Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Carcinogenic human papillomavirus infection

Abstract

Infections with human papillomavirus (HPV) are common and transmitted by direct contact. Although the great majority of infections resolve within 2 years, 13 phylogenetically related, sexually transmitted HPV genotypes, notably HPV16, cause — if not controlled immunologically or by screening — virtually all cervical cancers worldwide, a large fraction of other anogenital cancers and an increasing proportion of oropharyngeal cancers. The carcinogenicity of these HPV types results primarily from the activity of the oncoproteins E6 and E7, which impair growth regulatory pathways. Persistent high-risk HPVs can transition from a productive (virion-producing) to an abortive or transforming infection, after which cancer can result after typically slow accumulation of host genetic mutations. However, which precancerous lesions progress and which do not is unclear; the majority of screening-detected precancers are treated, leading to overtreatment. The discovery of HPV as a carcinogen led to the development of effective preventive vaccines and sensitive HPV DNA and RNA tests. Together, vaccination programmes (the ultimate long-term preventive strategy) and screening using HPV tests could dramatically alter the landscape of HPV-related cancers. HPV testing will probably replace cytology-based cervical screening owing to greater reassurance when the test is negative. However, the effective implementation of HPV vaccination and screening globally remains a challenge.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Conceptual model of HPV infection leading to cervical cancer.
Figure 2: Global burden of HPV-attributable cancer in 2012.
Figure 3: Factors that influence the age-specific HPV prevalence in women.
Figure 4: HPV structure and genome organization.
Figure 5: HPV infection and the transformation zone.
Figure 6: Molecular events during progression and invasion in the cervix.
Figure 7: Cervical screening strategies in high-resource and low-resource settings.

References

  1. 1

    Bravo, I. G. & Félez-Sánchez, M. Papillomaviruses: viral evolution, cancer and evolutionary medicine. Evol. Med. Public Health 2015, 32–51 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Van Doorslaer, K. Evolution of the Papillomaviridae. Virology 445, 11–20 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. 3

    Rodríguez, A. C. et al. Rapid clearance of human papillomavirus and implications for clinical focus on persistent infections. J. Natl Cancer Inst. 100, 513–517 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4

    Bosch, F. X. et al. Comprehensive control of human papillomavirus infections and related diseases. Vaccine 31 (Suppl. 7), H1–H31 (2013). Summarizes the most current issues in HPV epidemiology and in preventing the diseases caused by HPV, which serves as a portal to the published literature and regional issues.

    Article  PubMed  Google Scholar 

  5. 5

    Guan, P. et al. Human papillomavirus types in 115,789 HPV-positive women: a meta-analysis from cervical infection to cancer. Int. J. Cancer 131, 2349–2359 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. 6

    Plummer, M. et al. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob. Health 4, e609–e616 (2016). Provides the most recent and definitive estimation of the role of HPV in cancer burden worldwide.

    Article  PubMed  Google Scholar 

  7. 7

    World Health Organization & International Agency for Research on Cancer. IARC Monographs on the evaluation of carcinogenic risks to humans. Volume 90. Human papillomaviruses. IARChttp://monographs.iarc.fr/ENG/Monographs/vol90/mono90.pdf (2007).

  8. 8

    World Health Organization & International Agency for Research on Cancer. IARC Monographs on the evaluation of carcinogenic risks to humans. biological agents. Volume 100B: a review of human carcinogens. IARChttp://monographs.iarc.fr/ENG/Monographs/vol100B/mono100B.pdf (2012). The section on HPV is the authoritative consideration of which HPV types are carcinogenic and the reasoning underlying this classification.

  9. 9

    Crosbie, E. J., Einstein, M. H., Franceschi, S. & Kitchener, H. C. Human papillomavirus and cervical cancer. Lancet 382, 889–899 (2013).

    Article  PubMed  Google Scholar 

  10. 10

    Vaccarella, S. et al. 50 years of screening in the Nordic countries: quantifying the effects on cervical cancer incidence. Br. J. Cancer 111, 965–969 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Alemany, L. et al. Human papillomavirus DNA prevalence and type distribution in anal carcinomas worldwide. Int. J. Cancer 136, 98–107 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. 12

    De Vuyst, H., Clifford, G. M., Nascimento, M. C., Madeleine, M. M. & Franceschi, S. Prevalence and type distribution of human papillomavirus in carcinoma and intraepithelial neoplasia of the vulva, vagina and anus: a meta-analysis. Int. J. Cancer 124, 1626–1636 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Alemany, L. et al. Role of human papillomavirus in penile carcinomas worldwide. Eur. Urol. 69, 953–961 (2016).

    Article  PubMed  Google Scholar 

  14. 14

    de Martel, C. et al. Cancers attributable to infections among adults with HIV in the United States. AIDS 29, 2173–2181 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Castellsagué, X. et al. HPV involvement in head and neck cancers: comprehensive assessment of biomarkers in 3680 patients. J. Natl Cancer Inst. 108, djv403 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Combes, J.-D. & Franceschi, S. Role of human papillomavirus in non-oropharyngeal head and neck cancers. Oral Oncol. 50, 370–379 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. 17

    Chaturvedi, A. K. et al. Worldwide trends in incidence rates for oral cavity and oropharyngeal cancers. J. Clin. Oncol. 31, 4550–4559 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Kreimer, A. R. et al. Evaluation of human papillomavirus antibodies and risk of subsequent head and neck cancer. J. Clin. Oncol. 31, 2708–2715 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Liu, Z., Rashid, T. & Nyitray, A. G. Penises not required: a systematic review of the potential for human papillomavirus horizontal transmission that is non-sexual or does not include penile penetration. Sex. Health 13, 10–21 (2016).

    Article  PubMed  Google Scholar 

  20. 20

    Sundström, K. et al. Interactions between high- and low-risk HPV types reduce the risk of squamous cervical cancer. J. Natl Cancer Inst. 107, djv185 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Vaccarella, S. et al. Clustering of multiple human papillomavirus infections in women from a population-based study in Guanacaste, Costa Rica. J. Infect. Dis. 204, 385–390 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Wentzensen, N. et al. No evidence for synergy between human papillomavirus genotypes for the risk of high-grade squamous intraepithelial lesions in a large population-based study. J. Infect. Dis. 209, 855–864 (2014).

    Article  PubMed  Google Scholar 

  23. 23

    de Araujo-Souza, P. S. et al. Determinants of baseline seroreactivity to human papillomavirus type 16 in the Ludwig–McGill cohort study. BMC Infect. Dis. 14, 578 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Bruni, L. et al. Cervical human papillomavirus prevalence in 5 continents: meta-analysis of 1 million women with normal cytological findings. J. Infect. Dis. 202, 1789–1799 (2010).

    Article  PubMed  Google Scholar 

  25. 25

    Plummer, M. et al. A 2-year prospective study of human papillomavirus persistence among women with a cytological diagnosis of atypical squamous cells of undetermined significance or low-grade squamous intraepithelial lesion. J. Infect. Dis. 195, 1582–1589 (2007).

    Article  PubMed  Google Scholar 

  26. 26

    Schiffman, M., Castle, P. E., Jeronimo, J., Rodriguez, A. C. & Wacholder, S. Human papillomavirus and cervical cancer. Lancet 370, 890–907 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Ronco, G. et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials. Lancet 383, 524–532 (2014). Provides definitive evidence for why HPV testing is the preferred method of primary cervical cancer screening.

    Article  PubMed  Google Scholar 

  28. 28

    Giuliano, A. R. et al. The human papillomavirus infection in men study: human papillomavirus prevalence and type distribution among men residing in Brazil, Mexico, and the United States. Cancer Epidemiol. Biomarkers Prev. 17, 2036–2043 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Markowitz, L. E., Sternberg, M., Dunne, E. F., McQuillan, G. & Unger, E. R. Seroprevalence of human papillomavirus types 6, 11, 16, and 18 in the United States: National Health and Nutrition Examination Survey 2003–2004. J. Infect. Dis. 200, 1059–1067 (2009).

    Article  PubMed  Google Scholar 

  30. 30

    Lu, B. et al. Seroprevalence of human papillomavirus (HPV) type 6 and 16 vary by anatomic site of HPV infection in men. Cancer Epidemiol. Biomarkers Prev. 21, 1542–1546 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31

    Garnock-Jones, K. P. & Giuliano, A. R. Quadrivalent human papillomavirus (HPV) types 6, 11, 16, 18 vaccine: for the prevention of genital warts in males. Drugs 71, 591–602 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Lehtinen, M. & Dillner, J. Clinical trials of human papillomavirus vaccines and beyond. Nat. Rev. Clin. Oncol. 10, 400–410 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Chung, C. H., Bagheri, A. & D'Souza, G. Epidemiology of oral human papillomavirus infection. Oral Oncol. 50, 364–369 (2014).

    Article  PubMed  Google Scholar 

  34. 34

    Palmer, E. et al. Human papillomavirus infection is rare in nonmalignant tonsil tissue in the UK: implications for tonsil cancer precursor lesions. Int. J. Cancer 135, 2437–2443 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Gillison, M. L. et al. Prevalence of oral HPV infection in the United States, 2009–2010. JAMA 307, 693–703 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    International Collaboration of Epidemiological Studies of Cervical Cancer et al. Carcinoma of the cervix and tobacco smoking: collaborative reanalysis of individual data on 13,541 women with carcinoma of the cervix and 23,017 women without carcinoma of the cervix from 23 epidemiological studies. Int. J. Cancer 118, 1481–1495 (2006).

    Article  CAS  Google Scholar 

  37. 37

    International Collaboration of Epidemiological Studies of Cervical Cancer. Cervical carcinoma and reproductive factors: collaborative reanalysis of individual data on 16,563 women with cervical carcinoma and 33,542 women without cervical carcinoma from 25 epidemiological studies. Int. J. Cancer 119, 1108–1124 (2006).

    Article  CAS  Google Scholar 

  38. 38

    International Collaboration of Epidemiological Studies of Cervical Cancer et al. Cervical cancer and hormonal contraceptives: collaborative reanalysis of individual data for 16,573 women with cervical cancer and 35,509 women without cervical cancer from 24 epidemiological studies. Lancet 370, 1609–1621 (2007).

    Article  CAS  Google Scholar 

  39. 39

    Safaeian, M. et al. Chlamydia trachomatis and risk of prevalent and incident cervical premalignancy in a population-based cohort. J. Natl Cancer Inst. 102, 1794–1804 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Smith, J. S. et al. Chlamydia trachomatis and invasive cervical cancer: a pooled analysis of the IARC multicentric case–control study. Int. J. Cancer 111, 431–439 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. 41

    Gargano, J. W. et al. Age-group differences in human papillomavirus types and cofactors for cervical intraepithelial neoplasia 3 among women referred to colposcopy. Cancer Epidemiol. Biomarkers Prev. 21, 111–121 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. 42

    Vaccarella, S., Lortet-Tieulent, J., Plummer, M., Franceschi, S. & Bray, F. Worldwide trends in cervical cancer incidence: impact of screening against changes in disease risk factors. Eur. J. Cancer 49, 3262–3273 (2013).

    Article  PubMed  Google Scholar 

  43. 43

    Peto, J., Gilham, C., Fletcher, O. & Matthews, F. E. The cervical cancer epidemic that screening has prevented in the UK. Lancet 364, 249–256 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44

    Schiffman, M. & Rodríguez, A. C. Heterogeneity in CIN3 diagnosis. Lancet Oncol. 9, 404–406 (2008).

    Article  PubMed  Google Scholar 

  45. 45

    Plummer, M., Peto, J., Franceschi, S. & International Collaboration of Epidemiological Studies of Cervical Cancer. Time since first sexual intercourse and the risk of cervical cancer. Int. J. Cancer 130, 2638–2644 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. 46

    Chung, S.-H., Franceschi, S. & Lambert, P. F. Estrogen and ERα: culprits in cervical cancer? Trends Endocrinol. Metab. 21, 504–511 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    den Boon, J. A. et al. Molecular transitions from papillomavirus infection to cervical precancer and cancer: role of stromal estrogen receptor signaling. Proc. Natl Acad. Sci. USA 112, E3255–E3264 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Brake, T. & Lambert, P. F. Estrogen contributes to the onset, persistence, and malignant progression of cervical cancer in a human papillomavirus-transgenic mouse model. Proc. Natl Acad. Sci. USA 102, 2490–2495 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Spurgeon, M. E., Chung, S.-H. & Lambert, P. F. Recurrence of cervical cancer in mice after selective estrogen receptor modulator therapy. Am. J. Pathol. 184, 530–540 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Pai, S. I. & Westra, W. H. Molecular pathology of head and neck cancer: implications for diagnosis, prognosis, and treatment. Annu. Rev. Pathol. 4, 49–70 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Rietbergen, M. M. et al. No evidence for active human papillomavirus (HPV) in fields surrounding HPV-positive oropharyngeal tumors. J. Oral Pathol. Med. 43, 137–142 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. 52

    Doorbar, J. et al. The biology and life-cycle of human papillomaviruses. Vaccine 30 (Suppl. 5), F55–F70 (2012). Expands on the basic aspects of HPV pathophysiology introduced in this Primer.

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Buck, C. B. et al. Arrangement of L2 within the papillomavirus capsid. J. Virol. 82, 5190–5197 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Doorbar, J. Molecular biology of human papillomavirus infection and cervical cancer. Clin. Sci. (Lond.) 110, 525–541 (2006).

    Article  CAS  Google Scholar 

  55. 55

    Bernard, H.-U. Regulatory elements in the viral genome. Virology 445, 197–204 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. 56

    Schwartz, S. Papillomavirus transcripts and posttranscriptional regulation. Virology 445, 187–196 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. 57

    Wise-Draper, T. M. & Wells, S. I. Papillomavirus E6 and E7 proteins and their cellular targets. Front. Biosci. 13, 1003–1017 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. 58

    Doorbar, J. The papillomavirus life cycle. J. Clin. Virol. 32, S7–S15 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Cornall, A. M. et al. Anal and perianal squamous carcinomas and high-grade intraepithelial lesions exclusively associated with “low-risk” HPV genotypes 6 and 11. Int. J. Cancer 133, 2253–2258 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. 60

    Pyeon, D., Pearce, S. M., Lank, S. M., Ahlquist, P. & Lambert, P. F. Establishment of human papillomavirus infection requires cell cycle progression. PLoS Pathog. 5, e1000318 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Doorbar, J. Latent papillomavirus infections and their regulation. Curr. Opin. Virol. 3, 416–421 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. 62

    Egawa, N., Egawa, K., Griffin, H. & Doorbar, J. Human papillomaviruses; epithelial tropisms, and the development of neoplasia. Viruses 7, 3863–3890 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Cladel, N. M., Hu, J., Balogh, K., Mejia, A. & Christensen, N. D. Wounding prior to challenge substantially improves infectivity of cottontail rabbit papillomavirus and allows for standardization of infection. J. Virol. Methods 148, 34–39 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. 64

    Valencia, C. et al. Human papillomavirus E6/E7 oncogenes promote mouse ear regeneration by increasing the rate of wound re-epithelization and epidermal growth. J. Invest. Dermatol. 128, 2894–2903 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. 65

    Hoffmann, R., Hirt, B., Bechtold, V., Beard, P. & Raj, K. Different modes of human papillomavirus DNA replication during maintenance. J. Virol. 80, 4431–4439 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Egawa, N. et al. The E1 protein of human papillomavirus type 16 is dispensable for maintenance replication of the viral genome. J. Virol. 86, 3276–3283 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Zheng, Z.-M. & Baker, C. C. Papillomavirus genome structure, expression, and post-transcriptional regulation. Front. Biosci. 11, 2286–2302 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Bodily, J. M., Hennigan, C., Wrobel, G. A. & Rodriguez, C. M. Regulation of the human papillomavirus type 16 late promoter by E7 and the cell cycle. Virology 443, 11–19 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Isaacson Wechsler, E. et al. Reconstruction of human papillomavirus type 16-mediated early-stage neoplasia implicates E6/E7 deregulation and the loss of contact inhibition in neoplastic progression. J. Virol. 86, 6358–6364 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Vande Pol, S. B. & Klingelhutz, A. J. Papillomavirus E6 oncoproteins. Virology 445, 115–137 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Klingelhutz, A. J. & Roman, A. Cellular transformation by human papillomaviruses: lessons learned by comparing high- and low-risk viruses. Virology 424, 77–98 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Roman, A. & Munger, K. The papillomavirus E7 proteins. Virology 445, 138–168 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Ganti, K. et al. The human papillomavirus E6 PDZ binding motif: from life cycle to malignancy. Viruses 7, 3530–3551 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Duensing, A. et al. Centrosome overduplication, chromosomal instability, and human papillomavirus oncoproteins. Environ. Mol. Mutagen. 50, 741–747 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. 75

    Wentzensen, N., Vinokurova, S. & von Knebel Doeberitz, M. Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Cancer Res. 64, 3878–3884 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. 76

    Vinokurova, S. et al. Type-dependent integration frequency of human papillomavirus genomes in cervical lesions. Cancer Res. 68, 307–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. 77

    Warren, C. J. et al. APOBEC3A functions as a restriction factor of human papillomavirus. J. Virol. 89, 688–702 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. 78

    Burgers, W. A. et al. Viral oncoproteins target the DNA methyltransferases. Oncogene 26, 1650–1655 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. 79

    D'Costa, Z. J. et al. Transcriptional repression of E-cadherin by human papillomavirus type 16 E6. PLoS ONE 7, e48954 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Stanley, M. A. Epithelial cell responses to infection with human papillomavirus. Clin. Microbiol. Rev. 25, 215–222 (2012). Comprehensively describes the immune response to HPV infections.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Heaton, S. M., Borg, N. A. & Dixit, V. M. Ubiquitin in the activation and attenuation of innate antiviral immunity. J. Exp. Med. 213, 1–13 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Tummers, B. & Burg, S. H. High-risk human papillomavirus targets crossroads in immune signaling. Viruses 7, 2485–2506 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Habiger, C., Jäger, G., Walter, M., Iftner, T. & Stubenrauch, F. Interferon kappa inhibits human papillomavirus 31 transcription by inducing Sp100 proteins. J. Virol. 90, 694–704 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. 84

    Fausch, S. C., Da Silva, D. M. & Kast, W. M. Heterologous papillomavirus virus-like particles and human papillomavirus virus-like particle immune complexes activate human Langerhans cells. Vaccine 23, 1720–1729 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. 85

    Sperling, T. et al. Human papillomavirus type 8 interferes with a novel C/EBPβ-mediated mechanism of keratinocyte CCL20 chemokine expression and Langerhans cell migration. PLoS Pathog. 8, e1002833 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Matthews, K. et al. Depletion of Langerhans cells in human papillomavirus type 16-infected skin is associated with E6-mediated down regulation of E-cadherin. J. Virol. 77, 8378–8385 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Woo, Y. L. et al. Characterising the local immune responses in cervical intraepithelial neoplasia: a cross-sectional and longitudinal analysis. BJOG 115, 1616–1621; discussion 1621–1622 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. 88

    van der Burg, S. H., de Jong, A., Welters, M. J. P., Offringa, R. & Melief, C. J. M. The status of HPV16-specific T-cell reactivity in health and disease as a guide to HPV vaccine development. Virus Res. 89, 275–284 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. 89

    Visser, J. et al. Frequencies and role of regulatory T cells in patients with (pre)malignant cervical neoplasia. Clin. Exp. Immunol. 150, 199–209 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Trimble, C. L. et al. Human papillomavirus 16-associated cervical intraepithelial neoplasia in humans excludes CD8 T cells from dysplastic epithelium. J. Immunol. 185, 7107–7114 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Moore, R. A., Nicholls, P. K., Santos, E. B., Gough, G. W. & Stanley, M. A. Absence of canine oral papillomavirus DNA following prophylactic L1 particle-mediated immunotherapeutic delivery vaccination. J. Gen. Virol. 83, 2299–2301 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. 92

    Maglennon, G. A., McIntosh, P. & Doorbar, J. Persistence of viral DNA in the epithelial basal layer suggests a model for papillomavirus latency following immune regression. Virology 414, 153–163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Maglennon, G. A., McIntosh, P. B. & Doorbar, J. Immunosuppression facilitates the reactivation of latent papillomavirus infections. J. Virol. 88, 710–716 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Brotman, R. M. et al. Interplay between the temporal dynamics of the vaginal microbiota and human papillomavirus detection. J. Infect. Dis. 210, 1723–1733 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Hubert, P. et al. Altered α-defensin 5 expression in cervical squamocolumnar junction: implication in the formation of a viral/tumour-permissive microenvironment. J. Pathol. 234, 464–477 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. 96

    Wiens, M. E. & Smith, J. G. Alpha-defensin HD5 inhibits furin cleavage of human papillomavirus 16 L2 to block infection. J. Virol. 89, 2866–2874 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. 97

    Wira, C. R., Rodriguez-Garcia, M. & Patel, M. V. The role of sex hormones in immune protection of the female reproductive tract. Nat. Rev. Immunol. 15, 217–230 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Kovats, S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell. Immunol. 294, 63–69 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Stanley, M., Pinto, L. A. & Trimble, C. Human papillomavirus vaccines — immune responses. Vaccine 30 (Suppl. 5), F83–F87 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. 100

    Giannini, S. L. et al. Enhanced humoral and memory B cellular immunity using HPV16/18 L1 VLP vaccine formulated with the MPL/aluminium salt combination (AS04) compared to aluminium salt only. Vaccine 24, 5937–5949 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. 101

    Einstein, M. H. et al. Comparison of the immunogenicity of the human papillomavirus (HPV)-16/18 vaccine and the HPV-6/11/16/18 vaccine for oncogenic non-vaccine types HPV-31 and HPV-45 in healthy women aged 18–45 years. Hum. Vaccin. 7, 1359–1373 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Giuliano, A. R. et al. Efficacy of quadrivalent HPV vaccine against HPV infection and disease in males. N. Engl. J. Med. 364, 401–411 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Joura, E. A. et al. A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. N. Engl. J. Med. 372, 711–723 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. 104

    Castellsagué, X. et al. Immunogenicity and safety of the 9-valent HPV vaccine in men. Vaccine 33, 6892–6901 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. 105

    [No authors listed.] Human papillomavirus vaccines: WHO position paper, October 2014. WHO Wkly Epidemiol. Rec. 89, 465–492 (2014).

  106. 106

    Hanson, C. M., Eckert, L., Bloem, P. & Cernuschi, T. Gavi HPV programs: application to implementation. Vaccines 3, 408–419 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Palefsky, J. M. et al. HPV vaccine against anal HPV infection and anal intraepithelial neoplasia. N. Engl. J. Med. 365, 1576–1585 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. 108

    [No authors listed.] Meeting of the Strategic Advisory Group of Experts on immunization, April 2014 — conclusion and recommendations. WHO Wkly Epidemiol. Rec. 89, 221–236 (2014).

  109. 109

    Dobson, S. R. et al. Immunogenicity of 2 doses of HPV vaccine in younger adolescents vs 3 doses in young women: a randomized clinical trial. JAMA 309, 1793–1802 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. 110

    Romanowski, B. et al. Immunogenicity and safety of the HPV-16/18 AS04-adjuvanted vaccine administered as a 2-dose schedule compared with the licensed 3-dose schedule: results from a randomized study. Hum. Vaccin. 7, 1374–1386 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Castellsagué, X. et al. End-of-study safety, immunogenicity, and efficacy of quadrivalent HPV (types 6, 11, 16, 18) recombinant vaccine in adult women 24–45 years of age. Br. J. Cancer 105, 28–37 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  112. 112

    Muñoz, N. et al. Impact of human papillomavirus (HPV)-6/11/16/18 vaccine on all HPV-associated genital diseases in young women. J. Natl Cancer Inst. 102, 325–339 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. 113

    Lehtinen, M. et al. Overall efficacy of HPV-16/18 AS04-adjuvanted vaccine against grade 3 or greater cervical intraepithelial neoplasia: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol. 13, 89–99 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. 114

    Schiller, J. T., Castellsagué, X. & Garland, S. M. A review of clinical trials of human papillomavirus prophylactic vaccines. Vaccine 30 (Suppl. 5), F123–F138 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Drolet, M. et al. Population-level impact and herd effects following human papillomavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect. Dis. 15, 565–580 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  116. 116

    Garland, S. M. et al. Impact and effectiveness of the quadrivalent human papillomavirus vaccine: a systematic review of 10 years of real-world experience. Clin. Infect. Dis. 63, 519–527 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Giuliano, A. R. et al. Seroconversion following anal and genital HPV infection in men: the HIM study. Papillomavirus Res. 1, 109–115 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  118. 118

    Scherpenisse, M. et al. Characteristics of HPV-specific antibody responses induced by infection and vaccination: cross-reactivity, neutralizing activity, avidity and IgG subclasses. PLoS ONE 8, e74797 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Wheeler, C. M. et al. Cross-protective efficacy of HPV-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by non-vaccine oncogenic HPV types: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol. 13, 100–110 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. 120

    Elfström, K. M. et al. Long term duration of protective effect for HPV negative women: follow-up of primary HPV screening randomised controlled trial. BMJ 348, g130 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  121. 121

    Kjaer, S. K. et al. A pooled analysis of continued prophylactic efficacy of quadrivalent human papillomavirus (types 6/11/16/18) vaccine against high-grade cervical and external genital lesions. Cancer Prev. Res. (Phila.) 2, 868–878 (2009).

    Article  Google Scholar 

  122. 122

    International Agency for Research on Cancer. IARC handbooks of cancer prevention. Volume 10. Cervix cancer screening. IARChttp://www.iarc.fr/en/publications/pdfs-online/prev/handbook10/HANDBOOK10.pdf (2005).

  123. 123

    Arbyn, M. et al. Evidence regarding human papillomavirus testing in secondary prevention of cervical cancer. Vaccine 30 (Suppl. 5), F88–F99 (2012).

    Article  PubMed  Google Scholar 

  124. 124

    Gage, J. C. et al. Reassurance against future risk of precancer and cancer conferred by a negative human papillomavirus test. J. Natl Cancer Inst. 106, dju153 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  125. 125

    Huh, W. K. et al. Use of primary high-risk human papillomavirus testing for cervical cancer screening: interim clinical guidance. Gynecol. Oncol. 136, 178–182 (2015).

    Article  PubMed  Google Scholar 

  126. 126

    Health Council of the Netherlands. Population screening for cervical cancer. The Hague: Health Council of the Netherlands (No. 2011/07E). RIVMhttps://www.gezondheidsraad.nl/sites/default/files/201107E_PopulationSCC_0.pdf (2011).

  127. 127

    Ronco, G. et al. Health technology assessment report: HPV DNA based primary screening for cervical cancer precursors. Epidemiol. Prev. 36, e1–e72 (in Italian) (2012).

    PubMed  Google Scholar 

  128. 128

    Cuzick, J. et al. Comparing the performance of six human papillomavirus tests in a screening population. Br. J. Cancer 108, 908–913 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Wentzensen, N., Schiffman, M., Palmer, T. & Arbyn, M. Triage of HPV positive women in cervical cancer screening. J. Clin. Virol. 76, S49–S55 (2016).

    Article  PubMed  Google Scholar 

  130. 130

    Massad, L. S., Jeronimo, J., Schiffman, M. & National Institutes of Health/American Society for Colposcopy and Cervical Pathology (NIH/ASCCP) Research Group. Interobserver agreement in the assessment of components of colposcopic grading. Obstet. Gynecol. 111, 1279–1284 (2008).

    Article  PubMed  Google Scholar 

  131. 131

    Bergeron, C. et al. Informed cytology for triaging HPV-positive women: substudy nested in the NTCC randomized controlled trial. J. Natl Cancer Inst. 107, dju423 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  132. 132

    Richardson, L. A. et al. HPV DNA testing with cytology triage in cervical cancer screening: influence of revealing HPV infection status. Cancer Cytopathol. 123, 745–754 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. 133

    Wentzensen, N. et al. p16/Ki-67 dual stain cytology for detection of cervical precancer in HPV-positive women. J. Natl Cancer Inst. 107, djv257 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Schiffman, M. et al. Proof-of-principle study of a novel cervical screening and triage strategy: computer-analyzed cytology to decide which HPV-positive women are likely to have ≥CIN2. Int. J. Cancerhttp://dx.doi.org/10.1002/ijc.30456 (2016).

  135. 135

    Ikenberg, H. et al. Screening for cervical cancer precursors with p16/Ki-67 dual-stained cytology: results of the PALMS study. J. Natl Cancer Inst. 105, 1550–1557 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Carozzi, F. et al. Risk of high-grade cervical intraepithelial neoplasia during follow-up in HPV-positive women according to baseline p16-INK4A results: a prospective analysis of a nested substudy of the NTCC randomised controlled trial. Lancet Oncol. 14, 168–176 (2013).

    Article  PubMed  Google Scholar 

  137. 137

    Cuzick, J. et al. Individual detection of 14 high risk human papilloma virus genotypes by the PapType test for the prediction of high grade cervical lesions. J. Clin. Virol. 60, 44–49 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Schiffman, M. et al. A study of genotyping for management of human papillomavirus-positive, cytology-negative cervical screening results. J. Clin. Microbiol. 53, 52–59 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. 139

    De Strooper, L. M. A. et al. CADM1, MAL and miR124-2 methylation analysis in cervical scrapes to detect cervical and endometrial cancer. J. Clin. Pathol. 67, 1067–1071 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. 140

    Vasiljevic´, N., Scibior-Bentkowska, D., Brentnall, A. R., Cuzick, J. & Lorincz, A. T. Credentialing of DNA methylation assays for human genes as diagnostic biomarkers of cervical intraepithelial neoplasia in high-risk HPV positive women. Gynecol. Oncol. 132, 709–714 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Mirabello, L. et al. Methylation of human papillomavirus type 16 genome and risk of cervical precancer in a Costa Rican population. J. Natl Cancer Inst. 104, 556–565 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Vasiljevic´, N., Scibior-Bentkowska, D., Brentnall, A. R., Cuzick, J. & Lorincz, A. A comparison of methylation levels in HPV18, HPV31 and HPV33 genomes reveals similar associations with cervical precancers. J. Clin. Virol. 59, 161–166 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. 143

    Wentzensen, N. et al. Methylation of HPV18, HPV31, and HPV45 genomes and cervical intraepithelial neoplasia grade 3. J. Natl Cancer Inst. 104, 1738–1749 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. 144

    Luhn, P. et al. Chromosomal gains measured in cytology samples from women with abnormal cervical cancer screening results. Gynecol. Oncol. 130, 595–600 (2013).

    Article  PubMed  Google Scholar 

  145. 145

    Zhao, F.-H. et al. An evaluation of novel, lower-cost molecular screening tests for human papillomavirus in rural China. Cancer Prev. Res. (Phila.) 6, 938–948 (2013).

    Article  Google Scholar 

  146. 146

    van Baars, R. et al. Investigating diagnostic problems of CIN1 and CIN2 associated with high-risk HPV by combining the novel molecular biomarker panHPVE4 With P16INK4a. Am. J. Surg. Pathol. 39, 1518–1528 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  147. 147

    Gage, J. C. et al. Number of cervical biopsies and sensitivity of colposcopy. Obstet. Gynecol. 108, 264–272 (2006).

    Article  PubMed  Google Scholar 

  148. 148

    Pretorius, R. G. et al. Colposcopically directed biopsy, random cervical biopsy, and endocervical curettage in the diagnosis of cervical intraepithelial neoplasia II or worse. Am. J. Obstet. Gynecol. 191, 430–434 (2004).

    Article  PubMed  Google Scholar 

  149. 149

    Wentzensen, N. et al. Multiple biopsies and detection of cervical cancer precursors at colposcopy. J. Clin. Oncol. 33, 83–89 (2015). Reports evidence for improved colposcopic biopsy practice.

    Article  PubMed  Google Scholar 

  150. 150

    Kelly, R. S., Walker, P., Kitchener, H. & Moss, S. M. Incidence of cervical intraepithelial neoplasia grade 2 or worse in colposcopy-negative/human papillomavirus-positive women with low-grade cytological abnormalities. BJOG 119, 20–25 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. 151

    Massad, L. S., Jeronimo, J. & Katki, H. A., Schiffman, M. & National Institutes of Health/American Society for Colposcopy and Cervical Pathology Research Group. The accuracy of colposcopic grading for detection of high-grade cervical intraepithelial neoplasia. J. Low. Genit. Tract Dis. 13, 137–144 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  152. 152

    Petry, K. U. et al. Evaluating HPV-negative CIN2+ in the ATHENA trial. Int. J. Cancer 138, 2932–2939 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. 153

    Bornstein, J. et al. 2011 terminology of the vulva of the International Federation for Cervical Pathology and Colposcopy. J. Low. Genit. Tract Dis. 16, 290–295 (2012).

    Article  PubMed  Google Scholar 

  154. 154

    Dalla Pria, A. et al. High-resolution anoscopy screening of HIV-positive MSM: longitudinal results from a pilot study. AIDS 28, 861–867 (2014).

    Article  PubMed  Google Scholar 

  155. 155

    Nathan, M. et al. Performance of anal cytology in a clinical setting when measured against histology and high-resolution anoscopy findings. AIDS 24, 373–379 (2010).

    Article  PubMed  Google Scholar 

  156. 156

    Palefsky, J. M. Screening to prevent anal cancer: current thinking and future directions. Cancer Cytopathol. 123, 509–510 (2015).

    Article  PubMed  Google Scholar 

  157. 157

    Schiffman, M. & Wentzensen, N. A. Suggested approach to simplify and improve cervical screening in the United States. J. Low. Genit. Tract Dis. 20, 1–7 (2016). Defines an approach to unify the many different cervical screening options that are currently available.

    Article  PubMed  PubMed Central  Google Scholar 

  158. 158

    McCredie, M. R. E. et al. Natural history of cervical neoplasia and risk of invasive cancer in women with cervical intraepithelial neoplasia 3: a retrospective cohort study. Lancet Oncol. 9, 425–434 (2008).

    Article  PubMed  Google Scholar 

  159. 159

    Castle, P. E., Schiffman, M., Wheeler, C. M. & Solomon, D. Evidence for frequent regression of cervical intraepithelial neoplasia-grade 2. Obstet. Gynecol. 113, 18–25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  160. 160

    Griffin, H. et al. Stratification of HPV-induced cervical pathology using the virally encoded molecular marker E4 in combination with p16 or MCM. Mod. Pathol. 28, 977–993 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. 161

    Herfs, M. et al. A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. Proc. Natl Acad. Sci. USA 109, 10516–10521 (2012).

    Article  PubMed  Google Scholar 

  162. 162

    Chow, E. P. F. et al. Quadrivalent vaccine-targeted human papillomavirus genotypes in heterosexual men after the Australian female human papillomavirus vaccination programme: a retrospective observational study. Lancet Infect. Dis. http://dx.doi.org/10.1016/S1473-3099(16)30116-5 (2016).

    Google Scholar 

  163. 163

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02328872 (2016).

  164. 164

    Trimble, C. L. et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet 386, 2078–2088 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. 165

    Tewari, K. S. & Monk, B. J. New strategies in advanced cervical cancer: from angiogenesis blockade to immunotherapy. Clin. Cancer Res. 20, 5349–5358 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. 166

    Tewari, K. S. et al. Improved survival with bevacizumab in advanced cervical cancer. N. Engl. J. Med. 370, 734–743 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. 167

    Monk, B. J. & Tewari, K. S. Evidence-based therapy for recurrent cervical cancer. J. Clin. Oncol. 32, 2687–2690 (2014).

    Article  PubMed  Google Scholar 

  168. 168

    Burger, R. A. et al. Human papillomavirus type 18: association with poor prognosis in early stage cervical cancer. J. Natl Cancer Inst. 88, 1361–1368 (1996).

    Article  CAS  PubMed  Google Scholar 

  169. 169

    National Comprehensive Cancer Network. NCCN Guidelines®. NCCNhttps://www.nccn.org/professionals/physician_gls/f_guidelines.asp (accessed 1 Oct 2016) Provides the definitive current US guidelines for cervical, vulvar, anal, penile and oropharyngeal cancers.

  170. 170

    Tsikouras, P. et al. Cervical cancer: screening, diagnosis and staging. J. BUON 21, 320–325 (2016).

    PubMed  Google Scholar 

  171. 171

    Houlihan, O. A. & O'Neill, B. D. P. Chemoradiotherapy for anal squamous cell carcinoma. Surgeon 14, 202–212 (2016).

    Article  PubMed  Google Scholar 

  172. 172

    Monk, B. J., Tewari, K. S. & Koh, W.-J. Multimodality therapy for locally advanced cervical carcinoma: state of the art and future directions. J. Clin. Oncol. 25, 2952–2965 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. 173

    Shridhar, R., Shibata, D., Chan, E. & Thomas, C. R. Anal cancer: current standards in care and recent changes in practice. CA Cancer J. Clin. 65, 139–162 (2015).

    Article  PubMed  Google Scholar 

  174. 174

    Pfister, D. G. et al. Head and neck cancers, version 2. 2014. Clinical practice guidelines in oncology. J. Natl Compr. Canc. Netw. 12, 1454–1487 (2014).

    Article  PubMed  Google Scholar 

  175. 175

    Fakhry, C. et al. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J. Natl Cancer Inst. 100, 261–269 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. 176

    Fakhry, C. et al. Human papillomavirus and overall survival after progression of oropharyngeal squamous cell carcinoma. J. Clin. Oncol. 32, 3365–3373 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  177. 177

    Ang, K. K. et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N. Engl. J. Med. 363, 24–35 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. 178

    Fakhry, C., Andersen, K. K., Eisele, D. W. & Gillison, M. L. Oropharyngeal cancer survivorship in Denmark, 1977–2012. Oral Oncol. 51, 982–984 (2015).

    Article  PubMed  Google Scholar 

  179. 179

    Patel, M. A. et al. Rising population of survivors of oral squamous cell cancer in the United States. Cancer 122, 1380–1387 (2016).

    Article  PubMed  Google Scholar 

  180. 180

    O'Rorke, M. A. et al. Human papillomavirus related head and neck cancer survival: a systematic review and meta-analysis. Oral Oncol. 48, 1191–1201 (2012).

    Article  CAS  PubMed  Google Scholar 

  181. 181

    Benson, E., Li, R., Eisele, D. & Fakhry, C. The clinical impact of HPV tumor status upon head and neck squamous cell carcinomas. Oral Oncol. 50, 565–574 (2014).

    Article  PubMed  Google Scholar 

  182. 182

    Kimple, R. J. et al. Enhanced radiation sensitivity in HPV-positive head and neck cancer. Cancer Res. 73, 4791–4800 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. 183

    Agrawal, N. et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 333, 1154–1157 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. 184

    Ward, M. J. et al. Tumour-infiltrating lymphocytes predict for outcome in HPV-positive oropharyngeal cancer. Br. J. Cancer 110, 489–500 (2014).

    Article  CAS  PubMed  Google Scholar 

  185. 185

    Badoual, C. et al. PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res. 73, 128–138 (2013).

    Article  CAS  PubMed  Google Scholar 

  186. 186

    Holsinger, F. C. & Ferris, R. L. Transoral endoscopic head and neck surgery and its role within the multidisciplinary treatment paradigm of oropharynx cancer: robotics, lasers, and clinical trials. J. Clin. Oncol. 33, 3285–3292 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. 187

    Pfister, D. G. et al. Head and neck cancers, version 1. 2015. J. Natl Compr. Canc. Netw. 13, 847–855 (2015).

    Article  PubMed  Google Scholar 

  188. 188

    Giorgi Rossi, P. et al. Why follow-back studies should be interpreted cautiously: the case of an HPV-negative cervical lesion. Cancer Cytopathol. 124, 66–67 (2016).

    Article  Google Scholar 

  189. 189

    Canfell, K. et al. Prevention of cervical cancer in rural China: evaluation of HPV vaccination and primary HPV screening strategies. Vaccine 29, 2487–2494 (2011).

    Article  PubMed  Google Scholar 

  190. 190

    Campos, N. G. et al. The comparative and cost-effectiveness of HPV-based cervical cancer screening algorithms in El Salvador. Int. J. Cancer 137, 893–902 (2015).

    Article  CAS  PubMed  Google Scholar 

  191. 191

    Burk, R. D., Chen, Z. & Van Doorslaer, K. Human papillomaviruses: genetic basis of carcinogenicity. Public Health Genomics 12, 281–290 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  192. 192

    Bouvard, V. et al. A review of human carcinogens — part B: biological agents. Lancet Oncol. 10, 321–322 (2009).

    Article  PubMed  Google Scholar 

  193. 193

    Schiffman, M., Clifford, G. & Buonaguro, F. M. Classification of weakly carcinogenic human papillomavirus types: addressing the limits of epidemiology at the borderline. Infect. Agent. Cancer 4, 8 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. 194

    Kovacic, M. B. et al. Relationships of human papillomavirus type, qualitative viral load, and age with cytologic abnormality. Cancer Res. 66, 10112–10119 (2006).

    Article  CAS  PubMed  Google Scholar 

  195. 195

    Mirabello, L. et al. HPV16 sublineage associations with histology-specific cancer risk using HPV whole-genome sequences in 3200 women. J. Natl Cancer Inst. 108, djw100 (2016). Reports on how whole-genome sequencing of the HPV genome will redefine our understanding of HPV epidemiology, natural history and carcinogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. 196

    Darragh, T. M. et al. The Lower Anogenital Squamous Terminology Standardization project for HPV-associated lesions: background and consensus recommendations from the College of American Pathologists and the American Society for Colposcopy and Cervical Pathology. Int. J. Gynecol. Pathol. 32, 76–115 (2013).

    Article  PubMed  Google Scholar 

  197. 197

    Kreimer, A. R. et al. Efficacy of fewer than three doses of an HPV-16/18 AS04-adjuvanted vaccine: combined analysis of data from the Costa Rica vaccine and PATRICIA trials. Lancet Oncol. 16, 775–786 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. 198

    Bosch, F. X. et al. HPV-FASTER: broadening the scope for prevention of HPV-related cancer. Nat. Rev. Clin. Oncol. 13, 119–132 (2016). Several prominent researchers advocate a vaccination and screening approach that could reduce HPV-related cancer incidence faster than current strategies.

    Article  CAS  PubMed  Google Scholar 

  199. 199

    Mustafa, R. A. et al. Systematic reviews and meta-analyses of the accuracy of HPV tests, visual inspection with acetic acid, cytology, and colposcopy. Int. J. Gynaecol. Obstet. 132, 259–265 (2016).

    Article  PubMed  Google Scholar 

  200. 200

    Fokom-Domgue, J. et al. Performance of alternative strategies for primary cervical cancer screening in sub-Saharan Africa: systematic review and meta-analysis of diagnostic test accuracy studies. BMJ 351, h3084 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  201. 201

    Denny, L., Kuhn, L., Hu, C.-C., Tsai, W.-Y. & Wright, T. C. Human papillomavirus-based cervical cancer prevention: long-term results of a randomized screening trial. J. Natl Cancer Inst. 102, 1557–1567 (2010).

    Article  PubMed  Google Scholar 

  202. 202

    Valdez, M. et al. Effectiveness of novel, lower cost molecular human papillomavirus-based tests for cervical cancer screening in rural China. Int. J. Cancer 138, 1453–1461 (2016).

    Article  CAS  PubMed  Google Scholar 

  203. 203

    Cremer, M. et al. Adapting CryoPen, a non-gas based cryotherapy system for use in low- and middle-income countries. J. Glob. Oncol. 2, 11s−12s (2016).

    Article  Google Scholar 

  204. 204

    Schiffman, M. & Wentzensen, N. Human papillomavirus infection and the multistage carcinogenesis of cervical cancer. Cancer Epidemiol. Biomarkers Prev. 22, 553–560 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  205. 205

    Wellings, K. et al. Sexual behaviour in context: a global perspective. Lancet 368, 1706–1728 (2006).

    Article  PubMed  Google Scholar 

  206. 206

    Baussano, I., Lazzarato, F., Brisson, M. & Franceschi, S. Human papillomavirus vaccination at a time of changing sexual behavior. Emerg. Infect. Dis. 22, 18–23 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. 207

    Gravitt, P. E. et al. Soil-transmitted helminth infections are associated with an increase in human papillomavirus prevalence and a T-helper type 2 cytokine signature in cervical fluids. J. Infect. Dis. 213, 723–730 (2016).

    Article  CAS  PubMed  Google Scholar 

  208. 208

    Clayton, E. et al. A single type of progenitor cell maintains normal epidermis. Nature 446, 185–189 (2007).

    Article  CAS  Google Scholar 

  209. 209

    Martens, J. E., Arends, J., Van der Linden, P. J. Q., De Boer, B. A. G. & Helmerhorst, T. J. M. Cytokeratin 17 and p63 are markers of the HPV target cell, the cervical stem cell. Anticancer Res. 24, 771–775 (2004).

    PubMed  Google Scholar 

  210. 210

    Reich, O., Pickel, H. & Regauer, S. Why do human papillomavirus infections induce sharply demarcated lesions of the cervix? J. Low. Genit. Tract Dis. 12, 8–10 (2008).

    Article  PubMed  Google Scholar 

  211. 211

    Herfs, M., Hubert, P., Moutschen, M. & Delvenne, P. Mucosal junctions: open doors to HPV and HIV infections? Trends Microbiol. 19, 114–120 (2011).

    Article  CAS  PubMed  Google Scholar 

  212. 212

    Santesso, N. et al. World Health Organization guidelines for treatment of cervical intraepithelial neoplasia 2–3 and screen-and-treat strategies to prevent cervical cancer. Int. J. Gynaecol. Obstet. 132, 252–258 (2016).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

J.D. is supported by the UK Medical Research Council through programme grant MC_U117584278 (Molecular Biology of Human Papillomavirus Infection).

Author information

Affiliations

Authors

Contributions

Introduction (M.S.); Epidemiology (S.d.S., S.F., M.S. and N.W.); Mechanisms/pathophysiology (J.D. and M.A.S.); Diagnosis, screening and prevention (N.W., M.A.S., S.F. and M.S.); Management (B.J.M. and C.F.); Quality of life (M.S.); Outlook (all authors); Overview of the Primer (M.S.). All authors were involved in the editing of the manuscript.

Corresponding author

Correspondence to Mark Schiffman.

Ethics declarations

Competing interests

M.A.S. has served as a consultant for Sanofi Pasteur MSD, GSK Biologicals and Merck Vaccines. S.d.S. has received institutional grants from Merck for research and educational projects and has conducted trials of vaccine products developed by Genticel and Merck. M.S. and N.W. have conducted US National Cancer Institute-led projects on HPV testing and cytology interpretations at reduced or no cost with BD Biosciences, Roche and Qiagen. J.D., C.F., B.J.M. and S.F. declare no competing interests.

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schiffman, M., Doorbar, J., Wentzensen, N. et al. Carcinogenic human papillomavirus infection. Nat Rev Dis Primers 2, 16086 (2016). https://doi.org/10.1038/nrdp.2016.86

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing