Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Primary open-angle glaucoma

Abstract

Glaucoma is an optic neuropathy that is characterized by the progressive degeneration of the optic nerve, leading to visual impairment. Glaucoma is the main cause of irreversible blindness worldwide, but typically remains asymptomatic until very severe. Open-angle glaucoma comprises the majority of cases in the United States and western Europe, of which, primary open-angle glaucoma (POAG) is the most common type. By contrast, in China and other Asian countries, angle-closure glaucoma is highly prevalent. These two types of glaucoma are characterized based on the anatomic configuration of the aqueous humour outflow pathway. The pathophysiology of POAG is not well understood, but it is an optic neuropathy that is thought to be associated with intraocular pressure (IOP)-related damage to the optic nerve head and resultant loss of retinal ganglion cells (RGCs). POAG is generally diagnosed during routine eye examination, which includes fundoscopic evaluation and visual field assessment (using perimetry). An increase in IOP, measured by tonometry, is not essential for diagnosis. Management of POAG includes topical drug therapies and surgery to reduce IOP, although new therapies targeting neuroprotection of RGCs and axonal regeneration are under development.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Pathophysiology of glaucoma.
Figure 2: Global prevalence of primary open-angle glaucoma.
Figure 3: Retinal ganglion cell injury and response in glaucoma.
Figure 4: Aqueous humour production and flow.
Figure 5: Diagnostic imaging for primary open-angle glaucoma.
Figure 6: Progressive retinal nerve fibre layer thinning in a patient with primary open-angle glaucoma.
Figure 7: Management algorithm of newly diagnosed primary open-angle glaucoma.
Figure 8: Trabeculectomy for the management of primary open-angle glaucoma.

References

  1. 1

    Weinreb, R. N. et al. The pathophysiology and treatment of glaucoma: a review. JAMA 311, 1901–1911 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Quigley, H. A. & Broman, A. T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 90, 262–267 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Weinreb, R. N. & Khaw, P. T. Primary open-angle glaucoma. Lancet 363, 1711–1720 (2004).

    Article  PubMed  Google Scholar 

  4. 4

    Tham, Y.-C. et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121, 2081–2090 (2014).

    Article  PubMed  Google Scholar 

  5. 5

    Kapetanakis, V. V. et al. Global variations and time trends in the prevalence of primary open angle glaucoma (POAG): a systematic review and meta-analysis. Br. J. Ophthalmol. 100, 86–93 (2016).

    Article  PubMed  Google Scholar 

  6. 6

    Tielsch, J. M. et al. Racial variations in the prevalence of primary open-angle glaucoma. The Baltimore Eye Survey. JAMA 266, 369–374 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. 7

    Wolfs, R. C. et al. Genetic risk of primary open-angle glaucoma. Population-based familial aggregation study. Arch. Ophthalmol. 116, 1640–1645 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. 8

    Collaborative Normal-Tension Glaucoma Study Group. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am. J. Ophthalmol. 126, 487–497 (1998).

    Article  Google Scholar 

  9. 9

    Collaborative Normal Tension Glaucoma Study Group. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am. J. Ophthalmol. 126, 498–505 (1998). This paper and reference 8 describe the efficacy of lowering IOP in patients with normal-tension glaucoma.

    Article  Google Scholar 

  10. 10

    Sommer, A. et al. Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore Eye Survey. Arch. Ophthalmol. 109, 1090–1095 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. 11

    Gordon, M. O. et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch. Ophthalmol. 120, 714–720; discussion 829–830 (2002). This study provides important information about risk factors for POAG obtained from a large multi-centre clinical trial that examined IOP-lowering treatment versus no treatment.

    Article  PubMed  Google Scholar 

  12. 12

    Anderson, D. R., Drance, S. M. & Schulzer, M. Factors that predict the benefit of lowering intraocular pressure in normal tension glaucoma. Am. J. Ophthalmol. 136, 820–829 (2003).

    Article  PubMed  Google Scholar 

  13. 13

    Medeiros, F. A. et al. Corneal hysteresis as a risk factor for glaucoma progression: a prospective longitudinal study. Ophthalmology 120, 1533–1540 (2013). This study suggests that corneal hysteresis is a new and powerful risk factor for the development of POAG.

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Mitchell, P., Hourihan, F., Sandbach, J. & Wang, J. J. The relationship between glaucoma and myopia: the Blue Mountains Eye Study. Ophthalmology 106, 2010–2015 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Zhao, D., Cho, J., Kim, M. H. & Guallar, E. The association of blood pressure and primary open-angle glaucoma: a meta-analysis. Am. J. Ophthalmol. 158, 615–627.e9 (2014).

    Article  PubMed  Google Scholar 

  16. 16

    Zhou, M., Wang, W., Huang, W. & Zhang, X. Diabetes mellitus as a risk factor for open-angle glaucoma: a systematic review and meta-analysis. PLoS ONE 9, e102972 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Leske, M. C., Wu, S.-Y., Nemesure, B. & Hennis, A. Incident open-angle glaucoma and blood pressure. Arch. Ophthalmol. 120, 954–959 (2002).

    Article  PubMed  Google Scholar 

  18. 18

    Yang, D. et al. Optic neuropathy induced by experimentally reduced cerebrospinal fluid pressure in monkeys. Invest. Ophthalmol. Vis. Sci. 55, 3067–3073 (2014).

    Article  PubMed  Google Scholar 

  19. 19

    Allen, K. F., Gaier, E. D. & Wiggs, J. L. Genetics of primary inherited disorders of the optic nerve: clinical applications. Cold Spring Harb. Perspect. Med. 5, a017277 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Burgoyne, C. The morphological difference between glaucoma and other optic neuropathies. J. Neuroophthalmol. 35, S8–S21 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Nguyen, T. D. Biomechanical assessment in models of glaucomatous optic neuropathy. Exp. Eye Res. 141, 125–138 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Ward, N. J., Ho, K. W., Lambert, W. S., Weitlauf, C. & Calkins, D. J. Absence of transient receptor potential vanilloid-1 accelerates stress-induced axonopathy in the optic projection. J. Neurosci. 34, 3161–3170 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Agarwal, R., Gupta, S. K., Agarwal, P., Saxena, R. & Agrawal, S. S. Current concepts in the pathophysiology of glaucoma. Indian J. Ophthalmol. 57, 257–266 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Flammer, J., Haefliger, I. O., Orgül, S. & Resink, T. Vascular dysregulation: a principal risk factor for glaucomatous damage? J. Glaucoma 8, 212–219 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Mozaffarieh, M., Grieshaber, M. C., Orgül, S. & Flammer, J. The potential value of natural antioxidative treatment in glaucoma. Surv. Ophthalmol. 53, 479–505 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. 26

    Liu, Q. et al. Oxidative stress is an early event in hydrostatic pressure induced retinal ganglion cell damage. Invest. Ophthalmol. Vis. Sci. 48, 4580–4589 (2007).

    Article  PubMed  Google Scholar 

  27. 27

    Seki, M. & Lipton, S. A. Targeting excitotoxic/free radical signaling pathways for therapeutic intervention in glaucoma. Prog. Brain Res. 173, 495–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Wax, M. B. & Tezel, G. Immunoregulation of retinal ganglion cell fate in glaucoma. Exp. Eye Res. 88, 825–830 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. 29

    Tezel, G. & Wax, M. B. The immune system and glaucoma. Curr. Opin. Ophthalmol. 15, 80–84 (2004).

    Article  PubMed  Google Scholar 

  30. 30

    Bell, K. et al. Does autoimmunity play a part in the pathogenesis of glaucoma? Prog. Retin. Eye Res. 36, 199–216 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. 31

    Bringmann, A. et al. Müller cells in the healthy and diseased retina. Prog. Retin. Eye Res. 25, 397–424 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Son, J. L. et al. Glaucomatous optic nerve injury involves early astrocyte reactivity and late oligodendrocyte loss. Glia 58, 780–789 (2010).

    PubMed  Google Scholar 

  33. 33

    Inman, D. M. & Horner, P. J. Reactive nonproliferative gliosis predominates in a chronic mouse model of glaucoma. Glia 55, 942–953 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Neufeld, A. H. & Liu, B. Glaucomatous optic neuropathy: when glia misbehave. Neuroscientist 9, 485–495 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Tamm, E. R., Braunger, B. M. & Fuchshofer, R. Intraocular pressure and the mechanisms involved in resistance of the aqueous humor flow in the trabecular meshwork outflow pathways. Prog. Mol. Biol. Transl Sci. 134, 301–314 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. 36

    He, Y., Ge, J. & Tombran-Tink, J. Mitochondrial defects and dysfunction in calcium regulation in glaucomatous trabecular meshwork cells. Invest. Ophthalmol. Vis. Sci. 49, 4912–4922 (2008).

    Article  PubMed  Google Scholar 

  37. 37

    Lütjen-Drecoll, E. Morphological changes in glaucomatous eyes and the role of TGFβ2 for the pathogenesis of the disease. Exp. Eye Res. 81, 1–4 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Fahy, E. T., Chrysostomou, V. & Crowston, J. G. Mini-review: impaired axonal transport and glaucoma. Curr. Eye Res. 41, 273–283 (2016).

    PubMed  Google Scholar 

  39. 39

    Salinas-Navarro, M. et al. Ocular hypertension impairs optic nerve axonal transport leading to progressive retinal ganglion cell degeneration. Exp. Eye Res. 90, 168–183 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Knox, D. L., Eagle, R. C. & Green, W. R. Optic nerve hydropic axonal degeneration and blocked retrograde axoplasmic transport: histopathologic features in human high-pressure secondary glaucoma. Arch. Ophthalmol. 125, 347–353 (2007).

    Article  PubMed  Google Scholar 

  41. 41

    Pease, M. E., McKinnon, S. J., Quigley, H. A., Kerrigan-Baumrind, L. A. & Zack, D. J. Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 41, 764–774 (2000).

    CAS  PubMed  Google Scholar 

  42. 42

    Martin, K. R. G. et al. Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model. Invest. Ophthalmol. Vis. Sci. 44, 4357–4365 (2003).

    Article  PubMed  Google Scholar 

  43. 43

    Pease, M. E. et al. Effect of CNTF on retinal ganglion cell survival in experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 50, 2194–2200 (2009).

    Article  PubMed  Google Scholar 

  44. 44

    Michelson, G., Langhans, M. J., Harazny, J. & Dichtl, A. Visual field defect and perfusion of the juxtapapillary retina and the neuroretinal rim area in primary open-angle glaucoma. Graefes Arch. Clin. Exp. Ophthalmol. 236, 80–85 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. 45

    Chung, H. S., Harris, A., Kagemann, L. & Martin, B. Peripapillary retinal blood flow in normal tension glaucoma. Br. J. Ophthalmol. 83, 466–469 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Shoshani, Y. Z. et al. Endothelin and its suspected role in the pathogenesis and possible treatment of glaucoma. Curr. Eye Res. 37, 1–11 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. 47

    Yu, D.-Y. et al. Retinal ganglion cells: energetics, compartmentation, axonal transport, cytoskeletons and vulnerability. Prog. Retin. Eye Res. 36, 217–246 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Baltan, S. et al. Metabolic vulnerability disposes retinal ganglion cell axons to dysfunction in a model of glaucomatous degeneration. J. Neurosci. 30, 5644–5652 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Lee, S. et al. Impaired complex-I-linked respiration and ATP synthesis in primary open-angle glaucoma patient lymphoblasts. Invest. Ophthalmol. Vis. Sci. 53, 2431–2437 (2012).

    Article  PubMed  Google Scholar 

  50. 50

    Ju, W.-K. et al. Intraocular pressure elevation induces mitochondrial fission and triggers OPA1 release in glaucomatous optic nerve. Invest. Ophthalmol. Vis. Sci. 49, 4903–4911 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51

    Balaratnasingam, C. et al. Comparative quantitative study of astrocytes and capillary distribution in optic nerve laminar regions. Exp. Eye Res. 121, 11–22 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. 52

    WoldeMussie, E., Yoles, E., Schwartz, M., Ruiz, G. & Wheeler, L. A. Neuroprotective effect of memantine in different retinal injury models in rats. J. Glaucoma 11, 474–480 (2002).

    Article  PubMed  Google Scholar 

  53. 53

    Hare, W. A. et al. Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, I: functional measures. Invest. Ophthalmol. Vis. Sci. 45, 2625–2639 (2004).

    Article  PubMed  Google Scholar 

  54. 54

    Hare, W. A. et al. Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, II: structural measures. Invest. Ophthalmol. Vis. Sci. 45, 2640–2651 (2004).

    Article  PubMed  Google Scholar 

  55. 55

    Align Technology. Align Technology announces fourth quarter and fiscal 2007 results. Align Techhttp://investor.aligntech.com/releasedetail.cfm?ReleaseID=290654 (2008).

  56. 56

    Hernandez, M. R. The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog. Retin. Eye Res. 19, 297–321 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. 57

    Lye-Barthel, M., Sun, D. & Jakobs, T. C. Morphology of astrocytes in a glaucomatous optic nerve. Invest. Ophthalmol. Vis. Sci. 54, 909–917 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  58. 58

    Fukuchi, T., Sawaguchi, S., Hara, H., Shirakashi, M. & Iwata, K. Extracellular matrix changes of the optic nerve lamina cribrosa in monkey eyes with experimentally chronic glaucoma. Graefes Arch. Clin. Exp. Ophthalmol. 230, 421–427 (1992).

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Quigley, H. A. et al. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest. Ophthalmol. Vis. Sci. 36, 774–786 (1995).

    CAS  PubMed  Google Scholar 

  60. 60

    Kerrigan, L. A., Zack, D. J., Quigley, H. A., Smith, S. D. & Pease, M. E. TUNEL-positive ganglion cells in human primary open-angle glaucoma. Arch. Ophthalmol. 115, 1031–1035 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. 61

    Guo, Y. et al. Does elevated intraocular pressure reduce retinal TRKB-mediated survival signaling in experimental glaucoma? Exp. Eye Res. 89, 921–933 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Kim, H. S., Chang, Y. I., Kim, J. H. & Park, C. K. Alteration of retinal intrinsic survival signal and effect of alpha2-adrenergic receptor agonist in the retina of the chronic ocular hypertension rat. Vis. Neurosci. 24, 127–139 (2007).

    Article  PubMed  Google Scholar 

  63. 63

    Tatton, W. et al. Hypothesis for a common basis for neuroprotection in glaucoma and Alzheimer’s disease: anti-apoptosis by alpha-2-adrenergic receptor activation. Surv. Ophthalmol. 48, S25–S37 (2003).

    Article  PubMed  Google Scholar 

  64. 64

    Skowronska-Krawczyk, D. et al. P16INK4a upregulation mediated by SIX6 defines retinal ganglion cell pathogenesis in glaucoma. Mol. Cell 59, 931–940 (2015). This study highlights the role of SIX6 in RGC death in glaucoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Minegishi, Y. et al. Enhanced optineurin E50K–TBK1 interaction evokes protein insolubility and initiates familial primary open-angle glaucoma. Hum. Mol. Genet. 22, 3559–3567 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. 66

    Ritch, R. et al. TBK1 gene duplication and normal-tension glaucoma. JAMA Ophthalmol. 132, 544–548 (2014). This paper describes TBK1 mutations in normal-tension glaucoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Sirohi, K. & Swarup, G. Defects in autophagy caused by glaucoma-associated mutations in optineurin. Exp. Eye Res. 144, 54–63 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. 68

    Wong, Y. C. & Holzbaur, E. L. F. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc. Natl Acad. Sci. USA 111, E4439–E4448 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. 69

    Tucker, B. A. et al. Duplication of TBK1 stimulates autophagy in iPSC-derived retinal cells from a patient with normal tension glaucoma. J. Stem Cell Res. Ther. 3, 161 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. 70

    Whitmore, A. V., Libby, R. T. & John, S. W. M. Glaucoma: thinking in new ways — a role for autonomous axonal self-destruction and other compartmentalised processes? Prog. Retin. Eye Res. 24, 639–662 (2005).

    Article  PubMed  Google Scholar 

  71. 71

    Howell, G. R., Soto, I., Libby, R. T. & John, S. W. M. Intrinsic axonal degeneration pathways are critical for glaucomatous damage. Exp. Neurol. 246, 54–61 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. 72

    Li, Z. et al. Tracking dendritic shrinkage of retinal ganglion cells after acute elevation of intraocular pressure. Invest. Ophthalmol. Vis. Sci. 52, 7205–7212 (2011).

    Article  PubMed  Google Scholar 

  73. 73

    Leung, C. K. et al. Long-term in vivo imaging and measurement of dendritic shrinkage of retinal ganglion cells. Invest. Ophthalmol. Vis. Sci. 52, 1539–1547 (2011).

    Article  PubMed  Google Scholar 

  74. 74

    Berry, R. H., Qu, J., John, S. W. M., Howell, G. R. & Jakobs, T. C. Synapse loss and dendrite remodeling in a mouse model of glaucoma. PLoS ONE 10, e0144341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Jakobs, T. C., Libby, R. T., Ben, Y., John, S. W. M. & Masland, R. H. Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J. Cell Biol. 171, 313–325 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    Article  CAS  Google Scholar 

  77. 77

    Wax, M. B. The case for autoimmunity in glaucoma. Exp. Eye Res. 93, 187–190 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. 78

    Weinreb, R. N. Toward understanding the optic neuropathy of glaucoma. Arch. Ophthalmol. 116, 1102–1103 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. 79

    Wiggs, J. L. Glaucoma genes and mechanisms. Prog. Mol. Biol. Transl Sci. 134, 315–342 (2015). This is a recent review on genes that are associated with glaucoma, including POAG and normal-tension glaucoma.

    Article  CAS  PubMed  Google Scholar 

  80. 80

    Bailey, J. N. C. et al. Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma. Nat. Genet. 48, 189–194 (2016). This is the most recent genome-wide association study for POAG that identified three new loci.

    Article  CAS  PubMed  Google Scholar 

  81. 81

    Hysi, P. G. et al. Genome-wide analysis of multi-ancestry cohorts identifies new loci influencing intraocular pressure and susceptibility to glaucoma. Nat. Genet. 46, 1126–1130 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Wiggs, J. L. et al. Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma. PLoS Genet. 8, e1002654 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Alward, W. L. M. et al. Variations in the myocilin gene in patients with open-angle glaucoma. Arch. Ophthalmol. 120, 1189–1197 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. 84

    Zode, G. S. et al. Reduction of ER stress via a chemical chaperone prevents disease phenotypes in a mouse model of primary open angle glaucoma. J. Clin. Invest. 121, 3542–3553 (2011). This study shows that a chemical chaperone can alleviate the increase in IOP caused by a MYOC missense mutation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Aung, T. et al. Clinical features and course of patients with glaucoma with the E50K mutation in the optineurin gene. Invest. Ophthalmol. Vis. Sci. 46, 2816–2822 (2005). This is an important study showing that the OPTN E50K mutation causes normal-tension glaucoma.

    Article  PubMed  Google Scholar 

  86. 86

    Fingert, J. H. et al. Copy number variations on chromosome 12q14 in patients with normal tension glaucoma. Hum. Mol. Genet. 20, 2482–2494 (2011). This analysis identifies 12p14 duplication in patients with normal-tension glaucoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Chalasani, M. L. S., Kumari, A., Radha, V. & Swarup, G. E50K-OPTN-induced retinal cell death involves the Rab GTPase-activating protein, TBC1D17 mediated block in autophagy. PLoS ONE 9, e95758 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Weinreb, R. N. & Friedman, D. S. (eds) Angle Closure and Angle Closure Glaucoma (Kugler Publications, 2006).

    Google Scholar 

  89. 89

    Anton, A., Yamagishi, N., Zangwill, L., Sample, P. A. & Weinreb, R. N. Mapping structural to functional damage in glaucoma with standard automated perimetry and confocal scanning laser ophthalmoscopy. Am. J. Ophthalmol. 125, 436–446 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. 90

    Medeiros, F. A., Bowd, C., Zangwill, L. M., Patel, C. & Weinreb, R. N. Detection of glaucoma using scanning laser polarimetry with enhanced corneal compensation. Invest. Ophthalmol. Vis. Sci. 48, 3146–3153 (2007).

    Article  PubMed  Google Scholar 

  91. 91

    Bourne, R. R. A. et al. Comparability of retinal nerve fiber layer thickness measurements of optical coherence tomography instruments. Invest. Ophthalmol. Vis. Sci. 46, 1280–1285 (2005).

    Article  PubMed  Google Scholar 

  92. 92

    Leite, M. T., Rao, H. L., Zangwill, L. M., Weinreb, R. N. & Medeiros, F. A. Comparison of the diagnostic accuracies of the Spectralis, Cirrus, and RTVue optical coherence tomography devices in glaucoma. Ophthalmology 118, 1334–1339 (2011).

    PubMed  Google Scholar 

  93. 93

    Leung, C. K. S. et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: analysis of the retinal nerve fiber layer map for glaucoma detection. Ophthalmology 117, 1684–1691 (2010).

    Article  PubMed  Google Scholar 

  94. 94

    Leung, C. K. S. et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: pattern of RNFL defects in glaucoma. Ophthalmology 117, 2337–2344 (2010).

    Article  PubMed  Google Scholar 

  95. 95

    Medeiros, F. A., Zangwill, L. M., Bowd, C., Sample, P. A. & Weinreb, R. N. Use of progressive glaucomatous optic disk change as the reference standard for evaluation of diagnostic tests in glaucoma. Am. J. Ophthalmol. 139, 1010–1018 (2005).

    Article  PubMed  Google Scholar 

  96. 96

    Leung, C. K. S. et al. Impact of age-related change of retinal nerve fiber layer and macular thicknesses on evaluation of glaucoma progression. Ophthalmology 120, 2485–2492 (2013).

    Article  PubMed  Google Scholar 

  97. 97

    Chauhan, B. C. et al. Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. Ophthalmology 120, 535–543 (2013).

    Article  PubMed  Google Scholar 

  98. 98

    Kuang, T. M., Zhang, C., Zangwill, L. M., Weinreb, R. N. & Medeiros, F. A. Estimating lead time gained by optical coherence tomography in detecting glaucoma before development of visual field defects. Ophthalmology 122, 2002–2009 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  99. 99

    Johnson, C. A., Adams, A. J., Casson, E. J. & Brandt, J. D. Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss. Arch. Ophthalmol. 111, 645–650 (1993).

    Article  CAS  PubMed  Google Scholar 

  100. 100

    Medeiros, F. A., Sample, P. A. & Weinreb, R. N. Frequency doubling technology perimetry abnormalities as predictors of glaucomatous visual field loss. Am. J. Ophthalmol. 137, 863–871 (2004).

    Article  PubMed  Google Scholar 

  101. 101

    Sample, P. A. et al. Identifying glaucomatous vision loss with visual-function-specific perimetry in the diagnostic innovations in glaucoma study. Invest. Ophthalmol. Vis. Sci. 47, 3381–3389 (2006).

    Article  PubMed  Google Scholar 

  102. 102

    van der Schoot, J., Reus, N. J., Colen, T. P. & Lemij, H. G. The ability of short-wavelength automated perimetry to predict conversion to glaucoma. Ophthalmology 117, 30–34 (2010).

    Article  PubMed  Google Scholar 

  103. 103

    Liu, S. et al. Comparison of standard automated perimetry, frequency-doubling technology perimetry, and short-wavelength automated perimetry for detection of glaucoma. Invest. Ophthalmol. Vis. Sci. 52, 7325–7331 (2011).

    Article  PubMed  Google Scholar 

  104. 104

    Weinreb, R. N., Brandt, J. D., Garway-Heath, D. F. & Medeiros, F. A. (eds) Intraocular Pressure (Kugler Publications, 2007).

    Google Scholar 

  105. 105

    Wiggs, J. L. & Pierce, E. A. Genetic testing for inherited eye disease: who benefits? JAMA Ophthalmol. 131, 1265–1266 (2013). A commentary on the benefit of genetic testing for patients with inherited eye diseases, including glaucoma.

    Article  PubMed  Google Scholar 

  106. 106

    Souzeau, E. et al. Predictive genetic testing experience for myocilin primary open-angle glaucoma using the Australian and New Zealand Registry of Advanced Glaucoma. Genet. Med. 16, 558–563 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. 107

    Zode, G. S. et al. Topical ocular sodium 4-phenylbutyrate rescues glaucoma in a myocilin mouse model of primary open-angle glaucoma. Invest. Ophthalmol. Vis. Sci. 53, 1557–1565 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Weinreb, R. N. et al. (eds) Progression of Glaucoma (Kugler Publications, 2011).

    Google Scholar 

  109. 109

    Jampel, H. D. et al. Agreement among glaucoma specialists in assessing progressive disc changes from photographs in open-angle glaucoma patients. Am. J. Ophthalmol. 147, 39–44.e1 (2009).

    Article  PubMed  Google Scholar 

  110. 110

    Yu, M. et al. Risk of visual field progression in glaucoma patients with progressive retinal nerve fiber layer thinning: a 5-year prospective study. Ophthalmology 123, 1201–1210 (2016).

    Article  PubMed  Google Scholar 

  111. 111

    Medeiros, F. A. et al. Prediction of functional loss in glaucoma from progressive optic disc damage. Arch. Ophthalmol. 127, 1250–1256 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  112. 112

    Sehi, M. et al. Retinal nerve fiber layer atrophy is associated with visual field loss over time in glaucoma suspect and glaucomatous eyes. Am. J. Ophthalmol. 155, 73–82.e1 (2013).

    Article  PubMed  Google Scholar 

  113. 113

    Medeiros, F. A. et al. Evaluation of progressive neuroretinal rim loss as a surrogate end point for development of visual field loss in glaucoma. Ophthalmology 121, 100–109 (2014).

    Article  PubMed  Google Scholar 

  114. 114

    Medeiros, F. A. et al. A combined index of structure and function for staging glaucomatous damage. Arch. Ophthalmol. 130, 1107–1116 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  115. 115

    Shaikh, Y., Yu, F. & Coleman, A. L. Burden of undetected and untreated glaucoma in the United States. Am. J. Ophthalmol. 158, 1121–1129.e1 (2014).

    Article  PubMed  Google Scholar 

  116. 116

    Chua, J. et al. Prevalence, risk factors, and visual features of undiagnosed glaucoma: the Singapore Epidemiology of Eye Diseases Study. JAMA Ophthalmol. 133, 938–946 (2015).

    Article  PubMed  Google Scholar 

  117. 117

    Weinreb, R. N., Healey, P. R. & Topouzis, F. (eds) Glaucoma Screening (Kugler Publications, 2008).

    Google Scholar 

  118. 118

    Mowatt, G. et al. Screening tests for detecting open-angle glaucoma: systematic review and meta-analysis. Invest. Ophthalmol. Vis. Sci. 49, 5373–5385 (2008).

    Article  PubMed  Google Scholar 

  119. 119

    Thomas, S., Hodge, W. & Malvankar-Mehta, M. The cost-effectiveness analysis of teleglaucoma screening device. PLoS ONE 10, e0137913 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Heijl, A. et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch. Ophthalmol. 120, 1268–1279 (2002).

    Article  PubMed  Google Scholar 

  121. 121

    Heijl, A. et al. Measuring visual field progression in the Early Manifest Glaucoma Trial. Acta Ophthalmol. Scand. 81, 286–293 (2003).

    Article  PubMed  Google Scholar 

  122. 122

    American Academy of Opthalmology. Primary Open-Angle Glaucoma Preferred Practice Pattern® Guidelines. AAOhttp://www.aaojournal.org/article/S0161-6420(15)01276-2/pdf (2010).

  123. 123

    Garway-Heath, D. F. et al. Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial. Lancet 385, 1295–1304 (2015). This is the first placebo-controlled trial to demonstrate the efficacy of lowering IOP in glaucoma.

    Article  CAS  PubMed  Google Scholar 

  124. 124

    Kass, M. A. et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch. Ophthalmol. 120, 701–713; discussion 829–830 (2002).

    Article  PubMed  Google Scholar 

  125. 125

    Musch, D. C. et al. Visual field progression in the Collaborative Initial Glaucoma Treatment Study the impact of treatment and other baseline factors. Ophthalmology 116, 200–207 (2009).

    Article  PubMed  Google Scholar 

  126. 126

    The AGIS Investigators. The advanced glaucoma intervention study (AGIS): 7. the relationship between control of intraocular pressure and visual field deterioration. Am. J. Ophthalmol. 130, 429–440 (2000).

    Article  Google Scholar 

  127. 127

    Musch, D. C., Gillespie, B. W., Niziol, L. M., Lichter, P. R. & Varma, R. Intraocular pressure control and long-term visual field loss in the Collaborative Initial Glaucoma Treatment Study. Ophthalmology 118, 1766–1773 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  128. 128

    McIlraith, I., Strasfeld, M., Colev, G. & Hutnik, C. M. L. Selective laser trabeculoplasty as initial and adjunctive treatment for open-angle glaucoma. J. Glaucoma 15, 124–130 (2006).

    Article  PubMed  Google Scholar 

  129. 129

    Zhang, K., Zhang, L. & Weinreb, R. N. Ophthalmic drug discovery: novel targets and mechanisms for retinal diseases and glaucoma. Nat. Rev. Drug Discov. 11, 541–559 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. 130

    Lindsey, J. D. et al. Induction of tyrosinase gene transcription in human iris organ cultures exposed to latanoprost. Arch. Ophthalmol. 119, 853 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. 131

    Cracknell, K. P. B. & Grierson, I. Prostaglandin analogues in the anterior eye: their pressure lowering action and side effects. Exp. Eye Res. 88, 786–791 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. 132

    Bagga, H., Liu, J. H. K. & Weinreb, R. N. Intraocular pressure measurements throughout the 24 h. Curr. Opin. Ophthalmol. 20, 79–83 (2009).

    Article  PubMed  Google Scholar 

  133. 133

    Liu, J. H. K., Medeiros, F. A., Slight, J. R. & Weinreb, R. N. Diurnal and nocturnal effects of brimonidine monotherapy on intraocular pressure. Ophthalmology 117, 2075–2079 (2010).

    Article  PubMed  Google Scholar 

  134. 134

    Liu, J. H. K., Medeiros, F. A., Slight, J. R. & Weinreb, R. N. Comparing diurnal and nocturnal effects of brinzolamide and timolol on intraocular pressure in patients receiving latanoprost monotherapy. Ophthalmology 116, 449–454 (2009).

    Article  PubMed  Google Scholar 

  135. 135

    Okeke, C. O. et al. Interventions improve poor adherence with once daily glaucoma medications in electronically monitored patients. Ophthalmology 116, 2286–2293 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  136. 136

    Goldberg, I., Graham, S. L., Crowston, J. G., d'Mellow, G. & Australian and New Zealand Glaucoma Interest Group. Clinical audit examining the impact of benzalkonium chloride-free anti-glaucoma medications on patients with symptoms of ocular surface disease. Clin. Experiment. Ophthalmol. 43, 214–220 (2015).

    Article  PubMed  Google Scholar 

  137. 137

    Wong, M. O. M., Lee, J. W. Y., Choy, B. N. K., Chan, J. C. H. & Lai, J. S. M. Systematic review and meta-analysis on the efficacy of selective laser trabeculoplasty in open-angle glaucoma. Surv. Ophthalmol. 60, 36–50 (2015).

    Article  PubMed  Google Scholar 

  138. 138

    Realini, T. Selective laser trabeculoplasty for the management of open-angle glaucoma in St. Lucia. JAMA Ophthalmol. 131, 321–327 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. 139

    Singh, D. et al. Topical prostaglandin analogues do not affect selective laser trabeculoplasty outcomes. Eye (Lond.) 23, 2194–2199 (2009).

    Article  CAS  Google Scholar 

  140. 140

    Lamoureux, E. L. et al. Comparing the effectiveness of selective laser trabeculoplasty with topical medication as initial treatment (the Glaucoma Initial Treatment Study): study protocol for a randomised controlled trial. Trials 16, 406 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Tsang, S., Cheng, J. & Lee, J. W. Y. Developments in laser trabeculoplasty. Br. J. Ophthalmol. 100, 94–97 (2016).

    Article  PubMed  Google Scholar 

  142. 142

    De Fendi, L. I., Arruda, G. V., Scott, I. U. & Paula, J. S. Mitomycin C versus 5-fluorouracil as an adjunctive treatment for trabeculectomy: a meta-analysis of randomized clinical trials. Clin. Experiment. Ophthalmol. 41, 798–806 (2013).

    Article  PubMed  Google Scholar 

  143. 143

    Landers, J., Martin, K., Sarkies, N., Bourne, R. & Watson, P. A. Twenty-year follow-up study of trabeculectomy: risk factors and outcomes. Ophthalmology 119, 694–702 (2012).

    Article  PubMed  Google Scholar 

  144. 144

    Saheb, H., Gedde, S. J., Schiffman, J. C. & Feuer, W. J. Outcomes of glaucoma reoperations in the tube versus trabeculectomy (TVT) study. Am. J. Ophthalmol. 157, 1179–1189.e2 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  145. 145

    Minckler, D. S. et al. Aqueous shunts in glaucoma: a report by the American Academy of Ophthalmology. Ophthalmology 115, 1089–1098 (2008).

    Article  PubMed  Google Scholar 

  146. 146

    Gedde, S. J. et al. Treatment outcomes in the tube versus trabeculectomy (TVT) study after five years of follow-up. Am. J. Ophthalmol. 153, 789–803.e2 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  147. 147

    Lam, D. et al. Cataract. Nat. Rev. Dis. Primers 1, 15014 (2015).

    Article  PubMed  Google Scholar 

  148. 148

    Minckler, D., Mosaed, S., Francis, B., Loewen, N. & Weinreb, R. N. Clinical results of ab interno trabeculotomy using the trabectome for open-angle glaucoma: the Mayo Clinic series in Rochester, Minnesota. Am. J. Ophthalmol. 157, 1325–1326 (2014).

    Article  PubMed  Google Scholar 

  149. 149

    Samuelson, T. W., Katz, L. J., Wells, J. M., Duh, Y.-J. & Giamporcaro, J. E. Randomized evaluation of the trabecular micro-bypass stent with phacoemulsification in patients with glaucoma and cataract. Ophthalmology 118, 459–467 (2011).

    Article  PubMed  Google Scholar 

  150. 150

    US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02006693 (2016).

  151. 151

    US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT01085357 (2016).

  152. 152

    Ramulu, P. Glaucoma and disability: which tasks are affected, and at what stage of disease? Curr. Opin. Ophthalmol. 20, 92–98 (2009). This is a comprehensive review of QOL issues in patients with glaucoma.

    Article  PubMed  PubMed Central  Google Scholar 

  153. 153

    McGwin, G., Huisingh, C., Jain, S. G., Girkin, C. A. & Owsley, C. Binocular visual field impairment in glaucoma and at-fault motor vehicle collisions. J. Glaucoma 24, 138–143 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  154. 154

    Black, A. A., Wood, J. M. & Lovie-Kitchin, J. E. Inferior field loss increases rate of falls in older adults with glaucoma. Optom. Vis. Sci. 88, 1275–1282 (2011).

    Article  PubMed  Google Scholar 

  155. 155

    Freeman, E. E., Gange, S. J., Muñoz, B. & West, S. K. Driving status and risk of entry into long-term care in older adults. Am. J. Public Health 96, 1254–1259 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  156. 156

    Haymes, S. A., LeBlanc, R. P., Nicolela, M. T., Chiasson, L. A. & Chauhan, B. C. Glaucoma and on-road driving performance. Invest. Ophthalmol. Vis. Sci. 49, 3035–3041 (2008).

    Article  PubMed  Google Scholar 

  157. 157

    McGwin, G. et al. Visual field defects and the risk of motor vehicle collisions among patients with glaucoma. Invest. Ophthalmol. Vis. Sci. 46, 4437–4441 (2005).

    Article  PubMed  Google Scholar 

  158. 158

    Gracitelli, C. P. B. et al. Predicting risk of motor vehicle collisions in patients with glaucoma: a longitudinal study. PLoS ONE 10, e0138288 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. 159

    Wood, J. M. & Owsley, C. Useful field of view test. Gerontology 60, 315–318 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  160. 160

    Owsley, C. et al. Visual processing impairment and risk of motor vehicle crash among older adults. JAMA 279, 1083–1088 (1998).

    Article  CAS  PubMed  Google Scholar 

  161. 161

    Tatham, A. J., Boer, E. R., Gracitelli, C. P. B., Rosen, P. N. & Medeiros, F. A. Relationship between motor vehicle collisions and results of perimetry, useful field of view, and driving simulation in drivers with glaucoma. Transl Vis. Sci. Technol. 4, 5 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  162. 162

    Rosen, P. N. et al. A portable platform for evaluation of visual performance in glaucoma patients. PLoS ONE 10, e0139426 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. 163

    Parc, C., Tiberghien, E. & Pierre-Kahn, V. Driving habits in glaucoma patients. J. Fr. Ophtalmol. 35, 235–241 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. 164

    Ramulu, P. Y., West, S. K., Munoz, B., Jampel, H. D. & Friedman, D. S. Driving cessation and driving limitation in glaucoma: the Salisbury Eye Evaluation Project. Ophthalmology 116, 1846–1853 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  165. 165

    Lamoureux, E. L. et al. Visual impairment, causes of vision loss, and falls: the singapore malay eye study. Invest. Ophthalmol. Vis. Sci. 49, 528–533 (2008).

    Article  PubMed  Google Scholar 

  166. 166

    Haymes, S. A., LeBlanc, R. P., Nicolela, M. T., Chiasson, L. A. & Chauhan, B. C. Risk of falls and motor vehicle collisions in glaucoma. Invest. Ophthalmol. Vis. Sci. 48, 1149–1155 (2007).

    Article  PubMed  Google Scholar 

  167. 167

    Diniz-Filho, A. et al. Evaluation of postural control in patients with glaucoma using a virtual reality environment. Ophthalmology 122, 1131–1138 (2015). This is the first study to evaluate the application of a virtual-reality-based strategy for the assessment of disability in glaucoma.

    Article  PubMed  PubMed Central  Google Scholar 

  168. 168

    Aspinall, P. A. et al. Evaluation of quality of life and priorities of patients with glaucoma. Invest. Ophthalmol. Vis. Sci. 49, 1907–1915 (2008).

    Article  PubMed  Google Scholar 

  169. 169

    Burr, J. M., Kilonzo, M., Vale, L. & Ryan, M. Developing a preference-based Glaucoma Utility Index using a discrete choice experiment. Optom. Vis. Sci. 84, 797–808 (2007).

    Article  PubMed  Google Scholar 

  170. 170

    Medeiros, F. A. et al. Longitudinal changes in quality of life and rates of progressive visual field loss in glaucoma patients. Ophthalmology 122, 293–301 (2015). This is the first investigation of the association between rates of disease progression and longitudinal changes in QOL in glaucoma.

    Article  PubMed  Google Scholar 

  171. 171

    McKean-Cowdin, R. et al. Impact of visual field loss on health-related quality of life in glaucoma: the Los Angeles Latino Eye Study. Ophthalmology 115, 941–948.e1 (2008).

    Article  PubMed  Google Scholar 

  172. 172

    Lisboa, R. et al. Association between rates of binocular visual field loss and vision-related quality of life in patients with glaucoma. JAMA Ophthalmol. 131, 486–494 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  173. 173

    Gracitelli, C. P. B. et al. Association between progressive retinal nerve fiber layer loss and longitudinal change in quality of life in glaucoma. JAMA Ophthalmol. 133, 384–390 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  174. 174

    Australian New Zealand Clinical Trials Registry. Glaucoma Initial Treatment Study (GITS): a comparison of eye drops versus laser treatment. ANZCTRhttps://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12611000720910 (2011).

  175. 175

    Weinreb, R. N. & Kaufman, P. L. Glaucoma research community and FDA look to the future, II: NEI/FDA Glaucoma Clinical Trial Design and Endpoints Symposium: measures of structural change and visual function. Invest. Ophthalmol. Vis. Sci. 52, 7842–7851 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  176. 176

    Weinreb, R. N. et al. (eds) Medical Treatment of Glaucoma: Consensus Series — 7 (Kugler Publications, 2010).

    Google Scholar 

  177. 177

    Johnson, T. V. et al. Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 51, 2051–2059 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  178. 178

    de Lima, S. et al. Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors. Proc. Natl Acad. Sci. USA 109, 9149–9154 (2012).

    Article  PubMed  Google Scholar 

  179. 179

    Heijl, A., Patella, V. M. & Bengtsson, B. Effective Perimetry: The Field Analyzer Primer (Carl-Zeiss Meditec, 2012).

    Google Scholar 

  180. 180

    Chen, Y. et al. Common variants near ABCA1 and in PMM2 are associated with primary open-angle glaucoma. Nat. Genet. 46, 1115–1119 (2014).

    Article  CAS  Google Scholar 

  181. 181

    Gharahkhani, P. et al. Common variants near ABCA1, AFAP1 and GMDS confer risk of primary open-angle glaucoma. Nat. Genet. 46, 1120–1125 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. 182

    Pulst, S. M. Degenerative ataxias, from genes to therapies: the 2015 Cotzias Lecture. Neurology 86, 2284–2290 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. 183

    Ciura, S., Sellier, C., Campanari, M.-L., Charlet-Berguerand, N. & Kabashi, E. The most prevalent genetic cause of ALS-FTD, C9orf72 synergizes the toxicity of ATXN2 intermediate polyglutamine repeats through the autophagy pathway. Autophagy 12, 1406–1408 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. 184

    Thorleifsson, G. et al. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma. Nat. Genet. 42, 906–909 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. 185

    Chen, F. et al. Exome array analysis identifies CAV1/CAV2 as a susceptibility locus for intraocular pressure. Invest. Ophthalmol. Vis. Sci. 56, 544–551 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  186. 186

    Wiggs, J. L. et al. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma in Caucasians from the USA. Hum. Mol. Genet. 20, 4707–4713 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. 187

    Burdon, K. P. et al. Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1. Nat. Genet. 43, 574–578 (2011).

    Article  CAS  PubMed  Google Scholar 

  188. 188

    Ramdas, W. D. et al. A genome-wide association study of optic disc parameters. PLoS Genet. 6, e1000978 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. 189

    Medina-Trillo, C. et al. Hypo- and hypermorphic FOXC1 mutations in dominant glaucoma: transactivation and phenotypic variability. PLoS ONE 10, e0119272 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. 190

    van Koolwijk, L. M. E. et al. Common genetic determinants of intraocular pressure and primary open-angle glaucoma. PLoS Genet. 8, e1002611 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. 191

    Carnes, M. U. et al. Discovery and functional annotation of SIX6 variants in primary open-angle glaucoma. PLoS Genet. 10, e1004372 (2014). This study identifies pathogenetic SIX6 mutations using a zebrafish complementation assay.

    Article  CAS  PubMed  Google Scholar 

  192. 192

    Kuo, J. Z. et al. Quantitative trait locus analysis of SIX1SIX6 with retinal nerve fiber layer thickness in individuals of European descent. Am. J. Ophthalmol. 160, 123–130.e1 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. 193

    Li, Z. et al. A common variant near TGFBR3 is associated with primary open angle glaucoma. Hum. Mol. Genet. 24, 3880–3892 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. 194

    Wang, Q.-C. et al. TMCO1 is an ER Ca2+ load-activated Ca2+ channel. Cell 165, 1454–1466 (2016).

    Article  CAS  PubMed  Google Scholar 

  195. 195

    Gaton, D. D. et al. Increased matrix metalloproteinases 1, 2, and 3 in the monkey uveoscleral outflow pathway after topical prostaglandin F2α–isopropyl ester treatment. Arch. Ophthalmol. 119, 1165–1170 (2001).

    Article  CAS  PubMed  Google Scholar 

  196. 196

    Schachtschabel, U., Lindsey, J. D. & Weinreb, R. N. The mechanism of action of prostaglandins on uveoscleral outflow. Curr. Opin. Ophthalmol. 11, 112–115 (2000).

    Article  CAS  PubMed  Google Scholar 

  197. 197

    Kee, C., Yoshitomi, T., & Gupta, N. in Medical Treatment of Glaucoma: Consensus Series — 7 (eds Weinreb, R. N. et al.) 31–36 (Kugler Publications, 2010).

    Google Scholar 

  198. 198

    Liu, J. H. K. in Medical Treatment of Glaucoma: Consensus Series — 7 (eds Weinreb, R. N. et al.) 37–43 (Kugler Publications, 2010).

    Google Scholar 

  199. 199

    Hollo, G., Honjo, M., Realini, A. & Schmetterer, L. in Medical Treatment of Glaucoma: Consensus Series — 7 (eds Weinreb, R. N. et al.) 51–58 (Kugler Publications, 2010).

    Google Scholar 

Download references

Acknowledgements

R.N.W. has received research support from the National Eye Institute. D.S.F. has received research support from the US NIH and the US Centers of Disease Control and Prevention. J.L.W. has received research support from the NIH, March of Dimes and Research to Prevent Blindness.

Author information

Affiliations

Authors

Contributions

Introduction (R.N.W.); Epidemiology (D.S.F.); Mechanisms/pathophysiology (K.R.M. and J.L.W.); Diagnosis, screening and prevention (C.K.S.L. and R.N.W.); Management (J.G.C.); Quality of life (F.A.M.); Outlook (R.N.W. and J.G.C.); Overview of the Primer (R.N.W.).

Corresponding author

Correspondence to Robert N. Weinreb.

Ethics declarations

Competing interests

R.N.W. has received personal fees from Allergan, Alcon, Ametek, Bausch + Lomb, Carl-Zeiss Meditec, ForSight Vision5 and Topcon, and has received research support from Genentech and Quark, in addition to research equipment from Heidelberg Engineering, Konan, Optovue and Topcon. C.K.S.L. has received research support from Carl-Zeiss Meditec and Topcon. J.G.C. has served on advisory committees for Allergan, Alcon, CERA Technologies, Pfizer, Polyactiva and Seagull Technologies. F.A.M. has received personal fees from Carl-Zeiss Meditec, Heidelberg Engineering, Ametek, Alcon and Allergan, and research support from Carl-Zeiss Meditec, Heidelberg Engineering, Topcon, Ametek, Bausch + Lomb, Allergan and Sensimed. D.S.F. has received consulting fees from Nidek and ForSight Vision5. K.R.M. has received personal fees from Allergan, Bausch + Lomb, MSD and Santen. J.L.W. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weinreb, R., Leung, C., Crowston, J. et al. Primary open-angle glaucoma. Nat Rev Dis Primers 2, 16067 (2016). https://doi.org/10.1038/nrdp.2016.67

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing