Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Ovarian cancer

Abstract

Ovarian cancer is not a single disease and can be subdivided into at least five different histological subtypes that have different identifiable risk factors, cells of origin, molecular compositions, clinical features and treatments. Ovarian cancer is a global problem, is typically diagnosed at a late stage and has no effective screening strategy. Standard treatments for newly diagnosed cancer consist of cytoreductive surgery and platinum-based chemotherapy. In recurrent cancer, chemotherapy, anti-angiogenic agents and poly(ADP-ribose) polymerase inhibitors are used, and immunological therapies are currently being tested. High-grade serous carcinoma (HGSC) is the most commonly diagnosed form of ovarian cancer and at diagnosis is typically very responsive to platinum-based chemotherapy. However, in addition to the other histologies, HGSCs frequently relapse and become increasingly resistant to chemotherapy. Consequently, understanding the mechanisms underlying platinum resistance and finding ways to overcome them are active areas of study in ovarian cancer. Substantial progress has been made in identifying genes that are associated with a high risk of ovarian cancer (such as BRCA1 and BRCA2), as well as a precursor lesion of HGSC called serous tubal intraepithelial carcinoma, which holds promise for identifying individuals at high risk of developing the disease and for developing prevention strategies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histological subtypes of ovarian cancer.
Figure 2: DNA repair mechanisms and ovarian cancer.
Figure 3: CT scans from a patient with stage IV ovarian cancer.
Figure 4: Tumour burden in ovarian cancer.

Similar content being viewed by others

References

  1. Oswald, A. J. & Gourley, C. Low-grade epithelial ovarian cancer: a number of distinct clinical entities? Curr. Opin. Oncol. 27, 412–419 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Groen, R. S., Gershenson, D. M. & Fader, A. N. Updates and emerging therapies for rare epithelial ovarian cancers: one size no longer fits all. Gynecol. Oncol. 136, 373–383 (2015).

    Article  PubMed  Google Scholar 

  3. Mangili, G. et al. Unraveling the two entities of endometrioid ovarian cancer: a single center clinical experience. Gynecol. Oncol. 126, 403–407 (2012).

    Article  PubMed  Google Scholar 

  4. Callegaro-Filho, D. et al. Small cell carcinoma of the ovary-hypercalcemic type (SCCOHT): a review of 47 cases. Gynecol. Oncol. 140, 53–57 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Witkowski, L. et al. The influence of clinical and genetic factors on patient outcome in small cell carcinoma of the ovary, hypercalcemic type. Gynecol. Oncol. 141, 454–460 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kindelberger, D. W. et al. Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: evidence for a causal relationship. Am. J. Surg. Pathol. 31, 161–169 (2007). This paper associates STICs that arise in the distal fallopian tube with eventual development of HGSCs of the ovary and fallopian tube.

    Article  PubMed  Google Scholar 

  7. Pentheroudakis, G. & Pavlidis, N. Serous papillary peritoneal carcinoma: unknown primary tumour, ovarian cancer counterpart or a distinct entity? A systematic review. Crit. Rev. Oncol. Hematol. 75, 27–42 (2010).

    Article  PubMed  Google Scholar 

  8. Kurman, R. J., Carcangiu, M. L., Herrinton, C. S. & Young, R. H. (eds) WHO Classification of Tumours Female Reproductive Organs (IARC, 2014).

    Google Scholar 

  9. Menon, U. et al. Risk algorithm using serial biomarker measurements doubles the number of screen-detected cancers compared with a single-threshold rule in the United Kingdom Collaborative Trial of Ovarian Cancer Screening. J. Clin. Oncol. 33, 2062–2071 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jacobs, I. J. et al. Ovarian cancer screening and mortality in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial. Lancet 387, 945–956 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. McGuire, W. P. et al. Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N. Engl. J. Med. 334, 1–6 (1996). This trial was the first to demonstrate a PFS and overall survival benefit of the addition of paclitaxel to platinum therapy, thereby helping to establish the standard of care of a platinum plus taxane chemotherapy regimen for newly diagnosed ovarian cancer.

    Article  CAS  PubMed  Google Scholar 

  12. Bookman, M. A. et al. Evaluation of new platinum-based treatment regimens in advanced-stage ovarian cancer: a phase III Trial of the Gynecologic Cancer Intergroup. J. Clin. Oncol. 27, 1419–1425 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. du Bois, A. et al. A randomized clinical trial of cisplatin/paclitaxel versus carboplatin/paclitaxel as first-line treatment of ovarian cancer. J. Natl Cancer Inst. 95, 1320–1329 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Ozols, R. F. et al. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J. Clin. Oncol. 21, 3194–3200 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Vasey, P. A. et al. Phase III randomized trial of docetaxel–carboplatin versus paclitaxel–carboplatin as first-line chemotherapy for ovarian carcinoma. J. Natl Cancer Inst. 96, 1682–1691 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin. 66, 7–30 (2016).

    Article  PubMed  Google Scholar 

  17. Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

    Article  PubMed  Google Scholar 

  18. Sant, M. et al. Survival of women with cancers of breast and genital organs in Europe 1999–2007: results of the EUROCARE-5 study. Eur. J. Cancer 51, 2191–2205 (2015).

    Article  PubMed  Google Scholar 

  19. Lowe, K. A. et al. An international assessment of ovarian cancer incidence and mortality. Gynecol. Oncol. 130, 107–114 (2013).

    Article  PubMed  Google Scholar 

  20. Sung, P.-L., Chang, Y.-H., Chao, K.-C. & Chuang, C.-M. Global distribution pattern of histological subtypes of epithelial ovarian cancer: a database analysis and systematic review. Gynecol. Oncol. 133, 147–154 (2014).

    Article  PubMed  Google Scholar 

  21. Yang, H. P. et al. Ovarian cancer incidence trends in relation to changing patterns of menopausal hormone therapy use in the United States. J. Clin. Oncol. 31, 2146–2151 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. National Cancer Institute. SEER stat fact sheets: ovarian cancer. SEERhttp://seer.cancer.gov/statfacts/html/ovary.html (2016).

  23. Zhang, S. et al. Frequencies of BRCA1 and BRCA2 mutations among 1,342 unselected patients with invasive ovarian cancer. Gynecol. Oncol. 121, 353–357 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Alsop, K. et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. J. Clin. Oncol. 30, 2654–2663 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Castilla, L. H. et al. Mutations in the BRCA1 gene in families with early-onset breast and ovarian cancer. Nat. Genet. 8, 387–391 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Pennington, K. P. & Swisher, E. M. Hereditary ovarian cancer: beyond the usual suspects. Gynecol. Oncol. 124, 347–353 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Bolton, K. L. et al. Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer. JAMA 307, 382–390 (2012). The presence of germline BRCA mutations improves the survival of women with ovarian cancer compared with women with sporadic ovarian cancer; BRCA2 mutations are associated with a better outcome than BRCA1 mutations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, G. et al. Differing clinical impact of BRCA1 and BRCA2 mutations in serous ovarian cancer. Pharmacogenomics 13, 1523–1535 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Rebbeck, T. R. et al. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA 313, 1347–1361 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Walsh, T. et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc. Natl Acad. Sci. USA 108, 18032–18037 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Norquist, B. M. et al. Inherited mutations in women with ovarian carcinoma. JAMA Oncol. 2, 482–490 (2016). This paper reviews the known and established inherited germline mutations that are associated with an increased risk of developing ovarian cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Prakash, R., Zhang, Y., Feng, W. & Jasin, M. Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb. Perspect. Biol. 7, a016600 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Suwaki, N., Klare, K. & Tarsounas, M. RAD51 paralogs: roles in DNA damage signalling, recombinational repair and tumorigenesis. Semin. Cell Dev. Biol. 22, 898–905 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Ketabi, Z. et al. Ovarian cancer linked to lynch syndrome typically presents as early-onset, non-serous epithelial tumors. Gynecol. Oncol. 121, 462–465 (2011).

    Article  PubMed  Google Scholar 

  35. Engel, C. et al. Risks of less common cancers in proven mutation carriers with lynch syndrome. J. Clin. Oncol. 30, 4409–4415 (2012).

    Article  PubMed  Google Scholar 

  36. Crispens, M. A. Endometrial and ovarian cancer in lynch syndrome. Clin. Colon Rectal Surg. 25, 97–102 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Moorman, P. G. et al. Oral contraceptives and risk of ovarian cancer and breast cancer among high-risk women: a systematic review and meta-analysis. J. Clin. Oncol. 31, 4188–4198 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Bassuk, S. S. & Manson, J. E. Oral contraceptives and menopausal hormone therapy: relative and attributable risks of cardiovascular disease, cancer, and other health outcomes. Ann. Epidemiol. 25, 193–200 (2015).

    Article  PubMed  Google Scholar 

  39. Havrilesky, L. J. et al. Oral contraceptive pills as primary prevention for ovarian cancer: a systematic review and meta-analysis. Obstet. Gynecol. 122, 139–147 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Wentzensen, N. et al. Ovarian cancer risk factors by histologic subtype: an analysis from the ovarian cancer cohort consortium. J. Clin. Oncol. June 20 2016 [epub ahead of print].

  41. Havrilesky, L. J. et al. Oral contraceptive use for the primary prevention of ovarian cancer. Evid. Rep. Technol. Assess. (Full Rep.) 212, 1–514 (2013).

    Google Scholar 

  42. Pearce, C. L., Chung, K., Pike, M. C. & Wu, A. H. Increased ovarian cancer risk associated with menopausal estrogen therapy is reduced by adding a progestin. Cancer 115, 531–539 (2009).

    Article  PubMed  Google Scholar 

  43. Mørch, L. S., Løkkegaard, E., Andreasen, A. H., Krüger-Kjaer, S. & Lidegaard, O. Hormone therapy and ovarian cancer. JAMA 302, 298–305 (2009).

    Article  PubMed  Google Scholar 

  44. Hildebrand, J. S. et al. Postmenopausal hormone use and incident ovarian cancer: associations differ by regimen. Int. J. Cancer 127, 2928–2935 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Collaborative Group On Epidemiological Studies Of Ovarian Cancer et al. Menopausal hormone use and ovarian cancer risk: individual participant meta-analysis of 52 epidemiological studies. Lancet 385, 1835–1842 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  46. Eeles, R. A. et al. Adjuvant hormone therapy may improve survival in epithelial ovarian cancer: results of the AHT randomized trial. J. Clin. Oncol. 33, 4138–4144 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Friebel, T. M., Domchek, S. M. & Rebbeck, T. R. Modifiers of cancer risk in BRCA1 and BRCA2 mutation carriers: systematic review and meta-analysis. J. Natl Cancer Inst. 106, dju091 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rice, M. S., Hankinson, S. E. & Tworoger, S. S. Tubal ligation, hysterectomy, unilateral oophorectomy, and risk of ovarian cancer in the Nurses' Health Studies. Fertil. Steril. 102, 192–198.e3 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gaitskell, K. et al. Tubal ligation and ovarian cancer risk in a large cohort: substantial variation by histological type. Int. J. Cancer 138, 1076–1084 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Domchek, S. M. et al. Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA 304, 967–975 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kotsopoulos, J. et al. Ovarian cancer risk factors by tumor dominance, a surrogate for cell of origin. Int. J. Cancer 133, 730–739 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Keum, N. et al. Adult weight gain and adiposity-related cancers: a dose–response meta-analysis of prospective observational studies. J. Natl. Cancer Inst. 107, djv088 (2015).

    Article  PubMed  Google Scholar 

  53. Olsen, C. M. et al. Obesity and risk of ovarian cancer subtypes: evidence from the Ovarian Cancer Association Consortium. Endocr. Relat. Cancer 20, 251–262 (2013).

    Article  PubMed  Google Scholar 

  54. Nagle, C. M. et al. Obesity and survival among women with ovarian cancer: results from the Ovarian Cancer Association Consortium. Br. J. Cancer 113, 817–826 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cannioto, R. A. & Moysich, K. B. Epithelial ovarian cancer and recreational physical activity: a review of the epidemiological literature and implications for exercise prescription. Gynecol. Oncol. 137, 559–573 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Merritt, M. A., Poole, E. M., Hankinson, S. E., Willett, W. C. & Tworoger, S. S. Dairy food and nutrient intake in different life periods in relation to risk of ovarian cancer. Cancer Causes Control 25, 795–808 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Koushik, A. et al. Intake of vitamins A, C, and E and folate and the risk of ovarian cancer in a pooled analysis of 10 cohort studies. Cancer Causes Control 26, 1315–1327 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Xie, J. et al. A prospective cohort study of dietary indices and incidence of epithelial ovarian cancer. J. Ovarian Res. 7, 112 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cassidy, A., Huang, T., Rice, M. S., Rimm, E. B. & Tworoger, S. S. Intake of dietary flavonoids and risk of epithelial ovarian cancer. Am. J. Clin. Nutr. 100, 1344–1351 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Narod, S. A. Talc and ovarian cancer. Gynecol. Oncol. 141, 410–412 (2016).

    Article  PubMed  Google Scholar 

  61. Terry, K. L. et al. Genital powder use and risk of ovarian cancer: a pooled analysis of 8,525 cases and 9,859 controls. Cancer Prev. Res. (Phila) 6, 811–821 (2013).

    Article  Google Scholar 

  62. Houghton, S. C. et al. Perineal powder risk ovarian Cancer. J. Natl Cancer Inst. 106, dju208 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Trabert, B. et al. Aspirin, nonaspirin nonsteroidal anti-inflammatory drug, acetaminophen risk invasive epithelial ovarian cancer: pooled analysis in the Ovarian Cancer Association Consortium. J. Natl Cancer Inst. 106, djt431 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang, T. et al. Depression and risk of epithelial ovarian cancer: results from two large prospective cohort studies. Gynecol. Oncol. 139, 481–486 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bell, D. et al. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011). This paper analyses the molecular composition of HGSC, which is a cancer of genomic instability, DNA repair defects and copy number alterations.

    Article  CAS  Google Scholar 

  66. Berns, E. M. J. J. & Bowtell, D. D. The changing view of high-grade serous ovarian cancer. Cancer Res. 72, 2701–2704 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Patch, A.-M. et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature 521, 489–494 (2015). This paper demonstrates that many genetic abnormalities contribute to platinum and overall chemotherapy insensitivity, including cyclin E1 amplification, MDR1 overexpression and BRCA reversion mutations.

    Article  CAS  PubMed  Google Scholar 

  68. Liu, J. & Matulonis, U. A. New strategies in ovarian cancer: translating the molecular complexity of ovarian cancer into treatment advances. Clin. Cancer Res. 20, 5150–5156 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Galic, V., Coleman, R. L. & Herzog, T. J. Unmet needs in ovarian cancer: dividing histologic subtypes to exploit novel targets and pathways. Curr. Cancer Drug Targets 13, 698–707 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Bashashati, A. et al. Distinct evolutionary trajectories of primary high-grade serous ovarian cancers revealed through spatial mutational profiling. J. Pathol. 231, 21–34 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ahmed, A. A. et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J. Pathol. 221, 49–56 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. O'Don O'Donovan, P. J. & Livingston, D. M. BRCA1 and BRCA2: breast/ovarian cancer susceptibility gene products and participants in DNA double-strand break repair. Carcinogenesis 31, 961–967 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Baratta, M. G. et al. An in-tumor genetic screen reveals that the BET bromodomain protein, BRD4, is a potential therapeutic target in ovarian carcinoma. Proc. Natl Acad. Sci. USA 112, 232–237 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Reyes-González, J. M. et al. Targeting c-MYC in platinum-resistant ovarian cancer. Mol. Cancer Ther. 14, 2260–2269 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tothill, R. W. et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin. Cancer Res. 14, 5198–5208 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Bentink, S. et al. Angiogenic mRNA and microRNA gene expression signature predicts a novel subtype of serous ovarian cancer. PLoS ONE 7, e30269 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Verhaak, R. G. W. et al. Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J. Clin. Invest. 123, 517–525 (2013).

    CAS  PubMed  Google Scholar 

  78. Yang, D. et al. Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell 23, 186–199 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Etemadmoghadam, D. et al. Integrated genome-wide DNA copy number and expression analysis identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas. Clin. Cancer Res. 15, 1417–1427 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tan, D. S. P. et al. Genomic analysis reveals the molecular heterogeneity of ovarian clear cell carcinomas. Clin. Cancer Res. 17, 1521–1534 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Della Pepa, C. et al. Low grade serous ovarian carcinoma: from the molecular characterization to the best therapeutic strategy. Cancer Treat. Rev. 41, 136–143 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Romero, I., Sun, C. C., Wong, K. K., Bast, R. C. & Gershenson, D. M. Low-grade serous carcinoma: new concepts and emerging therapies. Gynecol. Oncol. 130, 660–666 (2013).

    Article  PubMed  Google Scholar 

  83. Tone, A. A. et al. Intratumoral heterogeneity in a minority of ovarian low-grade serous carcinomas. BMC Cancer 14, 982 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wiegand, K. C. et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N. Engl. J. Med. 363, 1532–1543 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Brown, J. & Frumovitz, M. Mucinous tumors of the ovary: current thoughts on diagnosis and management. Curr. Oncol. Rep. 16, 389 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ryland, G. L. et al. Mutational landscape of mucinous ovarian carcinoma and its neoplastic precursors. Genome Med. 7, 87 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jelinic, P. et al. Recurrent SMARCA4 mutations in small cell carcinoma of the ovary. Nat. Genet. 46, 424–426 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kurman, R. J. & Shih, I.-M. The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am. J. Surg. Pathol. 34, 433–443 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Medeiros, F. et al. The tubal fimbria is a preferred site for early adenocarcinoma in women with familial ovarian cancer syndrome. Am. J. Surg. Pathol. 30, 230–236 (2006).

    Article  PubMed  Google Scholar 

  90. Carlson, J. W. et al. Serous tubal intraepithelial carcinoma: its potential role in primary peritoneal serous carcinoma and serous cancer prevention. J. Clin. Oncol. 26, 4160–4165 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Perets, R. et al. Transformation of the fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in Brca;Tp53;Pten models. Cancer Cell 24, 751–765 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lee, Y. et al. A candidate precursor to serous carcinoma that originates in the distal fallopian tube. J. Pathol. 211, 26–35 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Howitt, B. E. et al. Evidence for a dualistic model of high-grade serous carcinoma: BRCA mutation status, histology, and tubal intraepithelial carcinoma. Am. J. Surg. Pathol. 39, 287–293 (2015).

    Article  PubMed  Google Scholar 

  94. Crum, C. P. et al. Through the glass darkly: intraepithelial neoplasia, top-down differentiation, and the road to ovarian cancer. J. Pathol. 231, 402–412 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Powell, C. B. et al. Long term follow up of BRCA1 and BRCA2 mutation carriers with unsuspected neoplasia identified at risk reducing salpingo-oophorectomy. Gynecol. Oncol. 129, 364–371 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang, L. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 348, 203–213 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Hwang, W.-T., Adams, S. F., Tahirovic, E., Hagemann, I. S. & Coukos, G. Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a meta-analysis. Gynecol. Oncol. 124, 192–198 (2012).

    Article  PubMed  Google Scholar 

  98. Musrap, N. & Diamandis, E. P. Revisiting the complexity of the ovarian cancer microenvironment — clinical implications for treatment strategies. Mol. Cancer Res. 10, 1254–1264 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Zsiros, E., Tanyi, J., Balint, K. & Kandalaft, L. E. Immunotherapy for ovarian cancer: recent advances and perspectives. Curr. Opin. Oncol. 26, 492–500 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Schlienger, K. et al. TRANCE- and CD40 ligand-matured dendritic cells reveal MHC class I-restricted T cells specific for autologous tumor in late-stage ovarian cancer patients. Clin. Cancer Res. 9, 1517–1527 (2003).

    CAS  PubMed  Google Scholar 

  101. Santin, A. D. et al. In vitro induction of tumor-specific human lymphocyte antigen class I-restricted CD8+ cytotoxic T lymphocytes by ovarian tumor antigen-pulsed autologous dendritic cells from patients with advanced ovarian cancer. Am. J. Obstet. Gynecol. 183, 601–609 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Yang, X., Shen, F., Hu, W., Coleman, R. L. & Sood, A. K. New ways to successfully target tumor vasculature in ovarian cancer. Curr. Opin. Obstet. Gynecol. 27, 58–65 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Bottsford-Miller, J. N., Coleman, R. L. & Sood, A. K. Resistance and escape from antiangiogenesis therapy: clinical implications and future strategies. J. Clin. Oncol. 30, 4026–4034 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lu, C. et al. Gene alterations identified by expression profiling in tumor-associated endothelial cells from invasive ovarian carcinoma. Cancer Res. 67, 1757–1768 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Sakai, W. et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 451, 1116–1120 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Goff, B. A., Mandel, L., Muntz, H. G. & Melancon, C. H. Ovarian carcinoma diagnosis. Cancer 89, 2068–2075 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Goff, B. A., Mandel, L. S., Melancon, C. H. & Muntz, H. G. Frequency of symptoms of ovarian cancer in women presenting to primary care clinics. JAMA 291, 2705–2712 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. US National Library of Medicine. ClinicalTrials.govhttp://www.clinicaltrials.gov/ct2/show/NCT01493505 (2014).

  109. Demir, R. H. & Marchand, G. J. Adnexal masses suspected to be benign treated with laparoscopy. JSLS 16, 71–84 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Sokalska, A. et al. Diagnostic accuracy of transvaginal ultrasound examination for assigning a specific diagnosis to adnexal masses. Ultrasound Obstet. Gynecol. 34, 462–470 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Prat, J. & FIGO Committee on Gynecologic Oncology. Staging classification for cancer of the ovary, fallopian tube, and peritoneum. Int. J. Gynecol. Obstet. 124, 1–5 (2014).

    Article  Google Scholar 

  112. Ferrandina, G., Legge, F., Petrillo, M., Salutari, V. & Scambia, G. Ovarian cancer patients with ‘node-positive-only’ stage IIIC disease have a more favorable outcome than stage IIIA/B. Gynecol. Oncol. 107, 154–156 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Baek, S.-J. et al. Stage IIIC epithelial ovarian cancer classified solely by lymph node metastasis has a more favorable prognosis than other types of stage IIIC epithelial ovarian cancer. J. Gynecol. Oncol. 19, 223–228 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Piver, M. S., Barlow, J. J. & Lele, S. B. Incidence of subclinical metastasis in stage I and II ovarian carcinoma. Obstet. Gynecol. 52, 100–104 (1978).

    CAS  PubMed  Google Scholar 

  115. Piver, M. S. Optimal surgical therapy in stage I and II ovarian malignancies. Int. J. Radiat. Oncol. 8, 247–249 (1982).

    Article  CAS  Google Scholar 

  116. Mayer, A. R. et al. Ovarian cancer staging: does it require a gynecologic oncologist? Gynecol. Oncol. 47, 223–227 (1992).

    Article  CAS  PubMed  Google Scholar 

  117. McGowan, L., Lesher, L. P., Norris, H. J. & Barnett, M. Misstaging of ovarian cancer. Obstet. Gynecol. 65, 568–572 (1985).

    CAS  PubMed  Google Scholar 

  118. Kobayashi, H. et al. A randomized study of screening for ovarian cancer: a multicenter study in Japan. Int. J. Gynecol. Cancer 18, 414–420 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Jacobs, I. J. et al. Screening for ovarian cancer: a pilot randomised controlled trial. Lancet 353, 1207–1210 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Tian, C. et al. CA-125 change after chemotherapy in prediction of treatment outcome among advanced mucinous and clear cell epithelial ovarian cancers: a Gynecologic Oncology Group study. Cancer 115, 1395–1403 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Buys, S. S. et al. Effect of screening on ovarian cancer mortality: the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Randomized Controlled Trial. JAMA 305, 2295–2303 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Hellström, I. et al. The HE4 (WFDC2) protein is a biomarker for ovarian carcinoma. Cancer Res. 63, 3695–3700 (2003).

    PubMed  Google Scholar 

  123. Wu, L. et al. Diagnostic value of serum human epididymis protein 4 (HE4) in ovarian carcinoma: a systematic review and meta-analysis. Int. J. Gynecol. Cancer 22, 1106–1112 (2012).

    Article  PubMed  Google Scholar 

  124. Maritschnegg, E. et al. Lavage of the uterine cavity for molecular detection of mullerian duct carcinomas: a proof-of-concept study. J. Clin. Oncol. 33, 4293–4300 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Falconer, H., Yin, L., Grönberg, H. & Altman, D. Ovarian cancer risk after salpingectomy: a nationwide population-based study. J. Natl. Cancer Inst. 107, dju410 (2015).

    Article  PubMed  Google Scholar 

  126. McAlpine, J. N. et al. Opportunistic salpingectomy: uptake, risks, and complications of a regional initiative for ovarian cancer prevention. Am. J. Obstet. Gynecol. 210, 471.e1–471.e11 (2014).

    Article  Google Scholar 

  127. Kwon, J. S. et al. Costs and benefits of opportunistic salpingectomy as an ovarian cancer prevention strategy. Obstet. Gynecol. 125, 338–345 (2015).

    Article  PubMed  Google Scholar 

  128. Walker, J. L. et al. Society of Gynecologic Oncology recommendations for the prevention of ovarian cancer. Cancer 121, 2108–2120 (2015).

    Article  PubMed  Google Scholar 

  129. National Comprehensive Cancer Network. Clinical practice guidelines in oncology (NCCN guidelines). Genetic/familial high-risk assessment: breast and ovarian. NCCNhttps://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf (2016).

  130. Finch, A. P. M. et al. Impact of oophorectomy on cancer incidence and mortality in women with a BRCA1 or BRCA2 mutation. J. Clin. Oncol. 32, 1547–1553 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Eccles, D. M. et al. BRCA1 and BRCA2 genetic testing-pitfalls and recommendations for managing variants of uncertain clinical significance. Ann. Oncol. 26, 2057–2065 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chan, J. K. et al. Influence of the gynecologic oncologist on the survival of ovarian cancer patients. Obstet. Gynecol. 109, 1342–1350 (2007).

    Article  PubMed  Google Scholar 

  133. Cliby, W. A. et al. Ovarian cancer in the United States: contemporary patterns of care associated with improved survival. Gynecol. Oncol. 136, 11–17 (2015).

    Article  PubMed  Google Scholar 

  134. Bristow, R. E., Chang, J., Ziogas, A. & Anton-Culver, H. Adherence to treatment guidelines for ovarian cancer as a measure of quality care. Obstet. Gynecol. 121, 1226–1234 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Chang, S.-J., Hodeib, M., Chang, J. & Bristow, R. E. Survival impact of complete cytoreduction to no gross residual disease for advanced-stage ovarian cancer: a meta-analysis. Gynecol. Oncol. 130, 493–498 (2013).

    Article  PubMed  Google Scholar 

  136. Horowitz, N. S. et al. Does aggressive surgery improve outcomes? Interaction between preoperative disease burden and complex surgery in patients with advanced-stage ovarian cancer: an analysis of GOG 182. J. Clin. Oncol. 33, 937–943 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Chang, S.-J., Bristow, R. E. & Ryu, H.-S. Impact of complete cytoreduction leaving no gross residual disease associated with radical cytoreductive surgical procedures on survival in advanced ovarian cancer. Ann. Surg. Oncol. 19, 4059–4067 (2012).

    Article  PubMed  Google Scholar 

  138. National Comprehensive Cancer Netwwork. Clinical practice guidelines in oncology (NCCN guidelines). Ovarian cancer including fallopian tube cancer and primary peritoneal cancer. NCCNhttps://www.nccn.org/professionals/physician_gls/pdf/ovarian.pdf (2016).

  139. Armstrong, D. K. et al. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N. Engl. J. Med. 354, 34–43 (2009).

    Article  Google Scholar 

  140. Katsumata, N. et al. Dose-dense paclitaxel once a week in combination with carboplatin every 3 weeks for advanced ovarian cancer: a phase 3, open-label, randomised controlled trial. Lancet 374, 1331–1338 (2009). Weekly paclitaxel is superior to paclitaxel every 3 weeks when combined with carboplatin for newly diagnosed ovarian cancer.

    Article  CAS  PubMed  Google Scholar 

  141. Katsumata, N. et al. Long-term results of dose-dense paclitaxel and carboplatin versus conventional paclitaxel and carboplatin for treatment of advanced epithelial ovarian, fallopian tube, or primary peritoneal cancer (JGOG 3016): a randomised, controlled, open-label trial. Lancet Oncol. 14, 1020–1026 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Burger, R. A. et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N. Engl. J. Med. 365, 2473–2483 (2011). This is the first phase III study to test a biologic agent, bevacizumab, combined with carboplatin and paclitaxel chemotherapy for newly diagnosed ovarian cancer.

    Article  CAS  PubMed  Google Scholar 

  143. Perren, T. J. et al. A phase 3 trial of bevacizumab in ovarian cancer. N. Engl. J. Med. 365, 2484–2496 (2011).

    Article  CAS  PubMed  Google Scholar 

  144. Oza, A. M. et al. Standard chemotherapy with or without bevacizumab for women with newly diagnosed ovarian cancer (ICON7): overall survival results of a phase 3 randomised trial. Lancet Oncol. 16, 928–936 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Vergote, I. et al. Neoadjuvant chemotherapy or primary surgery in stage IIIc or IV ovarian cancer. N. Engl. J. Med. 363, 943–953 (2010). Overall survival and PFS are similar for upfront cytoreductive surgery followed by platinum-based and taxane-based chemotherapy versus NACT followed by interval cytoreductive surgery followed by completion chemotherapy; complications of surgery are less with NACT than with upfront cytoreductive surgery.

    Article  CAS  PubMed  Google Scholar 

  146. Kehoe, S. et al. Primary chemotherapy versus primary surgery for newly diagnosed advanced ovarian cancer (CHORUS): an open-label, randomised, controlled, non-inferiority trial. Lancet 386, 249–257 (2015).

    Article  PubMed  Google Scholar 

  147. Gómez-Hidalgo, N. R. et al. Predictors of optimal cytoreduction in patients with newly diagnosed advanced-stage epithelial ovarian cancer: time to incorporate laparoscopic assessment into the standard of care. Gynecol. Oncol. 137, 553–558 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  148. du Bois, A. et al. Neoadjuvant chemotherapy cannot be regarded as adequate routine therapy strategy of advanced ovarian cancer. Int. J. Gynecol. Cancer 22, 182–185 (2012).

    Article  PubMed  Google Scholar 

  149. Mahner, S. et al. Neoadjuvant chemotherapy in ovarian cancer revisited. Ann. Oncol. 27 (Suppl. 1), i30–i32 (2016).

    Article  PubMed  Google Scholar 

  150. Markman, M. Maintenance chemotherapy in the management of epithelial ovarian cancer. Cancer Metastasis Rev. 34, 11–17 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Mei, L. et al. Maintenance chemotherapy for ovarian cancer. Cochrane Database Syst. Rev. 6, CD007414 (2013).

    Google Scholar 

  152. Markman, M. et al. Phase III randomized trial of 12 versus 3 months of maintenance paclitaxel in patients with advanced ovarian cancer after complete response to platinum and paclitaxel-based chemotherapy: a Southwest Oncology Group and Gynecologic Oncology Group Trial. J. Clin. Oncol. 21, 2460–2465 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. du Bois, A. et al. Incorporation of pazopanib in maintenance therapy of ovarian cancer. J. Clin. Oncol. 32, 3374–3382 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Rustin, G. J., Marples, M., Nelstrop, A. E., Mahmoudi, M. & Meyer, T. Use of CA-125 to define progression of ovarian cancer in patients with persistently elevated levels. J. Clin. Oncol. 19, 4054–4057 (2001).

    Article  CAS  PubMed  Google Scholar 

  155. Salani, R. et al. Posttreatment surveillance and diagnosis of recurrence in women with gynecologic malignancies: Society of Gynecologic Oncologists recommendations. Am. J. Obstet. Gynecol. 204, 466–478 (2011).

    Article  PubMed  Google Scholar 

  156. Rustin, G. J. S. et al. Early versus delayed treatment of relapsed ovarian cancer (MRC OV05/EORTC 55955): a randomised trial. Lancet 376, 1155–1163 (2010).

    Article  PubMed  Google Scholar 

  157. Morris, R. T. & Monk, B. J. Ovarian cancer: relevant therapy, not timing, is paramount. Lancet 376, 1120–1122 (2010).

    Article  PubMed  Google Scholar 

  158. Al Rawahi, T. et al. Surgical cytoreduction for recurrent epithelial ovarian cancer. Cochrane Database Syst. Rev. 2, CD008765 (2013).

    Google Scholar 

  159. US National Library of Medicine. ClinicalTrials.govhttp://www.clinicaltrials.gov/ct2/show/NCT00565851 (2007).

  160. Harter, P. et al. Surgery in recurrent ovarian cancer: the Arbeitsgemeinschaft Gynaekologische Onkologie (AGO) DESKTOP OVAR trial. Ann. Surg. Oncol. 13, 1702–1710 (2006).

    Article  PubMed  Google Scholar 

  161. US National Library of Medicine. ClinicalTrials.govhttps://www.clinicaltrials.gov/ct2/show/NCT01166737 (2010).

  162. The National Academies of Sciences, Engineering and Medicine. Ovarian cancers: evolving paradigms in research and care. National Academieshttp://www.nationalacademies.org/hmd/Reports/2016/state-of-ovarian-cancer.aspx (2016).

  163. Alvarez, R. D. et al. Moving beyond the platinum sensitive/resistant paradigm for patients with recurrent ovarian cancer. Gynecol. Oncol. 141, 405–409 (2016).

    Article  PubMed  Google Scholar 

  164. Castells, M. C. et al. Hypersensitivity reactions to chemotherapy: outcomes and safety of rapid desensitization in 413 cases. J. Allergy Clin. Immunol. 122, 574–580 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Parkin, D. et al. Paclitaxel plus platinum-based chemotherapy versus conventional platinum-based chemotherapy in women with relapsed ovarian cancer: the ICON4/AGO-OVAR-2.2 trial. Lancet 361, 2099–2106 (2003).

    Article  CAS  Google Scholar 

  166. Pujade-Lauraine, E. et al. Pegylated liposomal doxorubicin and carboplatin compared with paclitaxel and carboplatin for patients with platinum-sensitive ovarian cancer in late relapse. J. Clin. Oncol. 28, 3323–3329 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Pfisterer, J. et al. Gemcitabine plus carboplatin compared with carboplatin in patients with platinum-sensitive recurrent ovarian cancer: an intergroup trial of the AGO-OVAR, the NCIC CTG, and the EORTC GCG. J. Clin. Oncol. 24, 4699–4707 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Markman, M. et al. Duration of response to second-line, platinum-based chemotherapy for ovarian cancer: implications for patient management and clinical trial design. J. Clin. Oncol. 22, 3120–3125 (2004).

    Article  CAS  PubMed  Google Scholar 

  169. US Food and Drug Administration. Oncologic drugs advisory committee meeting announcement. FDAhttp://www.fda.gov/AdvisoryCommittees/Calendar/ucm394126.htm (2014).

  170. US National Library of Medicine. ClinicalTrials.govhttps://www.clinicaltrials.gov/ct2/show/NCT01874353 (2013).

  171. Pujade-Lauraine, E. et al. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: the AURELIA open-label randomized phase III trial. J. Clin. Oncol. 32, 1302–1308 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Poveda, A. M. et al. Bevacizumab combined with weekly paclitaxel, pegylated liposomal doxorubicin, or topotecan in platinum-resistant recurrent ovarian cancer: analysis by chemotherapy cohort of the randomized phase III AURELIA trial. J. Clin. Oncol. 33, 3836–3838 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Cannistra, S. A. et al. Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. J. Clin. Oncol. 25, 5180–5186 (2007).

    Article  CAS  PubMed  Google Scholar 

  174. Gadducci, A., Lanfredini, N. & Sergiampietri, C. Antiangiogenic agents in gynecological cancer: state of art and perspectives of clinical research. Crit. Rev. Oncol. Hematol. 96, 113–128 (2015).

    Article  PubMed  Google Scholar 

  175. Jackson, A. L., Eisenhauer, E. L. & Herzog, T. J. Emerging therapies: angiogenesis inhibitors for ovarian cancer. Expert Opin. Emerg. Drugs 20, 331–346 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Matulonis, U. A. et al. Cediranib, an oral inhibitor of vascular endothelial growth factor receptor kinases, is an active drug in recurrent epithelial ovarian, fallopian tube, and peritoneal cancer. J. Clin. Oncol. 27, 5601–5606 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ledermann, J. A. et al. Cediranib in patients with relapsed platinum-sensitive ovarian cancer (ICON6): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 387, 1066–1074 (2016).

    Article  CAS  PubMed  Google Scholar 

  178. US National Library of Medicine. ClinicalTrials.govhttp://www.clinicaltrials.gov/ct2/show/NCT02446600 (2015).

  179. US National Library of Medicine. ClinicalTrials.govhttp://www.clinicaltrials.gov/ct2/show/NCT02502266 (2015).

  180. Park, C. L., Edmondson, D., Fenster, J. R. & Blank, T. O. Meaning making and psychological adjustment following cancer: the mediating roles of growth, life meaning, and restored just-world beliefs. J. Consult. Clin. Psychol. 76, 863–875 (2008).

    Article  PubMed  Google Scholar 

  181. Stockler, M. R. et al. Patient-reported outcome results from the open-label phase III AURELIA trial evaluating bevacizumab-containing therapy for platinum-resistant ovarian cancer. J. Clin. Oncol. 32, 1309–1316 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Monk, B. J. et al. Patient reported outcomes of a randomized, placebo-controlled trial of bevacizumab in the front-line treatment of ovarian cancer: a Gynecologic Oncology Group study. Gynecol. Oncol. 128, 573–578 (2013).

    Article  CAS  PubMed  Google Scholar 

  183. Basch, E. The missing voice of patients in drug-safety reporting. N. Engl. J. Med. 362, 865–869 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. US Food and Drug Administration. Guidance for industry patient-reported outcome measures: use in medical product development to support labeling claims. FDAhttp://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM193282.pdf (2009).

  185. Donovan, K. A. et al. Recommended patient-reported core set of symptoms and quality-of-life domains to measure in ovarian cancer treatment trials. J. Natl Cancer Inst. 106, dju128 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Wenzel, L. et al. Validation of FACT/GOG-AD subscale for ovarian cancer-related abdominal discomfort: a Gynecologic Oncology Group study. Gynecol. Oncol. 110, 60–64 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Calhoun, E. A. et al. Psychometric evaluation of the Functional Assessment of Cancer Therapy/Gynecologic Oncology Group-Neurotoxicity (Fact/GOG-Ntx) questionnaire for patients receiving systemic chemotherapy. Int. J. Gynecol. Cancer 13, 741–748 (2003).

    CAS  PubMed  Google Scholar 

  188. Jenkins, V. et al. Patients' and oncologists' views on the treatment and care of advanced ovarian cancer in the U. K.: results from the ADVOCATE study. Br. J. Cancer 108, 2264–2271 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Jensen, S. E., Kaiser, K., Lacson, L., Schink, J. & Cella, D. Content validity of the NCCN-FACT Ovarian Symptom Index-18 (NFOSI-18). Gynecol. Oncol. 136, 317–322 (2015).

    Article  PubMed  Google Scholar 

  190. Cella, D. F. et al. The Functional Assessment of Cancer Therapy scale: development and validation of the general measure. J. Clin. Oncol. 11, 570–579 (1993).

    Article  CAS  PubMed  Google Scholar 

  191. Basen-Engquist, K. et al. Reliability and validity of the functional assessment of cancer therapy-ovarian. J. Clin. Oncol. 19, 1809–1817 (2001).

    Article  CAS  PubMed  Google Scholar 

  192. Havrilesky, L. J. et al. Patient preferences in advanced or recurrent ovarian cancer. Cancer 120, 3651–3659 (2014).

    Article  PubMed  Google Scholar 

  193. Singh, N. et al. Primary site assignment in tubo-ovarian high-grade serous carcinoma: consensus statement on unifying practice worldwide. Gynecol. Oncol. 141, 195–198 (2016).

    Article  PubMed  Google Scholar 

  194. Audeh, M. W. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376, 245–251 (2010).

    Article  CAS  PubMed  Google Scholar 

  195. Gelmon, K. A. et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 12, 852–861 (2011).

    Article  CAS  PubMed  Google Scholar 

  196. Matulonis, U. A. et al. Olaparib monotherapy in patients with advanced relapsed ovarian cancer and a germline BRCA1/2 mutation: a multi-study analysis of response rates and safety. Ann. Oncol. 27, 1013–1019 (2016).

    Article  CAS  PubMed  Google Scholar 

  197. Sandhu, S. K. et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol. 14, 882–892 (2013).

    Article  CAS  PubMed  Google Scholar 

  198. Coleman, R. L. et al. A phase II evaluation of the potent, highly selective PARP inhibitor veliparib in the treatment of persistent or recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer in patients who carry a germline BRCA1 or BRCA2 mutation. Gynecol. Oncol. 137, 386–391 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. McNeish, I. A. et al. Results of ARIEL2: a phase 2 trial to prospectively identify ovarian cancer patients likely to respond to rucaparib using tumor genetic analysis. ASCO Meeting Abstr. 33, 5508 (2015).

    Google Scholar 

  200. US National Library of Medicine. ClinicalTrials.govhttp://www.clinicaltrials.gov/ct2/show/NCT02470585 (2015).

  201. Glickman, M. S. & Sawyers, C. L. Converting cancer therapies into cures: lessons from infectious diseases. Cell 148, 1089–1098 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  203. Yap, T. A., Omlin, A. & de Bono, J. S. Development of therapeutic combinations targeting major cancer signaling pathways. J. Clin. Oncol. 31, 1592–1605 (2013).

    Article  CAS  PubMed  Google Scholar 

  204. Paller, C. J. et al. Design of phase I combination trials: recommendations of the Clinical Trial Design Task Force of the NCI Investigational Drug Steering Committee. Clin. Cancer Res. 20, 4210–4217 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Matulonis, U. et al. Phase I study of oral BKM120 and oral olaparib for high-grade serous ovarian cancer (HGSC) or triple-negative breast cancer (TNBC). ASCO Meeting Abstr. 32, 2510 (2014).

    Google Scholar 

  206. US National Library of Medicine. ClinicalTrials.govhttp://www.clinicaltrials.gov/ct2/show/NCT02657889 (2016).

  207. Coukos, G., Tanyi, J. & Kandalaft, L. E. Opportunities in immunotherapy of ovarian cancer. Ann. Oncol. 27, i11–i15 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  208. US National Library of Medicine. ClinicalTrials.govhttps://www.clinicaltrials.gov/ct2/show/NCT02498600 (2015).

  209. Moore, K. N. et al. Preliminary single agent activity of IMGN853, a folate receptor alpha (FRα)-targeting antibody-drug conjugate (ADC), in platinum-resistant epithelial ovarian cancer (EOC) patients (pts): phase I trial. ASCO Meeting Abstr. 33, 5518 (2015).

    Google Scholar 

  210. Vazquez, A., Bond, E. E., Levine, A. J. & Bond, G. L. The genetics of the p53 pathway, apoptosis and cancer therapy. Nat. Rev. Drug Discov. 7, 979–987 (2008).

    Article  CAS  PubMed  Google Scholar 

  211. Cheok, C. F., Verma, C. S., Baselga, J. & Lane, D. P. Translating p53 into the clinic. Nat. Rev. Clin. Oncol. 8, 25–37 (2011).

    Article  CAS  PubMed  Google Scholar 

  212. Liu, Y. et al. TP53 loss creates therapeutic vulnerability in colorectal cancer. Nature 520, 697–701 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Farley, J. et al. Selumetinib in women with recurrent low-grade serous carcinoma of the ovary or peritoneum: an open-label, single-arm, phase 2 study. Lancet Oncol. 14, 134–140 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. US National Library of Medicine. ClinicalTrials.govhttps://www.clinicaltrials.gov/ct2/show/NCT01849874 (2013).

  215. US National Library of Medicine. ClinicalTrials.govhttp://www.clinicaltrials.gov/ct2/show/NCT02101788 (2014).

  216. Herzog, T. J. et al. Ovarian cancer clinical trial endpoints: Society of Gynecologic Oncology white paper. Gynecol. Oncol. 132, 8–17 (2014).

    Article  PubMed  Google Scholar 

  217. Matulonis, U. A., Oza, A. M., Ho, T. W. & Ledermann, J. A. Intermediate clinical endpoints: a bridge between progression-free survival and overall survival in ovarian cancer trials. Cancer 121, 1737–1746 (2015).

    Article  PubMed  Google Scholar 

  218. Herzog, T. J. et al. SGO guidance document for clinical trial designs in ovarian cancer: a changing paradigm. Gynecol. Oncol. 135, 3–7 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Gnanasakthy, A. et al. Patient-reported outcomes labeling for products approved by the Office of Hematology and Oncology Products of the US Food and Drug Administration (2010–2014). J. Clin. Oncol. 34, 1928–1934 (2016).

    Article  CAS  PubMed  Google Scholar 

  220. Mutch, D. G. & Prat, J. 2014 FIGO staging for ovarian, fallopian tube and peritoneal cancer. Gynecol. Oncol. 133, 401–404 (2014). This reference, along with reference 111, is the current staging system for ovarian cancer.

    Article  PubMed  Google Scholar 

  221. Walker, J. et al. A phase III trial of bevacizumab with IV versus IP chemotherapy for ovarian, fallopian tube, and peritoneal carcinoma: an NRG oncology study. Gynecol. Oncol. 141 (Suppl. 1), 208 (2016).

    Google Scholar 

  222. Pignata, S. et al. Carboplatin plus paclitaxel once a week versus every 3 weeks in patients with advanced ovarian cancer (MITO-7): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 15, 396–405 (2014).

    Article  CAS  PubMed  Google Scholar 

  223. Pignata, S. et al. Carboplatin plus paclitaxel versus carboplatin plus pegylated liposomal doxorubicin as first-line treatment for patients with ovarian cancer: the MITO-2 randomized phase III trial. J. Clin. Oncol. 29, 3628–3635 (2011).

    Article  CAS  PubMed  Google Scholar 

  224. Chan, J. K. et al. Weekly versus every-3-week paclitaxel and carboplatin for ovarian cancer. N. Engl. J. Med. 374, 738–748 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. du Bois, A. et al. Standard first-line chemotherapy with or without nintedanib for advanced ovarian cancer (AGO-OVAR 12): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol. 17, 78–89 (2016).

    Article  CAS  PubMed  Google Scholar 

  226. Aghajanian, C. et al. OCEANS: a randomized, double-blind, placebo-controlled phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer. J. Clin. Oncol. 30, 2039–2045 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Tesaro. Tesaro's niraparib significantly improved progression-free survival for patients with ovarian cancer in both cohorts of the phase 3 NOVA trial. Tesarohttp://ir.tesarobio.com/releasedetail.cfm?ReleaseID=977524 (2016).

  228. Monk, B. J. et al. Trabectedin plus pegylated liposomal doxorubicin in recurrent ovarian cancer. J. Clin. Oncol. 28, 3107–3114 (2010).

    Article  CAS  PubMed  Google Scholar 

  229. Ledermann, J. et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N. Engl. J. Med. 366, 1382–1392 (2012). Olaparib (an oral PARP inhibitor) is effective as a maintenance therapy after platinum therapy response in patients with platinum-sensitive HGSC compared with placebo.

    Article  CAS  PubMed  Google Scholar 

  230. Oza, A. M. et al. Olaparib combined with chemotherapy for recurrent platinum-sensitive ovarian cancer: a randomised phase 2 trial. Lancet Oncol. 16, 87–97 (2015).

    Article  CAS  PubMed  Google Scholar 

  231. Liu, J. F. et al. Combination cediranib and olaparib versus olaparib alone for women with recurrent platinum-sensitive ovarian cancer: a randomised phase 2 study. Lancet Oncol. 15, 1207–1214 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Liu, J. F., Konstantinopoulos, P. A. & Matulonis, U. A. PARP inhibitors in ovarian cancer: current status and future promise. Gynecol. Oncol. 133, 362–369 (2014).

    Article  CAS  PubMed  Google Scholar 

  233. Scott, C. L., Swisher, E. M. & Kaufmann, S. H. Poly(ADP-ribose) polymerase inhibitors: recent advances and future development. J. Clin. Oncol. 33, 1397–1406 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Ledermann, J. et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol. 15, 852–861 (2014).

    Article  CAS  PubMed  Google Scholar 

  235. Kaufman, B. et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J. Clin. Oncol. 33, 244–250 (2015).

    Article  CAS  PubMed  Google Scholar 

  236. US National Library of Medicine. ClinicalTrials.govhttp://www.clinicaltrials.gov/ct2/show/NCT01844986 (2013).

  237. Hamanishi, J. et al. Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J. Clin. Oncol. 33, 4015–4022 (2015).

    Article  CAS  PubMed  Google Scholar 

  238. Varga, A. et al. Antitumor activity and safety of pembrolizumab in patients (pts) with PD-L1 positive advanced ovarian cancer: interim results from a phase Ib study. ASCO Meeting Abstr. 33, 5510 (2015).

    Google Scholar 

  239. Disis, M. L. et al. Avelumab (MSB0010718C), an anti-PD-L1 antibody, in patients with previously treated, recurrent or refractory ovarian cancer: a phase Ib, open-label expansion trial. ASCO Meeting Abstr. 33, 5509 (2015).

    Google Scholar 

  240. Hodi, F. S. et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc. Natl Acad. Sci. USA 105, 3005–3010 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  241. US National Library of Medicine. ClinicalTrials.govhttps://www.clinicaltrials.gov/ct2/show/NCT01611558 (2012).

Download references

Acknowledgements

U.A.M. has received research support from the Ovarian Cancer Research Foundation, the Breast Cancer Research Foundation and the US Department of Defense. A.S. has received research support from the US National Institute of Health (CA109298, P50 CA083639 and P50 CA098258).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (U.A.M.); Epidemiology (J.S. and B.E.H.); Mechanisms/pathophysiology (A.K.S., B.E.H. and U.A.M.); Diagnosis, screening and prevention (J.S., B.Y.K. and U.A.M.); Management (U.A.M. and B.Y.K.); Quality of life (L.F.); Outlook (all authors); Overview of the Primer (U.A.M.).

Corresponding author

Correspondence to Ursula A. Matulonis.

Ethics declarations

Competing interests

U.A.M. has served as a consultant for AstraZeneca, ImmunoGen, Pfizer, Genentech and Merck. All other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matulonis, U., Sood, A., Fallowfield, L. et al. Ovarian cancer. Nat Rev Dis Primers 2, 16061 (2016). https://doi.org/10.1038/nrdp.2016.61

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2016.61

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer