Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Polycystic ovary syndrome

Abstract

Polycystic ovary syndrome (PCOS) affects 5–20% of women of reproductive age worldwide. The condition is characterized by hyperandrogenism, ovulatory dysfunction and polycystic ovarian morphology (PCOM) — with excessive androgen production by the ovaries being a key feature of PCOS. Metabolic dysfunction characterized by insulin resistance and compensatory hyperinsulinaemia is evident in the vast majority of affected individuals. PCOS increases the risk for type 2 diabetes mellitus, gestational diabetes and other pregnancy-related complications, venous thromboembolism, cerebrovascular and cardiovascular events and endometrial cancer. PCOS is a diagnosis of exclusion, based primarily on the presence of hyperandrogenism, ovulatory dysfunction and PCOM. Treatment should be tailored to the complaints and needs of the patient and involves targeting metabolic abnormalities through lifestyle changes, medication and potentially surgery for the prevention and management of excess weight, androgen suppression and/or blockade, endometrial protection, reproductive therapy and the detection and treatment of psychological features. This Primer summarizes the current state of knowledge regarding the epidemiology, mechanisms and pathophysiology, diagnosis, screening and prevention, management and future investigational directions of the disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagnostic criteria and phenotypes of PCOS.
Figure 2: The pathophysiology of PCOS.
Figure 3: Ovarian follicular maturation arrest in PCOS.
Figure 4: Molecular mechanisms of insulin resistance in muscle in PCOS.
Figure 5: Molecular mechanisms of insulin resistance in adipose tissue in PCOS.
Figure 6: Typical polycystic ovarian morphology.

Similar content being viewed by others

References

  1. Stepto, N. K. et al. Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic–hyperinsulaemic clamp. Hum. Reprod. 28, 777–784 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Vink, J. M., Sadrzadeh, S., Lambalk, C. B. & Boomsma, D. I. Heritability of polycystic ovary syndrome in a Dutch twin-family study. J. Clin. Endocrinol. Metab. 91, 2100–2104 (2006). This study clearly demonstrates the very high heritability of PCOS through twin studies.

    Article  CAS  PubMed  Google Scholar 

  3. Azziz, R., Marin, C., Hoq, L., Badamgarav, E. & Song, P. Health care-related economic burden of the polycystic ovary syndrome during the reproductive life span. J. Clin. Endocrinol. Metab. 90, 4650–4658 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Diamanti-Kandarakis, E., Spritzer, P. M., Sir-Petermann, T. & Motta, A. B. Insulin resistance and polycystic ovary syndrome through life. Curr. Pharm. Des. 18, 5569–5576 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Lizneva, D. et al. The criteria, prevalence and phenotypes of PCOS. Fertil. Steril. 106, 6–15 (2016).

    Article  PubMed  Google Scholar 

  6. Zawadzki, J. & Duniaf, A. in Polycystic Ovary Syndrome (eds Dunaif, A., Givens, J. R., Haseltine, F. P. & Merriam, G. R. ) 377–384 (Blackwell Scientific Publications, 1992).

    Google Scholar 

  7. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 19, 41–47 (2004).

    Article  Google Scholar 

  8. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 81, 19–25 (2004).

    Google Scholar 

  9. Ezeh, U., Yildiz, B. O. & Azziz, R. Referral bias in defining the phenotype and prevalence of obesity in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 98, E1088–E1096 (2013). This is the first study to clearly demonstrate that the phenotype of PCOS observed in clinical studies may be very different from that observed in medically unbiased populations, indicating the need to better understand the true phenotype of PCOS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Azziz, R. et al. The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil. Steril. 91, 456–488 (2009).

    Article  PubMed  Google Scholar 

  11. DeUgarte, C. M., Woods, K. S., Bartolucci, A. A. & Azziz, R. Degree of facial and body terminal hair growth in unselected black and white women: toward a populational definition of hirsutism. J. Clin. Endocrinol. Metab. 91, 1345–1350 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Souter, I., Sanchez, L. A., Perez, M., Bartolucci, A. A. & Azziz, R. The prevalence of androgen excess among patients with minimal unwanted hair growth. Am. J. Obstet. Gynecol. 191, 1914–1920 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Dunaif, A., Segal, K. R., Futterweit, W. & Dobrjansky, A. Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes 38, 1165–1174 (1989). This is one of the first studies to conclusively demonstrate that women with PCOS have significant insulin resistance that is independent of obesity, changes in body composition and impairment of glucose tolerance, and that hyperinsulinaemia in PCOS is not the result of decreased insulin clearance.

    Article  CAS  PubMed  Google Scholar 

  14. Moran, L. J., Misso, M. L., Wild, R. A. & Norman, R. J. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: a systematic review and meta-analysis. Hum. Reprod. Update 16, 347–363 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Legro, R. S., Gnatuk, C. L., Kunselman, A. R. & Dunaif, A. Changes in glucose tolerance over time in women with polycystic ovary syndrome: a controlled study. J. Clin. Endocrinol. Metab. 90, 3236–3242 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Norman, R. J., Masters, L., Milner, C. R., Wang, J. X. & Davies, M. J. Relative risk of conversion from normoglycaemia to impaired glucose tolerance or non-insulin dependent diabetes mellitus in polycystic ovarian syndrome. Hum. Reprod. 16, 1995–1998 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Hudecova, M. et al. Diabetes and impaired glucose tolerance in patients with polycystic ovary syndrome — a long term follow-up. Hum. Reprod. 26, 1462–1468 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Gambineri, A. et al. Polycystic ovary syndrome is a risk factor for type 2 diabetes: results from a long-term prospective study. Diabetes 61, 2369–2374 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schmidt, J., Landin-Wilhelmsen, K., Brannstrom, M. & Dahlgren, E. Cardiovascular disease and risk factors in PCOS women of postmenopausal age: a 21-year controlled follow-up study. J. Clin. Endocrinol. Metab. 96, 3794–3803 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Lim, S. S., Davies, M. J., Norman, R. J. & Moran, L. J. Overweight, obesity and central obesity in women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum. Reprod. Update 18, 618–637 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Luque-Ramirez, M. et al. Referral bias in female functional hyperandrogenism and polycystic ovary syndrome. Eur. J. Endocrinol. 173, 603–610 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Guyatt, G., Weaver, B., Cronin, L., Dooley, J. A. & Azziz, R. Health-related quality of life in women with polycystic ovary syndrome, a self-administered questionnaire, was validated. J. Clin. Epidemiol. 57, 1279–1287 (2004).

    Article  PubMed  Google Scholar 

  23. Khomami, M. B., Tehrani, F. R., Hashemi, S., Farahmand, M. & Azizi, F. Of PCOS symptoms, hirsutism has the most significant impact on the quality of life of Iranian women. PLoS ONE 10, e0123608 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dilbaz, B., Cinar, M., Ozkaya, E., Tonyali, N. V. & Dilbaz, S. Health related quality of life among different PCOS phenotypes of infertile women. J. Turk. Ger. Gynecol. Assoc. 13, 247–252 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gosman, G. G. et al. Reproductive health of women electing bariatric surgery. Fertil. Steril. 94, 1426–1431 (2010).

    Article  PubMed  Google Scholar 

  26. Alvarez-Blasco, F., Botella-Carretero, J. I., San Millan, J. L. & Escobar-Morreale, H. F. Prevalence and characteristics of the polycystic ovary syndrome in overweight and obese women. Arch. Intern. Med. 166, 2081–2086 (2006).

    Article  PubMed  Google Scholar 

  27. Laitinen, J. et al. Body size from birth to adulthood as a predictor of self-reported polycystic ovary syndrome symptoms. Int. J. Obes. Relat. Metab. Disord. 27, 710–715 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Teede, H. J. et al. Longitudinal weight gain in women identified with polycystic ovary syndrome: results of an observational study in young women. Obesity (Silver Spring) 21, 1526–1532 (2013).

    Article  Google Scholar 

  29. Yildiz, B. O., Knochenhauer, E. S. & Azziz, R. Impact of obesity on the risk for polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 93, 162–168 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Yildiz, B. O., Bozdag, G., Yapici, Z., Esinler, I. & Yarali, H. Prevalence, phenotype and cardiometabolic risk of polycystic ovary syndrome under different diagnostic criteria. Hum. Reprod. 27, 3067–3073 (2012).

    Article  PubMed  Google Scholar 

  31. Ewens, K. G. et al. FTO and MC4R gene variants are associated with obesity in polycystic ovary syndrome. PLoS ONE 6, e16390 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cai, X., Liu, C. & Mou, S. Association between fat mass- and obesity-associated (FTO) gene polymorphism and polycystic ovary syndrome: a meta-analysis. PLoS ONE 9, e86972 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Louwers, Y. V. et al. BMI-associated alleles do not constitute risk alleles for polycystic ovary syndrome independently of BMI: a case–control study. PLoS ONE 9, e87335 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Joham, A. E., Teede, H. J., Ranasinha, S., Zoungas, S. & Boyle, J. Prevalence of infertility and use of fertility treatment in women with polycystic ovary syndrome: data from a large community-based cohort study. J. Womens Health (Larchmt) 24, 299–307 (2015).

    Article  Google Scholar 

  35. Wild, S., Pierpoint, T., Jacobs, H. & McKeigue, P. Long-term consequences of polycystic ovary syndrome: results of a 31 year follow-up study. Hum. Fertil. (Camb.) 3, 101–105 (2000).

    Article  Google Scholar 

  36. Teede, H. J. et al. Assessment and management of polycystic ovary syndrome: summary of an evidence-based guideline. Med. J. Aust. 195, S65–112 (2011).

    Article  PubMed  Google Scholar 

  37. Dokras, A., Clifton, S., Futterweit, W. & Wild, R. Increased risk for abnormal depression scores in women with polycystic ovary syndrome: a systematic review and meta-analysis. Obstetr. Gynecol. 117, 145–152 (2011).

    Article  Google Scholar 

  38. Veltman-Verhu lst, S. M., Boivin, J., Eijkemans, M. J. & Fauser, B. J. Emotional distress is a common risk in women with polycystic ovary syndrome: a systematic review and meta-analysis of 28 studies. Hum. Reprod. Update 18, 638–651 (2012).

    Article  Google Scholar 

  39. Moran, L. J., Deeks, A. A., Gibson-Helm, M. E. & Teede, H. J. Psychological parameters in the reproductive phenotypes of polycystic ovary syndrome. Hum. Reprod. 27, 2082–2088 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Cinar, N. et al. Depression, anxiety and cardiometabolic risk in polycystic ovary syndrome. Hum. Reprod. 26, 3339–3345 (2011).

    Article  PubMed  Google Scholar 

  41. Roos, N. et al. Risk of adverse pregnancy outcomes in women with polycystic ovary syndrome: population based cohort study. BMJ 343, d6309 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sterling, L. et al. Pregnancy outcomes in women with polycystic ovary syndrome undergoing in vitro fertilization. Fertil. Steril. 105, 791–797.e2 (2016).

    Article  PubMed  Google Scholar 

  43. Pan, M. L., Chen, L. R., Tsao, H. M. & Chen, K. H. Relationship between polycystic ovarian syndrome and subsequent gestational diabetes mellitus: a nationwide population-based study. PLoS ONE 10, e0140544 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Palomba, S. et al. Pregnancy complications in women with polycystic ovary syndrome. Hum. Reprod. Update 21, 575–592 (2015).

    Article  PubMed  Google Scholar 

  45. Vanky, E. et al. Metformin versus placebo from first trimester to delivery in polycystic ovary syndrome: a randomized, controlled multicenter study. J. Clin. Endocrinol. Metab. 95, E448–E455 (2010). This is the first study to clearly demonstrate that metformin treatment from the first trimester to delivery did not reduce pregnancy complications in women with PCOS.

    Article  CAS  PubMed  Google Scholar 

  46. Carmina, E. Polycystic ovary syndrome: metabolic consequences and long-term management. Scand. J. Clin. Lab. Invest. Suppl. 244, 23–26; discussion 26 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Christian, R. C. et al. Prevalence and predictors of coronary artery calcification in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 88, 2562–2568 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Talbott, E. O. et al. Evidence for an association between metabolic cardiovascular syndrome and coronary and aortic calcification among women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 89, 5454–5461 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Luque-Ramirez, M., Mendieta-Azcona, C., Alvarez-Blasco, F. & Escobar-Morreale, H. F. Androgen excess is associated with the increased carotid intima–media thickness observed in young women with polycystic ovary syndrome. Hum. Reprod. 22, 3197–3203 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Lass, N., Kleber, M., Winkel, K., Wunsch, R. & Reinehr, T. Effect of lifestyle intervention on features of polycystic ovarian syndrome, metabolic syndrome, and intima–media thickness in obese adolescent girls. J. Clin. Endocrinol. Metab. 96, 3533–3540 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Chang, A. Y. et al. Polycystic ovarian syndrome and subclinical atherosclerosis among women of reproductive age in the Dallas heart study. Clin. Endocrinol. (Oxf.) 74, 89–96 (2011).

    Article  CAS  Google Scholar 

  52. Dahlgren, E., Janson, P. O., Johansson, S., Lapidus, L. & Oden, A. Polycystic ovary syndrome and risk for myocardial infarction. Evaluated from a risk factor model based on a prospective population study of women. Acta Obstet. Gynecol. Scand. 71, 599–604 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. Carmina, E., Campagna, A. M. & Lobo, R. A. Emergence of ovulatory cycles with aging in women with polycystic ovary syndrome (PCOS) alters the trajectory of cardiovascular and metabolic risk factors. Hum. Reprod. 28, 2245–2252 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Ramezani Tehrani, F. et al. Trend of cardio-metabolic risk factors in polycystic ovary syndrome: a population-based prospective cohort study. PLoS ONE 10, e0137609 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bairey Merz, C. N. et al. Cardiovascular disease and 10-year mortality in postmenopausal women with clinical features of PCOS. J. Womens Health (Larchmt) 6 June 2016 [epub ahead of print].

    Google Scholar 

  56. Hart, R. & Doherty, D. A. The potential implications of a PCOS diagnosis on a woman's long-term health using data linkage. J. Clin. Endocrinol. Metab. 100, 911–919 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Cibula, D. et al. Increased risk of non-insulin dependent diabetes mellitus, arterial hypertension and coronary artery disease in perimenopausal women with a history of the polycystic ovary syndrome. Hum. Reprod. 15, 785–789 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Mani, H. et al. Diabetes and cardiovascular events in women with polycystic ovary syndrome: a 20-year retrospective cohort study. Clin. Endocrinol. (Oxf.) 78, 926–934 (2013).

    Article  Google Scholar 

  59. Krentz, A. J., von Muhlen, D. & Barrett-Connor, E. Searching for polycystic ovary syndrome in postmenopausal women: evidence of a dose–effect association with prevalent cardiovascular disease. Menopause 14, 284–292 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wild, S., Pierpoint, T., McKeigue, P. & Jacobs, H. Cardiovascular disease in women with polycystic ovary syndrome at long-term follow-up: a retrospective cohort study. Clin. Endocrinol. (Oxf.) 52, 595–600 (2000).

    Article  CAS  Google Scholar 

  61. Iftikhar, S. et al. Risk of cardiovascular events in patients with polycystic ovary syndrome. Neth. J. Med. 70, 74–80 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Carmina, E. Oral contraceptives and cardiovascular risk in women with polycystic ovary syndrome. J. Endocrinol. Invest. 36, 358–363 (2013).

    CAS  PubMed  Google Scholar 

  63. Bird, S. T., Hartzema, A. G., Brophy, J. M., Etminan, M. & Delaney, J. A. Risk of venous thromboembolism in women with polycystic ovary syndrome: a population-based matched cohort analysis. CMAJ 185, E115–E120 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Anderson, S. A., Barry, J. A. & Hardiman, P. J. Risk of coronary heart disease and risk of stroke in women with polycystic ovary syndrome: a systematic review and meta-analysis. Int. J. Cardiol. 176, 486–487 (2014).

    Article  PubMed  Google Scholar 

  65. Carmina, E., Campagna, A. M. & Lobo, R. A. A 20-year follow-up of young women with polycystic ovary syndrome. Obstet. Gynecol. 119, 263–269 (2012).

    Article  PubMed  Google Scholar 

  66. Dumesic, D. A. & Lobo, R. A. Cancer risk and PCOS. Steroids 78, 782–785 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Kahsar-Miller, M. & Azziz, R. The development of the polycystic ovary syndrome: family history as a risk factor. Trends Endocrinol. Metab. 9, 55–58 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Legro, R. S., Driscoll, D., Strauss, J. F. 3rd, Fox, J. & Dunaif, A. Evidence for a genetic basis for hyperandrogenemia in polycystic ovary syndrome. Proc. Natl Acad. Sci. USA 95, 14956–14960 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Lerchbaum, E., Schwetz, V., Giuliani, A. & Obermayer-Pietsch, B. Influence of a positive family history of both type 2 diabetes and PCOS on metabolic and endocrine parameters in a large cohort of PCOS women. Eur. J. Endocrinol. 170, 727–739 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Kosova, G. & Urbanek, M. Genetics of the polycystic ovary syndrome. Mol. Cell. Endocrinol. 373, 29–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Shi, Y. et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat. Genet. 44, 1020–1025 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Chen, Z. J. et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat. Genet. 43, 55–59 (2011). This is the first genome-wide association study of PCOS.

    Article  CAS  PubMed  Google Scholar 

  73. Du, J. et al. Family-based analysis of INSR polymorphisms in Chinese PCOS. Reprod. Biomed. Online 29, 239–244 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Zhao, S. et al. Family-based analysis of eight susceptibility loci in polycystic ovary syndrome. Sci. Rep. 5, 12619 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hayes, M. G. et al. Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry populations. Nat. Commun. 6, 7502 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Day, F. R. et al. Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. Nat. Commun. 6, 8464 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Azziz, R. PCOS in 2015: new insights into the genetics of polycystic ovary syndrome. Nat. Rev. Endocrinol. 12, 74–75 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Cui, L. et al. Genotype–phenotype correlations of PCOS susceptibility SNPs identified by GWAS in a large cohort of Han Chinese women. Hum. Reprod. 28, 538–544 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Welt, C. K. et al. Variants in DENND1A are associated with polycystic ovary syndrome in women of European ancestry. J. Clin. Endocrinol. Metab. 97, E1342–E1347 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Saxena, R. et al. Han Chinese polycystic ovary syndrome risk variants in women of European ancestry: relationship to FSH levels and glucose tolerance. Hum. Reprod. 30, 1454–1459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cui, L. et al. Polycystic ovary syndrome susceptibility single nucleotide polymorphisms in women with a single PCOS clinical feature. Hum. Reprod. 30, 732–736 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Shim, U. et al. Pathway analysis based on a genome-wide association study of polycystic ovary syndrome. PLoS ONE 10, e0136609 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jones, M. R. et al. Systems genetics reveals the functional context of PCOS loci and identifies genetic and molecular mechanisms of disease heterogeneity. PLoS Genet. 11, e1005455 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Banaszewska, B., Spaczynski, R. Z., Pelesz, M. & Pawelczyk, L. Incidence of elevated LH/FSH ratio in polycystic ovary syndrome women with normo- and hyperinsulinemia. Rocz. Akad. Med. Bialymst. 48, 131–134 (2003).

    CAS  PubMed  Google Scholar 

  85. Dale, P. O., Tanbo, T., Vaaler, S. & Abyholm, T. Body weight, hyperinsulinemia, and gonadotropin levels in the polycystic ovarian syndrome: evidence of two distinct populations. Fertil. Steril. 58, 487–491 (1992).

    Article  CAS  PubMed  Google Scholar 

  86. Burt Solorzano, C. M., McCartney, C. R., Blank, S. K., Knudsen, K. L. & Marshall, J. C. Hyperandrogenaemia in adolescent girls: origins of abnormal gonadotropin-releasing hormone secretion. BJOG 117, 143–149 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dumesic, D. A. et al. Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocr. Rev. 36, 487–525 (2015). This paper provides a comprehensive overview of the complexity of PCOS and also provides some useful practical guidelines on how to take care of these patients in daily practice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fauser, B. C. & Van Heusden, A. M. Manipulation of human ovarian function: physiological concepts and clinical consequences. Endocr. Rev. 18, 71–106 (1997).

    CAS  PubMed  Google Scholar 

  89. Broekmans, F. J. et al. Anti-Müllerian hormone and ovarian dysfunction. Trends Endocrinol. Metab. 19, 340–347 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Valkenburg, O. et al. Genetic polymorphisms of GnRH and gonadotrophic hormone receptors affect the phenotype of polycystic ovary syndrome. Hum. Reprod. 24, 2014–2022 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Laven, J. S. et al. Anti-Müllerian hormone serum concentrations in normoovulatory and anovulatory women of reproductive age. J. Clin. Endocrinol. Metab. 89, 318–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Stubbs, S. A. et al. Anti-Müllerian hormone protein expression is reduced during the initial stages of follicle development in human polycystic ovaries. J. Clin. Endocrinol. Metab. 90, 5536–5543 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Visser, J. A. et al. Increased oocyte degeneration and follicular atresia during the estrous cycle in anti-Müllerian hormone null mice. Endocrinology 148, 2301–2308 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Catteau-Jonard, S. & Dewailly, D. Pathophysiology of polycystic ovary syndrome: the role of hyperandrogenism. Front. Horm. Res. 40, 22–27 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Padmanabhan, V. et al. Dynamics of bioactive follicle-stimulating hormone secretion in women with polycystic ovary syndrome: effects of estradiol and progesterone. Fertil. Steril. 75, 881–888 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Webber, L. J. et al. Formation and early development of follicles in the polycystic ovary. Lancet 362, 1017–1021 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Nestler, J. E. et al. Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J. Clin. Endocrinol. Metab. 83, 2001–2005 (1998).

    CAS  PubMed  Google Scholar 

  98. Visser, J. A., Schipper, I., Laven, J. S. & Themmen, A. P. Anti-Müllerian hormone: an ovarian reserve marker in primary ovarian insufficiency. Nat. Rev. Endocrinol. 8, 331–341 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Teixeira Filho, F. L. et al. Aberrant expression of growth differentiation factor-9 in oocytes of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 87, 1337–1344 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Bergman, R. N., Ider, Y. Z., Bowden, C. R. & Cobelli, C. Quantitative estimation of insulin sensitivity. Am. J. Physiol. 236, E667–E677 (1979).

    CAS  PubMed  Google Scholar 

  101. O'Meara, N. M. et al. Defects in beta-cell function in functional ovarian hyperandrogenism. J. Clin. Endocrinol. Metab. 76, 1241–1247 (1993).

    CAS  PubMed  Google Scholar 

  102. Ehrmann, D. A. et al. Insulin secretory defects in polycystic ovary syndrome. Relationship to insulin sensitivity and family history of non-insulin-dependent diabetes mellitus. J. Clin. Invest. 96, 520–527 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Dunaif, A. & Finegood, D. T. Beta-cell dysfunction independent of obesity and glucose intolerance in the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 81, 942–947 (1996).

    CAS  PubMed  Google Scholar 

  104. Diamanti-Kandarakis, E. & Dunaif, A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr. Rev. 33, 981–1030 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pasquali, R. et al. Insulin and C-peptide levels in obese patients with polycystic ovaries. Horm. Metab. Res. 14, 284–287 (1982).

    Article  CAS  PubMed  Google Scholar 

  106. Mahabeer, S. et al. Insulin and C-peptide secretion in non-obese patients with polycystic ovarian disease. Horm. Metab. Res. 21, 502–506 (1989).

    Article  CAS  PubMed  Google Scholar 

  107. Dunaif, A., Xia, J., Book, C. B., Schenker, E. & Tang, Z. Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome. J. Clin. Invest. 96, 801–810 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dunaif, A. et al. Evidence for distinctive and intrinsic defects in insulin action in polycystic ovary syndrome. Diabetes 41, 1257–1266 (1992).

    Article  CAS  PubMed  Google Scholar 

  109. Ciaraldi, T. P. et al. Cellular mechanisms of insulin resistance in polycystic ovarian syndrome. J. Clin. Endocrinol. Metab. 75, 577–583 (1992).

    CAS  PubMed  Google Scholar 

  110. Corbould, A., Zhao, H., Mirzoeva, S., Aird, F. & Dunaif, A. Enhanced mitogenic signaling in skeletal muscle of women with polycystic ovary syndrome. Diabetes 55, 751–759 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Rajkhowa, M. et al. Insulin resistance in polycystic ovary syndrome is associated with defective regulation of ERK1/2 by insulin in skeletal muscle in vivo. Biochem. J. 418, 665–671 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Book, C. B. & Dunaif, A. Selective insulin resistance in the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 84, 3110–3116 (1999).

    CAS  PubMed  Google Scholar 

  113. Corbould, A. et al. Insulin resistance in the skeletal muscle of women with PCOS involves intrinsic and acquired defects in insulin signaling. Am. J. Physiol. Endocrinol. Metab. 288, E1047–E1054 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Eriksen, M. et al. Insulin resistance is not conserved in myotubes established from women with PCOS. PLoS ONE 5, e14469 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ciaraldi, T. P., Aroda, V., Mudaliar, S., Chang, R. J. & Henry, R. R. Polycystic ovary syndrome is associated with tissue-specific differences in insulin resistance. J. Clin. Endocrinol. Metab. 94, 157–163 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Chazenbalk, G. et al. Regulation of adiponectin secretion by adipocytes in the polycystic ovary syndrome: role of tumor necrosis factor-α. J. Clin. Endocrinol. Metab. 95, 935–942 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Manneras-Holm, L. et al. Adipose tissue has aberrant morphology and function in PCOS: enlarged adipocytes and low serum adiponectin, but not circulating sex steroids, are strongly associated with insulin resistance. J. Clin. Endocrinol. Metab. 96, E304–E311 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Ek, I., Arner, P., Bergqvist, A., Carlstrom, K. & Wahrenberg, H. Impaired adipocyte lipolysis in nonobese women with the polycystic ovary syndrome: a possible link to insulin resistance? J. Clin. Endocrinol. Metab. 82, 1147–1153 (1997).

    CAS  PubMed  Google Scholar 

  119. Rosenbaum, D., Haber, R. S. & Dunaif, A. Insulin resistance in polycystic ovary syndrome: decreased expression of GLUT-4 glucose transporters in adipocytes. Am. J. Physiol. 264, E197–E202 (1993).

    CAS  PubMed  Google Scholar 

  120. Garvey, W. T. et al. Pretranslational suppression of a glucose transporter protein causes insulin resistance in adipocytes from patients with non-insulin-dependent diabetes mellitus and obesity. J. Clin. Invest. 87, 1072–1081 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Carvalho, E., Jansson, P. A., Nagaev, I., Wenthzel, A. M. & Smith, U. Insulin resistance with low cellular IRS-1 expression is also associated with low GLUT4 expression and impaired insulin-stimulated glucose transport. FASEB J. 15, 1101–1103 (2001).

    CAS  PubMed  Google Scholar 

  122. Carlson, C. J., Koterski, S., Sciotti, R. J., Poccard, G. B. & Rondinone, C. M. Enhanced basal activation of mitogen-activated protein kinases in adipocytes from type 2 diabetes: potential role of p38 in the downregulation of GLUT4 expression. Diabetes 52, 634–641 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Chen, Y. H. et al. miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes 62, 2278–2286 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ciaraldi, T. P. Molecular defects of insulin action in the polycystic ovary syndrome: possible tissue specificity. J. Pediatr. Endocrinol. Metab. 13 (Suppl. 5), 1291–1293 (2000).

    PubMed  Google Scholar 

  125. Ciaraldi, T. P. et al. Cellular insulin resistance in adipocytes from obese polycystic ovary syndrome subjects involves adenosine modulation of insulin sensitivity. J. Clin. Endocrinol. Metab. 82, 1421–1425 (1997).

    CAS  PubMed  Google Scholar 

  126. Chuang, T. Y. et al. MicroRNA-223 expression is upregulated in insulin resistant human adipose tissue. J. Diabetes Res. 2015, 943659 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. McAllister, J. M., Legro, R. S., Modi, B. P. & Strauss, J. F. 3rd. Functional genomics of PCOS: from GWAS to molecular mechanisms. Trends Endocrinol. Metab. 26, 118–124 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yildiz, B. O. & Azziz, R. The adrenal and polycystic ovary syndrome. Rev. Endocr. Metab. Disord. 8, 331–342 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Deeks, A. A., Gibson-Helm, M. E. & Teede, H. J. Anxiety and depression in polycystic ovary syndrome: a comprehensive investigation. Fertil. Steril. 93, 2421–2423 (2010).

    Article  PubMed  Google Scholar 

  130. Moran, L., Gibson-Helm, M., Teede, H. & Deeks, A. Polycystic ovary syndrome: a biopsychosocial understanding in young women to improve knowledge and treatment options. J. Psychosomat. Obstetr. Gynaecol. 31, 24–31 (2010).

    Article  Google Scholar 

  131. Gibson-Helm, M. E., Lucas, I. M., Boyle, J. A. & Teede, H. J. Women's experiences of polycystic ovary syndrome diagnosis. Fam. Pract. 31, 545–549 (2014).

    Article  PubMed  Google Scholar 

  132. Kitzinger, C. & Willmott, J. ‘The thief of womanhood’: women's experience of polycystic ovarian syndrome. Soc. Sci. Med. 54, 349–361 (2002).

    Article  PubMed  Google Scholar 

  133. Shroff, R., Syrop, C. H., Davis, W., Van Voorhis, B. J. & Dokras, A. Risk of metabolic complications in the new PCOS phenotypes based on the Rotterdam criteria. Fertil. Steril. 88, 1389–1395 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Daan, N. M. et al. Cardiovascular and metabolic profiles amongst different polycystic ovary syndrome phenotypes: who is really at risk? Fertil. Steril. 102, 1444–1451.e3 (2014).

    Article  PubMed  Google Scholar 

  135. Daskalopoulos, G. et al. Excess metabolic and cardiovascular risk is not manifested in all phenotypes of polycystic ovary syndrome: implications for diagnosis and treatment. Curr. Vasc. Pharmacol. 13, 788–800 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Tehrani, F. R., Rashidi, H., Khomami, M. B., Tohidi, M. & Azizi, F. The prevalence of metabolic disorders in various phenotypes of polycystic ovary syndrome: a community based study in Southwest of Iran. Reprod. Biol. Endocrinol. 12, 89 (2014).

    Article  PubMed  Google Scholar 

  137. Ibanez, L., Lopez-Bermejo, A., Diaz, M., Marcos, M. V. & de Zegher, F. Early metformin therapy (age 8–12 years) in girls with precocious pubarche to reduce hirsutism, androgen excess, and oligomenorrhea in adolescence. J. Clin. Endocrinol. Metab. 96, E1262–E1267 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Legro, R. S. et al. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 98, 4565–4592 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Fauser, B. C. et al. Consensus on women's health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil. Steril. 97, 28–38.e25 (2012).

    Article  PubMed  Google Scholar 

  140. Azziz, R. et al. Positions statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an Androgen Excess Society guideline. J. Clin. Endocrinol. Metab. 91, 4237–4245 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Moran, L. J. et al. Sleep disturbances in a community-based sample of women with polycystic ovary syndrome. Hum. Reprod. 30, 466–472 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Thomson, R. L. et al. Lifestyle management improves quality of life and depression in overweight and obese women with polycystic ovary syndrome. Fertil. Steril. 94, 1812–1816 (2010).

    Article  PubMed  Google Scholar 

  143. Moran, L. J., Hutchison, S. K., Norman, R. J. & Teede, H. J. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database Syst. Rev. 7, CD007506 (2011). A meta-analysis of the data reported on lifestyle changes, and summarizes results that may be obtained and problems that arise with this treatment.

    Google Scholar 

  144. Carmina, E. PCOS: metabolic impact and long-term management. Minerva Ginecol. 64, 501–505 (2012).

    CAS  PubMed  Google Scholar 

  145. Kiddy, D. S. et al. Improvement in endocrine and ovarian function during dietary treatment of obese women with polycystic ovary syndrome. Clin. Endocrinol. (Oxf.) 36, 105–111 (1992).

    Article  CAS  Google Scholar 

  146. Moran, L. J. et al. Dietary composition in restoring reproductive and metabolic physiology in overweight women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 88, 812–819 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Moran, L. J. et al. Dietary composition in the treatment of polycystic ovary syndrome: a systematic review to inform evidence-based guidelines. J. Acad. Nutr. Diet. 113, 520–545 (2013).

    Article  PubMed  Google Scholar 

  148. Goss, A. M. et al. Effects of a eucaloric reduced-carbohydrate diet on body composition and fat distribution in women with PCOS. Metabolism 63, 1257–1264 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Gower, B. A. et al. Favourable metabolic effects of a eucaloric lower-carbohydrate diet in women with PCOS. Clin. Endocrinol. (Oxf.) 79, 550–557 (2013).

    Article  CAS  Google Scholar 

  150. Roessler, K. K., Birkebaek, C., Ravn, P., Andersen, M. S. & Glintborg, D. Effects of exercise and group counselling on body composition and VO2max in overweight women with polycystic ovary syndrome. Acta Obstetricia Gynecol. Scand. 92, 272–277 (2013).

    Article  Google Scholar 

  151. Harrison, C. L., Lombard, C. B., Moran, L. J. & Teede, H. J. Exercise therapy in polycystic ovary syndrome: a systematic review. Hum. Reprod. Update 17, 171–183 (2011).

    Article  PubMed  Google Scholar 

  152. Harrison, C. L., Stepto, N. K., Hutchison, S. K. & Teede, H. J. The impact of intensified exercise training on insulin resistance and fitness in overweight and obese women with and without polycystic ovary syndrome. Clin. Endocrinol. (Oxf.) 76, 351–357 (2012).

    Article  CAS  Google Scholar 

  153. Skubleny, D. et al. The impact of bariatric surgery on polycystic ovary syndrome: a systematic review and meta-analysis. Obes. Surg. 26, 169–176 (2016).

    Article  PubMed  Google Scholar 

  154. Tang, T., Lord, J. M., Norman, R. J., Yasmin, E. & Balen, A. H. Insulin-sensitising drugs (metformin, rosiglitazone, pioglitazone, d-chiro-inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility. Cochrane Database Syst. Rev. 5, CD003053 (2012).

    Google Scholar 

  155. Naderpoor, N. et al. Metformin and lifestyle modification in polycystic ovary syndrome: systematic review and meta-analysis. Hum. Reprod. Update 21, 560–574 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Du, Q. et al. A systematic review and meta-analysis of randomized controlled trials comparing pioglitazone versus metformin in the treatment of polycystic ovary syndrome. Curr. Med. Res. Opin. 28, 723–730 (2012).

    Article  CAS  PubMed  Google Scholar 

  157. Li, X. J. et al. Metformin versus thiazolidinediones for treatment of clinical, hormonal and metabolic characteristics of polycystic ovary syndrome: a meta-analysis. Clin. Endocrinol. (Oxf.) 74, 332–339 (2011).

    Article  CAS  Google Scholar 

  158. Goodman, N. F. et al. American Association Of Clinical Endocrinologists, American College Of Endocrinology, And Androgen Excess And PCOS Society Disease State clinical review: guide to the best practices in the evaluation and treatment of polycystic ovary syndrome — part 2. Endocr. Pract. 21, 1415–1426 (2015).

    Article  PubMed  Google Scholar 

  159. Formuso, C., Stracquadanio, M. & Ciotta, L. Myo-inositol versus d-chiro inositol in PCOS treatment. Minerva Ginecol. 67, 321–325 (2015).

    CAS  PubMed  Google Scholar 

  160. Nestler, J. E. & Unfer, V. Reflections on inositol(s) for PCOS therapy: steps toward success. Gynecol. Endocrinol. 31, 501–505 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Zhang, Y. Y., Hou, L. Q. & Zhao, T. Y. Effects of acarbose on polycystic ovary syndrome: a meta-analysis. Exp. Clin. Endocrinol. Diabetes 122, 373–378 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Gao, L., Zhao, F. L. & Li, S. C. Statin is a reasonable treatment option for patients with polycystic ovary syndrome: a meta-analysis of randomized controlled trials. Exp. Clin. Endocrinol. Diabetes 120, 367–375 (2012).

    Article  CAS  PubMed  Google Scholar 

  163. Sun, J. et al. An investigation into the therapeutic effects of statins with metformin on polycystic ovary syndrome: a meta-analysis of randomised controlled trials. BMJ Open 5, e007280 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Khera, R. et al. Association of pharmacological treatments for obesity with weight loss and adverse events: a systematic review and meta-analysis. JAMA 315, 2424–2434 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Diamanti-Kandarakis, E., Katsikis, I., Piperi, C., Alexandraki, K. & Panidis, D. Effect of long-term orlistat treatment on serum levels of advanced glycation end-products in women with polycystic ovary syndrome. Clin. Endocrinol. (Oxf.) 66, 103–109 (2007).

    CAS  Google Scholar 

  166. Jia, X. Z. et al. Effect of vitamin D on clinical and biochemical parameters in polycystic ovary syndrome women: a meta-analysis. J. Obstetr. Gynaecol. Res. 41, 1791–1802 (2015).

    Article  CAS  Google Scholar 

  167. Mathur, R., Levin, O. & Azziz, R. Use of ethinylestradiol/drospirenone combination in patients with the polycystic ovary syndrome. Ther. Clin. Risk Manag. 4, 487–492 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Conway, G. et al. The polycystic ovary syndrome: a position statement from the European Society of Endocrinology. Eur. J. Endocrinol. 171, 1–29 (2014).

    Article  CAS  Google Scholar 

  169. Yildiz, B. O. Approach to the patient: contraception in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 100, 794–802 (2015).

    Article  CAS  PubMed  Google Scholar 

  170. Centers for Disease Control and Prevention (CDC). U. S. medical eligibility criteria for contraceptive use, 2010. MMWR Recomm. Rep. 59, 1–86 (2010).

    Google Scholar 

  171. Azziz, R. et al. Leuprolide and estrogen versus oral contraceptive pills for the treatment of hirsutism: a prospective randomized study. J. Clin. Endocrinol. Metab. 80, 3406–3411 (1995).

    CAS  PubMed  Google Scholar 

  172. Naka, K. K. et al. Effect of the insulin sensitizers metformin and pioglitazone on endothelial function in young women with polycystic ovary syndrome: a prospective randomized study. Fertil. Steril. 95, 203–209 (2011).

    Article  CAS  PubMed  Google Scholar 

  173. Donesky, B. W. & Adashi, E. Y. Surgically induced ovulation in the polycystic ovary syndrome: wedge resection revisited in the age of laparoscopy. Fertil. Steril. 63, 439–463 (1995).

    Article  CAS  PubMed  Google Scholar 

  174. Farquhar, C., Brown, J. & Marjoribanks, J. Laparoscopic drilling by diathermy or laser for ovulation induction in anovulatory polycystic ovary syndrome. Cochrane Database Syst. Rev. 6, CD001122 (2012).

    Google Scholar 

  175. Abu Hashim, H., Al-Inany, H., De Vos, M. & Tournaye, H. Three decades after Gjonnaess's laparoscopic ovarian drilling for treatment of PCOS; what do we know? An evidence-based approach. Arch. Gynecol. Obstetr. 288, 409–422 (2013).

    Article  Google Scholar 

  176. Koulouri, O. & Conway, G. S. A systematic review of commonly used medical treatments for hirsutism in women. Clin. Endocrinol. (Oxf.) 68, 800–805 (2008).

    Article  CAS  Google Scholar 

  177. Yildiz, B. O. Assessment, diagnosis and treatment of a patient with hirsutism. Nat. Clin. Prac. Endocrinol. Metab. 4, 294–300 (2008).

    Article  Google Scholar 

  178. Swiglo, B. A. et al. Clinical review: antiandrogens for the treatment of hirsutism: a systematic review and metaanalyses of randomized controlled trials. J. Clin. Endocrinol. Metab. 93, 1153–1160 (2008).

    Article  PubMed  Google Scholar 

  179. van Zuuren, E. J., Fedorowicz, Z., Carter, B. & Pandis, N. Interventions for hirsutism (excluding laser and photoepilation therapy alone). Cochrane Database Syst. Rev. 4, CD010334 (2015).

    Google Scholar 

  180. Venturoli, S. et al. A prospective randomized trial comparing low dose flutamide, finasteride, ketoconazole, and cyproterone acetate-estrogen regimens in the treatment of hirsutism. J. Clin. Endocrinol. Metab. 84, 1304–1310 (1999).

    Article  CAS  PubMed  Google Scholar 

  181. Escobar-Morreale, H. F. et al. Epidemiology, diagnosis and management of hirsutism: a consensus statement by the Androgen Excess and Polycystic Ovary Syndrome Society. Hum. Reprod. Update 18, 146–170 (2012).

    Article  CAS  PubMed  Google Scholar 

  182. Townsend, K. A. & Marlowe, K. F. Relative safety and efficacy of finasteride for treatment of hirsutism. Ann. Pharmacother. 38, 1070–1073 (2004).

    Article  CAS  PubMed  Google Scholar 

  183. Moghetti, P. et al. Comparison of spironolactone, flutamide, and finasteride efficacy in the treatment of hirsutism: a randomized, double blind, placebo-controlled trial. J. Clin. Endocrinol. Metab. 85, 89–94 (2000). This randomized controlled trial clearly demonstrates the positive effect and comparability of androgen blockade on hirsutism in PCOS.

    CAS  PubMed  Google Scholar 

  184. Balfour, J. A. & McClellan, K. Topical eflornithine. Am. J. Clin. Dermatol. 2, 197–201; discussion 202 (2001).

    Article  CAS  PubMed  Google Scholar 

  185. Lizneva, D., Gavrilova-Jordan, L., Walker, W. & Azziz, R. Androgen excess: investigations and management. Best Pract. Res. Clin. Obstet. Gynaecol.http://dx.doi.org/10.1016/j.bpobgyn.2016.05.003 (2016).

  186. Boomsma, C. M. et al. A meta-analysis of pregnancy outcomes in women with polycystic ovary syndrome. Hum. Reprod. Update 12, 673–683 (2006).

    Article  CAS  PubMed  Google Scholar 

  187. Legro, R. S. et al. Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. N. Engl. J. Med. 356, 551–566 (2007). This is the first large randomized controlled trial to demonstrate the relative inferiority of metformin as a primary ovulatory agent in PCOS.

    Article  CAS  PubMed  Google Scholar 

  188. Legro, R. S. et al. Letrozole versus clomiphene for infertility in the polycystic ovary syndrome. N. Engl. J. Med. 371, 119–129 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Zain, M. M., Jamaluddin, R., Ibrahim, A. & Norman, R. J. Comparison of clomiphene citrate, metformin, or the combination of both for first-line ovulation induction, achievement of pregnancy, and live birth in Asian women with polycystic ovary syndrome: a randomized controlled trial. Fertil. Steril. 91, 514–521 (2009).

    Article  CAS  PubMed  Google Scholar 

  190. Sagle, M. A., Hamilton-Fairley, D., Kiddy, D. S. & Franks, S. A comparative, randomized study of low-dose human menopausal gonadotropin and follicle-stimulating hormone in women with polycystic ovarian syndrome. Fertil. Steril. 55, 56–60 (1991).

    Article  CAS  PubMed  Google Scholar 

  191. Polson, D. W., Mason, H. D., Saldahna, M. B. & Franks, S. Ovulation of a single dominant follicle during treatment with low-dose pulsatile follicle stimulating hormone in women with polycystic ovary syndrome. Clin. Endocrinol. (Oxf.) 26, 205–212 (1987).

    Article  CAS  Google Scholar 

  192. Homburg, R. et al. Clomifene citrate or low-dose FSH for the first-line treatment of infertile women with anovulation associated with polycystic ovary syndrome: a prospective randomized multinational study. Hum. Reprod. 27, 468–473 (2012).

    Article  CAS  PubMed  Google Scholar 

  193. Solnik, M. J. in Te Linde's Atlas of Gynecologic Surgery (eds Cundiff, G. W., Azziz, R. & Bristow, R. E. ) 217–222 (Lippincott Williams & Wilkins, 2013).

    Google Scholar 

  194. Thessaloniki ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Consensus on infertility treatment related to polycystic ovary syndrome. Fertil. Steril. 89, 505–522 (2008).

    Article  Google Scholar 

  195. Api, M. Is ovarian reserve diminished after laparoscopic ovarian drilling? Gynecol. Endocrinol. 25, 159–165 (2009).

    Article  CAS  PubMed  Google Scholar 

  196. Nahuis, M. J. et al. Long-term outcomes in women with polycystic ovary syndrome initially randomized to receive laparoscopic electrocautery of the ovaries or ovulation induction with gonadotrophins. Hum. Reprod. 26, 1899–1904 (2011).

    Article  CAS  PubMed  Google Scholar 

  197. Cha, K. Y. et al. Obstetric outcome of patients with polycystic ovary syndrome treated by in vitro maturation and in vitro fertilization–embryo transfer. Fertil. Steril. 83, 1461–1465 (2005).

    Article  PubMed  Google Scholar 

  198. Siristatidis, C. et al. In vitro maturation in women with versus without polycystic ovarian syndrome: a systematic review and meta-analysis. PLoS ONE 10, e0134696 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Walls, M. L. et al. In vitro maturation as an alternative to standard in vitro fertilization for patients diagnosed with polycystic ovaries: a comparative analysis of fresh, frozen and cumulative cycle outcomes. Hum. Reprod. 30, 88–96 (2015).

    Article  CAS  PubMed  Google Scholar 

  200. Shi, Y. et al. Live birth after fresh embryo transfer versus elective embryo cryopreservation/frozen embryo transfer in women with polycystic ovary syndrome undergoing IVF (FreFro-PCOS): study protocol for a multicenter, prospective, randomized controlled clinical trial. Trials 15, 154 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Tang, T., Glanville, J., Orsi, N., Barth, J. H. & Balen, A. H. The use of metformin for women with PCOS undergoing IVF treatment. Hum. Reprod. 21, 1416–1425 (2006).

    Article  CAS  PubMed  Google Scholar 

  202. Tso, L. O., Costello, M. F., Albuquerque, L. E., Andriolo, R. B. & Freitas, V. Metformin treatment before and during IVF or ICSI in women with polycystic ovary syndrome. Cochrane Database Syst. Rev. 2, CD006105 (2009).

    Google Scholar 

  203. McHorney, C. A. Health status assessment methods for adults: past accomplishments and future challenges. Annu. Rev. Public Health 20, 309–335 (1999).

    Article  CAS  PubMed  Google Scholar 

  204. Li, Y. et al. Polycystic ovary syndrome is associated with negatively variable impacts on domains of health-related quality of life: evidence from a meta-analysis. Fertil. Steril. 96, 452–458 (2011).

    Article  PubMed  Google Scholar 

  205. Cronin, L. et al. Development of a health-related quality-of-life questionnaire (PCOSQ) for women with polycystic ovary syndrome (PCOS). J. Clin. Endocrinol. Metab. 83, 1976–1987 (1998). The authors of this article developed the first PCOS-dedicated health-related QOL questionnaire for PCOS.

    CAS  PubMed  Google Scholar 

  206. Barnard, L. et al. Quality of life and psychological well being in polycystic ovary syndrome. Hum. Reprod. 22, 2279–2286 (2007).

    Article  CAS  PubMed  Google Scholar 

  207. Hahn, S. et al. Metformin treatment of polycystic ovary syndrome improves health-related quality-of-life, emotional distress and sexuality. Hum. Reprod. 21, 1925–1934 (2006).

    Article  CAS  PubMed  Google Scholar 

  208. Ladson, G. et al. The effects of metformin with lifestyle therapy in polycystic ovary syndrome: a randomized double-blind study. Fertil. Steril. 95, 1059–1066.e7 (2011).

    Article  CAS  PubMed  Google Scholar 

  209. Harris-Glocker, M., Davidson, K., Kochman, L., Guzick, D. & Hoeger, K. Improvement in quality-of-life questionnaire measures in obese adolescent females with polycystic ovary syndrome treated with lifestyle changes and oral contraceptives, with or without metformin. Fertil. Steril. 93, 1016–1019 (2010).

    Article  PubMed  Google Scholar 

  210. Cinar, N., Harmanci, A., Demir, B. & Yildiz, B. O. Effect of an oral contraceptive on emotional distress, anxiety and depression of women with polycystic ovary syndrome: a prospective study. Hum. Reprod. 27, 1840–1845 (2012).

    Article  CAS  PubMed  Google Scholar 

  211. Deeks, A. A., Gibson-Helm, M. E., Paul, E. & Teede, H. J. Is having polycystic ovary syndrome a predictor of poor psychological function including anxiety and depression? Hum. Reprod. 26, 1399–1407 (2011).

    Article  CAS  PubMed  Google Scholar 

  212. Elsenbruch, S. et al. Determinants of emotional distress in women with polycystic ovary syndrome. Hum. Reprod. 21, 1092–1099 (2006).

    Article  PubMed  Google Scholar 

  213. Liu, D. M. et al. Evidence for gonadotrophin secretory and steroidogenic abnormalities in brothers of women with polycystic ovary syndrome. Hum. Reprod. 29, 2764–2772 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Coviello, A. D., Sam, S., Legro, R. S. & Dunaif, A. High prevalence of metabolic syndrome in first-degree male relatives of women with polycystic ovary syndrome is related to high rates of obesity. J. Clin. Endocrinol. Metab. 94, 4361–4366 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Recabarren, S. E. et al. Metabolic profile in sons of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 93, 1820–1826 (2008).

    Article  CAS  PubMed  Google Scholar 

  216. Baillargeon, J. P. & Carpentier, A. C. Brothers of women with polycystic ovary syndrome are characterised by impaired glucose tolerance, reduced insulin sensitivity and related metabolic defects. Diabetologia 50, 2424–2432 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Fraser, G. L., Ramael, S., Hoveyda, H. R., Gheyle, L. & Combalbert, J. The NK3 receptor antagonist ESN364 suppresses sex hormones in men and women. J. Clin. Endocrinol. Metab. 101, 417–426 (2016).

    Article  CAS  PubMed  Google Scholar 

  218. Azziz, R., Dumesic, D. A. & Goodarzi, M. O. Polycystic ovary syndrome: an ancient disorder? Fertil. Steril. 95, 1544–1548 (2011).

    Article  PubMed  Google Scholar 

  219. Sir-Petermann, T. et al. Early metabolic derangements in daughters of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 92, 4637–4642 (2007).

    Article  CAS  PubMed  Google Scholar 

  220. Sir-Petermann, T. et al. Metabolic and reproductive features before and during puberty in daughters of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 94, 1923–1930 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Maliqueo, M. et al. Adrenal function during childhood and puberty in daughters of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 94, 3282–3288 (2009).

    Article  CAS  PubMed  Google Scholar 

  222. Battaglia, C. et al. Polycystic ovaries in childhood: a common finding in daughters of PCOS patients. A pilot study. Hum. Reprod. 17, 771–776 (2002).

    Article  PubMed  Google Scholar 

  223. Ibanez, L. et al. Postpubertal outcome in girls diagnosed of premature pubarche during childhood: increased frequency of functional ovarian hyperandrogenism. J. Clin. Endocrinol. Metab. 76, 1599–1603 (1993).

    CAS  PubMed  Google Scholar 

  224. Meas, T. et al. Endocrine consequences of premature pubarche in post-pubertal Caucasian girls. Clin. Endocrinol. (Oxf.) 57, 101–106 (2002).

    Article  Google Scholar 

  225. McCartney, C. R. et al. The association of obesity and hyperandrogenemia during the pubertal transition in girls: obesity as a potential factor in the genesis of postpubertal hyperandrogenism. J. Clin. Endocrinol. Metab. 91, 1714–1722 (2006).

    Article  CAS  PubMed  Google Scholar 

  226. van Hooff, M. H. et al. Predictive value of menstrual cycle pattern, body mass index, hormone levels and polycystic ovaries at age 15 years for oligo-amenorrhoea at age 18 years. Hum. Reprod. 19, 383–392 (2004). This study demonstrates the predictive nature of the degree of menstrual dysfunction, particularly for persistent menstrual dysfunction in adolescents.

    Article  CAS  PubMed  Google Scholar 

  227. Wiksten-Almstromer, M., Hirschberg, A. L. & Hagenfeldt, K. Prospective follow-up of menstrual disorders in adolescence and prognostic factors. Acta Obstetricia Gynecol. Scand. 87, 1162–1168 (2008).

    Article  Google Scholar 

  228. Fanelli, F. et al. Androgen profiling by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in healthy normal-weight ovulatory and anovulatory late adolescent and young women. J. Clin. Endocrinol. Metab. 98, 3058–3067 (2013).

    Article  CAS  PubMed  Google Scholar 

  229. Villarroel, C. et al. Hirsutism and oligomenorrhea are appropriate screening criteria for polycystic ovary syndrome in adolescents. Gynecol. Endocrinol. 31, 625–629 (2015).

    Article  CAS  PubMed  Google Scholar 

  230. Ibanez, L. et al. Polycystic ovaries in nonobese adolescents and young women with ovarian androgen excess: relation to prenatal growth. J. Clin. Endocrinol. Metab. 93, 196–199 (2008).

    Article  CAS  PubMed  Google Scholar 

  231. Cresswell, J. L. et al. Fetal growth, length of gestation, and polycystic ovaries in adult life. Lancet 350, 1131–1135 (1997).

    Article  CAS  PubMed  Google Scholar 

  232. DeFronzo, R. A., Bonadonna, R. C. & Ferrannini, E. Pathogenesis of NIDDM. A balanced overview. Diabetes Care 15, 318–368 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Y.-H. Chen, Augusta University, Georgia, USA.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (R.A.); Epidemiology (R.A.); Mechanisms/pathophysiology (R.A., E.C., Z.-J.C., A.D., J.S.E.L., H.J.T. and B.O.Y.); Diagnosis, screening and prevention (R.A. and H.J.T.); Management (R.A., E.C., Z.-J.C., R.S.L., D.L. and B.O.Y.); Quality of life (E.C. and B.O.Y.); Outlook (R.A., B.N.-H., D.L. and R.S.L.); Overview of Primer (R.A.).

Corresponding author

Correspondence to Ricardo Azziz.

Ethics declarations

Competing interests

R.A. has a consulting agreement with KinDex Pharmaceutical Inc., is on the advisory board of Global PET Imaging, and has a consulting appointment with Selge Holdings and Ventures. J.S.E.L. has received unrestricted research grants from Ferring, Merck-Serono, MSD, Schering Plough, Serono and Okganon. R.S.L. is a consultant for Takeda, KinDex, Euroscreen and Ferring, and has received research funding from and is a consultant for Ferring. All other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azziz, R., Carmina, E., Chen, Z. et al. Polycystic ovary syndrome. Nat Rev Dis Primers 2, 16057 (2016). https://doi.org/10.1038/nrdp.2016.57

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2016.57

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing