C., Legato, A. & Pastore, A. Cystinuria in children and young adults: success of monitoring free-cystine urine levels. Pediatr. Nephrol. 22, 1869–1873 (2007).
Prot-Bertoye, C. et al. CKD and its risk factors among patients with cystinuria. Clin. J. Am. Soc. Nephrol. 10, 842–851 (2015).
Ordon, M. et al. The surgical management of kidney stone disease: a population based time series analysis. J. Urol. 192, 1450–1456 (2014).
Scales, C. D. et al. Comparative effectiveness of shock wave lithotripsy and ureteroscopy for treating patients with kidney stones. JAMA Surg. 149, 648–653 (2014). This is one of the few studies comparing large head-to-head data in SWL versus ureteroscopy.
Lingeman, J. E. et al. Extracorporeal shock wave lithotripsy: the Methodist Hospital of Indiana experience. J. Urol. 135, 1134–1137 (1986).
Wignall, G. R., Canales, B. K., Denstedt, J. D. & Monga, M. Minimally invasive approaches to upper urinary tract urolithiasis. Urol. Clin. North Am. 35, 441–454 (2008). This is a solid review of preoperative considerations and surgical techniques for urologists who perform SWL, ureteroscopy and PCNL.
Albala, D. M. et al. Lower pole I: a prospective randomized trial of extracorporeal shock wave lithotripsy and percutaneous nephrostolithotomy for lower pole nephrolithiasis-initial results. J. Urol. 166, 2072–2080 (2001).
Pearle, M. S. et al. Prospective, randomized trial comparing shock wave lithotripsy and ureteroscopy for lower pole caliceal calculi 1 cm or less. J. Urol. 173, 2005–2009 (2005).
Wiesenthal, J. D., Ghiculete, D., D' A Honey, R. J. & Pace, K. T. A comparison of treatment modalities for renal calculi between 100 and 300 mm2: are shockwave lithotripsy, ureteroscopy, and percutaneous nephrolithotomy equivalent? J. Endourol. 25, 481–485 (2011).
Gupta, N. P., Ansari, M. S., Kesarvani, P., Kapoor, A. & Mukhopadhyay, S. Role of computed tomography with no contrast medium enhancement in predicting the outcome of extracorporeal shock wave lithotripsy for urinary calculi. BJU Int. 95, 1285–1288 (2005).
Wang, L.-J. et al. Predictions of outcomes of renal stones after extracorporeal shock wave lithotripsy from stone characteristics determined by unenhanced helical computed tomography: a multivariate analysis. Eur. Radiol. 15, 2238–2243 (2005).
El-Nahas, A. R., El-Assmy, A. M., Mansour, O. & Sheir, K. Z. A prospective multivariate analysis of factors predicting stone disintegration by extracorporeal shock wave lithotripsy: the value of high-resolution noncontrast computed tomography. Eur. Urol. 51, 1688–1693; discussion 1693–1694 (2007).
Müller-Mattheis, V. G., Schmale, D., Seewald, M., Rosin, H. & Ackermann, R. Bacteremia during extracorporeal shock wave lithotripsy of renal calculi. J. Urol. 146, 733–736 (1991).
Dhar, N. B., Thornton, J., Karafa, M. T. & Streem, S. B. A multivariate analysis of risk factors associated with subcapsular hematoma formation following electromagnetic shock wave lithotripsy. J. Urol. 172, 2271–2274 (2004).
Aboumarzouk, O. M., Kata, S. G., Keeley, F. X., McClinton, S. & Nabi, G. Extracorporeal shock wave lithotripsy (ESWL) versus ureteroscopic management for ureteric calculi. Cochrane Database Syst. Rev. 5, CD006029 (2012).
Preminger, G. M. et al. 2007 guideline for the management of ureteral calculi. J. Urol. 178, 2418–2434 (2007).
Kourambas, J., Delvecchio, F. C., Munver, R. & Preminger, G. M. Nitinol stone retrieval-assisted ureteroscopic management of lower pole renal calculi. Urology 56, 935–939 (2000).
Kamphuis, G. M., Baard, J., Westendarp, M. & de la Rosette, J. J. M. C. H. Lessons learned from the CROES percutaneous nephrolithotomy global study. World J. Urol. 33, 223–233 (2015).
Akman, T. et al. Tubeless procedure is most important factor in reducing length of hospitalization after percutaneous nephrolithotomy: results of univariable and multivariable models. Urology 77, 299–304 (2011).
Preminger, G. M. et al. Percutaneous nephrostolithotomy vs open surgery for renal calculi. A comparative study. JAMA 254, 1054–1058 (1985).
Xue, W. et al. Management of single large nonstaghorn renal stones in the CROES PCNL global study. J. Urol. 187, 1293–1297 (2012).
Holdgate, A. & Pollock, T. Nonsteroidal anti-inflammatory drugs (NSAIDs) versus opioids for acute renal colic. Cochrane Database Syst. Rev. 2, CD004137 (2005).
Afshar, K., Jafari, S., Marks, A. J., Eftekhari, A. & MacNeily, A. E. Nonsteroidal anti-inflammatory drugs (NSAIDs) and non-opioids for acute renal colic. Cochrane Database Syst. Rev. 6, CD006027 (2015).
Serinken, M. et al. Intravenous paracetamol versus morphine for renal colic in the emergency department: a randomised double-blind controlled trial. Emerg. Med. J. 29, 902–905 (2012).
Papadopoulos, G. et al. Hyoscine N-butylbromide (Buscopan®) in the treatment of acute ureteral colic: what is the evidence? Urol. Int. 92, 253–257 (2014).
Worster, A. S. & Bhanich Supapol, W. Fluids and diuretics for acute ureteric colic. Cochrane Database Syst. Rev. 2, CD004926 (2012).
Picozzi, S. C. M. et al. Management of ureteral calculi and medical expulsive therapy in emergency departments. J. Emerg. Trauma Shock 4, 70–76 (2011).
Campschroer, T., Zhu, Y., Duijvesz, D., Grobbee, D. E. & Lock, M. T. W. T. Alpha-blockers as medical expulsive therapy for ureteral stones. Cochrane Database Syst. Rev. 4, CD008509 (2014).
Pickard, R. et al. Medical expulsive therapy in adults with ureteric colic: a multicentre, randomised, placebo-controlled trial. Lancet 386, 341–349 (2015). Perhaps the most controversial publication of the decade in the kidney stone arena, the authors of this extremely well-done randomized controlled trial (of tamsulosin, nifedipine and placebo) showed that medical expulsive therapy does not alter stone interventions for patients after 4 weeks of stone passage and declared that these agents should not be offered to patients with ureteric colic who are managed expectantly.
Furyk, J. S. et al. Distal ureteric stones and tamsulosin: a double-blind, placebo-controlled, randomized, multicenter trial. Ann. Emerg. Med. 67, 86–95.e2 (2016).
Moran, M. E., Abrahams, H. M., Burday, D. E. & Greene, T. D. Utility of oral dissolution therapy in the management of referred patients with secondarily treated uric acid stones. Urology 59, 206–210 (2002).
Trinchieri, A., Esposito, N. & Castelnuovo, C. Dissolution of radiolucent renal stones by oral alkalinization with potassium citrate/potassium bicarbonate. Arch. Ital. Urol. Androl. 81, 188–191 (2009).
Koide, T., Yoshioka, T., Yamaguchi, S., Utsunomiya, M. & Sonoda, T. A strategy of cystine stone management. J. Urol. 147, 112–114 (1992).
Gonzalez, R. D., Whiting, B. M. & Canales, B. K. The history of kidney stone dissolution therapy: 50 years of optimism and frustration with renacidin. J. Endourol. 26, 110–118 (2012).
Pearle, M. S., Calhoun, E. A. & Curhan, G. C. Urologic diseases in America project: urolithiasis. J. Urol. 173, 848–857 (2005).
Ware, J. E., Kosinski, M. & Gandek, B. SF-36 Health Survey: Manual and Interpretation Guide (Quality Metric Inc., 2003).
Bensalah, K. et al. Determinants of quality of life for patients with kidney stones. J. Urol. 179, 2238–2243; discussion 2243 (2008).
Bryant, M. et al. Health related quality of life for stone formers. J. Urol. 188, 436–440 (2012).
Penniston, K. L. & Nakada, S. Y. Health related quality of life differs between male and female stone formers. J. Urol. 178, 2435–2440; discussion 2440 (2007).
Modersitzki, F., Pizzi, L., Grasso, M. & Goldfarb, D. S. Health-related quality of life (HRQoL) in cystine compared with non-cystine stone formers. Urolithiasis 42, 53–60 (2014).
Arafa, M. A. & Rabah, D. M. Study of quality of life and its determinants in patients after urinary stone fragmentation. Health Qual. Life Outcomes 8, 119 (2010).
Rabah, D. M., Alomar, M., Binsaleh, S. & Arafa, M. A. Health related quality of life in ureteral stone patients: post-ureterolithiasis. Urol. Res. 39, 385–388 (2011).
Kurahashi, T. et al. Health-related quality of life in patients undergoing lithotripsy for urinary stones. Int. Urol. Nephrol. 40, 39–43 (2008).
Joshi, H. B. et al. Indwelling ureteral stents: evaluation of symptoms, quality of life and utility. J. Urol. 169, 1065–1069; discussion 1069 (2003).
Damiano, R. et al. Does the size of ureteral stent impact urinary symptoms and quality of life? A prospective randomized study. Eur. Urol. 48, 673–678 (2005).
Joshi, H. B., Adams, S., Obadeyi, O. O. & Rao, P. N. Nephrostomy tube or ‘JJ’ ureteric stent in ureteric obstruction: assessment of patient perspectives using quality-of-life survey and utility analysis. Eur. Urol. 39, 695–701 (2001).
Sahin, C. et al. Do the residual fragments after shock wave lithotripsy affect the quality of life? Urology 84, 549–554 (2014).
Lingeman, J. E., McAteer, J. A., Gnessin, E. & Evan, A. P. Shock wave lithotripsy: advances in technology and technique. Nat. Rev. Urol. 6, 660–670 (2009).
Rajaian, S. et al. Outcome of shock wave lithotripsy as monotherapy for large solitary renal stones (>2 cm in size) without stenting. Indian J. Urol. 26, 359–363 (2010).
Zanetti, G., Trinchieri, A., Montanari, E. & Rocco, F. SWL: our twenty-four year experience. Arch. Ital. Urol. Androl. 80, 21–26 (2008).
Srisubat, A., Potisat, S., Lojanapiwat, B., Setthawong, V. & Laopaiboon, M. Extracorporeal shock wave lithotripsy (ESWL) versus percutaneous nephrolithotomy (PCNL) or retrograde intrarenal surgery (RIRS) for kidney stones. Cochrane Database Syst. Rev. 11, CD007044 (2014).
Skolarikos, A. et al. Outcomes of flexible ureterorenoscopy for solitary renal stones in the CROES URS global study. J. Urol. 194, 137–143 (2015).
Donaldson, J. F. et al. Systematic review and meta-analysis of the clinical effectiveness of shock wave lithotripsy, retrograde intrarenal surgery, and percutaneous nephrolithotomy for lower-pole renal stones. Eur. Urol. 67, 612–616 (2015).
Ozgor, F. et al. Clinically insignificant residual fragments after flexible ureterorenoscopy: medium-term follow-up results. Urolithiasis 42, 533–538 (2014).
Thalji, N. K., Richards, N. G., Peck, A. B. & Canales, B. K. Enzymatic dissolution of calcium and struvite crystals: in vitro evaluation of biochemical requirements. Urology 78, 721.e13–721.e17 (2011).
Qaseem, A., Dallas, P., Forciea, M. A., Starkey, M. & Denberg, T. D. Dietary and pharmacologic management to prevent recurrent nephrolithiasis in adults: a clinical practice guideline from the American College of Physicians. Ann. Intern. Med. 161, 659–667 (2014).
Tiselius, H.-G. Recurrence prevention in patients with urinary tract stone disease. ScientificWorldJournal 4, 35–41 (2004).
Türk, C. et al. Guidelines on urolithiasis. European Association of Urology [online], http://uroweb.org/wp-content/uploads/22-Urolithiasis_LR_full.pdf (2015).
Chiong, E. et al. Randomized controlled study of mechanical percussion, diuresis, and inversion therapy to assist passage of lower pole renal calculi after shock wave lithotripsy. Urology 65, 1070–1074 (2005).
Lee, S. W.-H., Chaiyakunapruk, N., Chong, H.-Y. & Liong, M.-L. Comparative effectiveness and safety of various treatment procedures for lower pole renal calculi: a systematic review and network meta-analysis. BJU Int. 116, 252–264 (2015).
Leong, W. S., Liong, M. L., Liong, Y. V., Wu, D. B.-C. & Lee, S. W. H. Does simultaneous inversion during extracorporeal shock wave lithotripsy improve stone clearance: a long-term, prospective, single-blind, randomized controlled study. Urology 83, 40–44 (2014).
Pace, K. T., Tariq, N., Dyer, S. J., Weir, M. J. & D' A Honey, R. J. Mechanical percussion, inversion and diuresis for residual lower pole fragments after shock wave lithotripsy: a prospective, single blind, randomized controlled trial. J. Urol. 166, 2065–2071 (2001).
Albanis, S. et al. Inversion, hydration and diuresis during extracorporeal shock wave lithotripsy: does it improve the stone-free rate for lower pole stone clearance? Urol. Int. 83, 211–216 (2009).
Bailey, M. et al. Ultrasonic propulsion of kidney stones: preliminary results of human feasibility study. IEEE Int. Ultrason. Symp. 2014, 511–514 (2014).
Schulz, E. et al. Disturbed urinary transport in the pelvi–calyceal system in calcium-oxalate stone patients. Urol. Res. 15, 109–113 (1987).
Ahlstrand, C. & Tiselius, H. G. Recurrences during a 10-year follow-up after first renal stone episode. Urol. Res. 18, 397–399 (1990).
Coe, F. L., Evan, A. & Worcester, E. Pathophysiology-based treatment of idiopathic calcium kidney stones. Clin. J. Am. Soc. Nephrol. 6, 2083–2092 (2011).
Evan, A. P. et al. Mechanism of formation of human calcium oxalate renal stones on Randall's plaque. Anat. Rec. (Hoboken) 290, 1315–1323 (2007).
Tiselius, H.-G., Lindbä ck, B., Fornander, A.-M. & Nilsson, M.-A. Studies on the role of calcium phosphate in the process of calcium oxalate crystal formation. Urol. Res. 37, 181–192 (2009).
Tsujihata, M. Mechanism of calcium oxalate renal stone formation and renal tubular cell injury. Int. J. Urol. 15, 115–120 (2008).
Krambeck, A. E. et al. Current computed tomography techniques can detect duct of Bellini plugging but not Randall's plaques. Urology 82, 301–306 (2013).
Tiselius, H.-G. Should we modify the principles of risk evaluation and recurrence preventive treatment of patients with calcium oxalate stone disease in view of the etiologic importance of calcium phosphate? Urolithiasis 43 (Suppl. 1), 47–57 (2015).
Bandeira, F. et al. Bone markers and osteoporosis therapy. Arq. Bras. Endocrinol. Metabol. 58, 504–513 (2014).
Acknowledgements
Research funding to S.R.K. is provided by NIH grant numbers RO1-DK078602 and RO1-DK092311. S.R.K. thanks P. J. Khan for her assistance in preparing the manuscript.
Author information
Authors and Affiliations
Contributions
Introduction (S.R.K.); Epidemiology (M.S.P.); Mechanism/pathophysiology (W.G.R. and S.R.K.); Diagnosis, screening and prevention (G.G.); Management (G.G. and B.K.C.); Quality of life (S.D. and O.T.); Outlook (H.G.T.); Overview of the Primer (S.R.K.).
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Khan, S., Pearle, M., Robertson, W. et al. Kidney stones. Nat Rev Dis Primers 2, 16008 (2016). https://doi.org/10.1038/nrdp.2016.8
Published:
DOI: https://doi.org/10.1038/nrdp.2016.8
This article is cited by
-
The association between C-reactive protein levels and the risk of kidney stones: a population-based study
BMC Nephrology (2024)
-
Predictive markers for infections after extracorporeal shockwave lithotripsy in patients with kidney stone based on a large prospective cohort
World Journal of Urology (2024)
-
Diet quality in relation to kidney function and its potential interaction with genetic risk of kidney disease among Dutch post-myocardial infarction patients
European Journal of Nutrition (2024)
-
Identification of biomarkers and potential therapeutic targets of kidney stone disease using bioinformatics
World Journal of Urology (2024)
-
The impact of crystal phase transition on the hardness and structure of kidney stones
Urolithiasis (2024)