Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

α1-Antitrypsin deficiency

An Author Correction to this article was published on 29 October 2018

This article has been updated

Abstract

α1-Antitrypsin deficiency (A1ATD) is an inherited disorder caused by mutations in SERPINA1, leading to liver and lung disease. It is not a rare disorder but frequently goes underdiagnosed or misdiagnosed as asthma, chronic obstructive pulmonary disease (COPD) or cryptogenic liver disease. The most frequent disease-associated mutations include the S allele and the Z allele of SERPINA1, which lead to the accumulation of misfolded α1-antitrypsin in hepatocytes, endoplasmic reticulum stress, low circulating levels of α1-antitrypsin and liver disease. Currently, there is no cure for severe liver disease and the only management option is liver transplantation when liver failure is life-threatening. A1ATD-associated lung disease predominately occurs in adults and is caused principally by inadequate protease inhibition. Treatment of A1ATD-associated lung disease includes standard therapies that are also used for the treatment of COPD, in addition to the use of augmentation therapy (that is, infusions of human plasma-derived, purified α1-antitrypsin). New therapies that target the misfolded α1-antitrypsin or attempt to correct the underlying genetic mutation are currently under development.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Clinical manifestations of the PI*ZZ genotype.
Figure 2: SERPINA1 and α1-antitrypsin.
Figure 3: Proposed models of serpin polymerization.
Figure 4: Intrapulmonary consequences of unopposed neutrophil elastase activity.
Figure 5: Accumulation of misfolded α1-antitrypsin in hepatocytes.
Figure 6: Fates of α1-antitrypsin within the endoplasmic reticulum.
Figure 7: Example diagnostic algorithm for A1ATD.

Change history

References

  1. 1

    Laurell, C. B. & Eriksson, S. The electrophoretic α1-globulin pattern of serum in α1-antitrypsin deficiency. 1963. COPD 10 (Suppl. 1), 3–8 (2013). This seminal report describes the electrophoretic pattern of α1-antitrypsin in the serum of patients with A1ATD.

    PubMed  Google Scholar 

  2. 2

    Stoller, J. K. & Brantly, M. The challenge of detecting alpha-1 antitrypsin deficiency. COPD 10 (Suppl. 1), 26–34 (2013). This article explains the reasons why A1ATD is an underdiagnosed condition.

    PubMed  Google Scholar 

  3. 3

    Stoller, J. K., Smith, P., Yang, P. & Spray, J. Physical and social impact of alpha1-antitrypsin deficiency: results of a survey. Cleve. Clin. J. Med. 61, 461–467 (1994).

    CAS  PubMed  Google Scholar 

  4. 4

    de Serres, F. J., Blanco, I. & Fernandez-Bustillo, E. PI S and PI Z alpha-1 antitrypsin deficiency worldwide. A review of existing genetic epidemiological data. Monaldi Arch. Chest Dis. 67, 184–208 (2007).

    CAS  PubMed  Google Scholar 

  5. 5

    Sveger, T. Liver disease in alpha1-antitrypsin deficiency detected by screening of 200,000 infants. N. Engl. J. Med. 294, 1316–1321 (1976). This was a large study conducted in Sweden to identify the prevalence of A1ATD-related liver disease in infants.

    CAS  PubMed  Google Scholar 

  6. 6

    Silverman, E. K. et al. Alpha-1-antitrypsin deficiency. High prevalence in the St. Louis area determined by direct population screening. Am. Rev. Respir. Dis. 140, 961–966 (1989).

    CAS  PubMed  Google Scholar 

  7. 7

    Thun, G. A. et al. Causal and synthetic associations of variants in the SERPINA gene cluster with alpha1-antitrypsin serum levels. PLoS Genet. 9, e1003585 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    O'Brien, M. E. et al. The impact of smoke exposure on the clinical phenotype of alpha-1 antitrypsin deficiency in Ireland: exploiting a national registry to understand a rare disease. COPD 12 (Suppl. 1), 2–9 (2015).

    PubMed  Google Scholar 

  9. 9

    Tanash, H. A., Nystedt-Dü zakin, M., Montero, L. C., Sveger, T. & Piitulainen, E. The Swedish α1-antitrypsin screening study: health status and lung and liver function at age 34. Ann. Am. Thorac Soc. 12, 807–812 (2015).

    PubMed  Google Scholar 

  10. 10

    Piitulainen, E. & Tanash, H. A. The clinical profile of subjects Included in the Swedish national register on individuals with severe alpha 1-antitrypsin deficiency. COPD 12 (Suppl. 1), 36–41 (2015).

    PubMed  Google Scholar 

  11. 11

    McAloon, C. J., Wood, A. M., Gough, S. C. & Stockley, R. A. Matrix metalloprotease polymorphisms are associated with gas transfer in alpha 1 antitrypsin deficiency. Ther. Adv. Respir. Dis. 3, 23–30 (2009).

    PubMed  Google Scholar 

  12. 12

    Wood, A. M. et al. The TNFalpha gene relates to clinical phenotype in alpha-1-antitrypsin deficiency. Respir. Res. 9, 52 (2008).

    PubMed  PubMed Central  Google Scholar 

  13. 13

    Demeo, D. L. et al. IL10 polymorphisms are associated with airflow obstruction in severe α1-antitrypsin deficiency. Am. J. Respir. Cell. Mol. Biol. 38, 114–120 (2008).

    CAS  PubMed  Google Scholar 

  14. 14

    Kim, W. J. et al. Association of IREB2 and CHRNA3 polymorphisms with airflow obstruction in severe alpha-1 antitrypsin deficiency. Respir. Res. 13, 16 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Alam, S. et al. Z α1-antitrypsin confers a proinflammatory phenotype that contributes to chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 189, 909–931 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Wood, A. M., Harrison, R. M., Semple, S., Ayres, J. G. & Stockley, R. A. Outdoor air pollution is associated with disease severity in α1-antitrypsin deficiency. Eur. Respir. J. 34, 346–353 (2009).

    CAS  PubMed  Google Scholar 

  17. 17

    Wood, A. M., Harrison, R. M., Semple, S., Ayres, J. G. & Stockley, R. A. Outdoor air pollution is associated with rapid decline of lung function in α-1-antitrypsin deficiency. Occup. Environ. Med. 67, 556–561 (2010).

    CAS  PubMed  Google Scholar 

  18. 18

    Mehta, A. J. et al. Interactions between SERPINA1 PiMZ genotype, occupational exposure and lung function decline. Occup. Environ. Med. 71, 234–240 (2014).

    CAS  PubMed  Google Scholar 

  19. 19

    Molloy, K. et al. Clarification of the risk of chronic obstructive pulmonary disease in α1-antitrypsin deficiency PiMZ heterozygotes. Am. J. Respir. Crit. Care Med. 189, 419–427 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Parmar, J. S. et al. Polymers of α1-antitrypsin are chemotactic for human neutrophils: a new paradigm for the pathogenesis of emphysema. Am. J. Respir. Cell. Mol. Biol. 26, 723–730 (2002).

    CAS  PubMed  Google Scholar 

  21. 21

    Kalsheker, N., Morley, S. & Morgan, K. Gene regulation of the serine proteinase inhibitors α1-antitrypsin and α1-antichymotrypsin. Biochem. Soc. Trans. 30, 93–98 (2002).

    CAS  PubMed  Google Scholar 

  22. 22

    Hafeez, W., Ciliberto, G. & Perlmutter, D. H. Constitutive and modulated expression of the human alpha 1 antitrypsin gene. Different transcriptional initiation sites used in three different cell types. J. Clin. Invest. 89, 1214–1222 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Knoell, D. L., Ralston, D. R., Coulter, K. R. & Wewers, M. D. Alpha 1-antitrypsin and protease complexation is induced by lipopolysaccharide, interleukin-1beta, and tumor necrosis factor-alpha in monocytes. Am. J. Respir. Crit. Care Med. 157, 246–255 (1998).

    CAS  PubMed  Google Scholar 

  24. 24

    Cichy, J., Potempa, J. & Travis, J. Biosynthesis of α1-proteinase inhibitor by human lung-derived epithelial cells. J. Biol. Chem. 272, 8250–8255 (1997).

    CAS  PubMed  Google Scholar 

  25. 25

    Sallenave, J. M., Tremblay, G. M., Gauldie, J. & Richards, C. D. Oncostatin M, but not interleukin-6 or leukemia inhibitory factor, stimulates expression of alpha1-proteinase inhibitor in A549 human alveolar epithelial cells. J. Interferon Cytokine Res. 17, 337–346 (1997).

    CAS  PubMed  Google Scholar 

  26. 26

    Cichy, J., Rose-John, S. & Travis, J. Oncostatin M, leukaemia-inhibitory factor and interleukin 6 trigger different effects on α1-proteinase inhibitor synthesis in human lung-derived epithelial cells. Biochem. J. 329, 335–339 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Kulig, P. & Cichy, J. Acute phase mediator oncostatin M regulates affinity of α1-protease inhibitor for concanavalin A in hepatoma-derived but not lung-derived epithelial cells. Cytokine 30, 269–274 (2005).

    CAS  PubMed  Google Scholar 

  28. 28

    Bosco, D. et al. Expression and secretion of alpha1-proteinase inhibitor are regulated by proinflammatory cytokines in human pancreatic islet cells. Diabetologia 48, 1523–1533 (2005).

    CAS  PubMed  Google Scholar 

  29. 29

    Matamala, N. et al. Alternative transcripts of the SERPINA1 gene in alpha-1 antitrypsin deficiency. J. Transl Med. 13, 211 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. 30

    Gooptu, B., Dickens, J. A. & Lomas, D. A. The molecular and cellular pathology of α1-antitrypsin deficiency. Trends Mol. Med. 20, 116–127 (2014).

    CAS  PubMed  Google Scholar 

  31. 31

    Silva, D. et al. Alpha-1-antitrypsin (SERPINA1) mutation spectrum: three novel variants and haplotype characterization of rare deficiency alleles identified in Portugal. Respir. Med. 116, 8–18 (2016).

    PubMed  Google Scholar 

  32. 32

    Ferrarotti, I. et al. Identification and characterisation of eight novel SERPINA1 null mutations. Orphanet J. Rare Dis. 9, 172 (2014). This recent study identified eight rare novel SERPINA1-null mutations highlighting the fact that additional rare variants of A1ATD still remain to be identified.

    PubMed  PubMed Central  Google Scholar 

  33. 33

    Huntington, J. A., Read, R. J. & Carrell, R. W. Structure of a serpin–protease complex shows inhibition by deformation. Nature 407, 923–926 (2000).

    CAS  PubMed  Google Scholar 

  34. 34

    Lomas, D. A., Evans, D. L., Finch, J. T. & Carrell, R. W. The mechanism of Z α1-antitrypsin accumulation in the liver. Nature 357, 605–607 (1992). This paper demonstrates the molecular pathology underlying the accumulation of Z-type α1-antitrypsin in the ER and describes how the Z mutation results in a unique molecular interaction between the reactive centre loop of one molecule and the β-sheet A of another.

    CAS  PubMed  Google Scholar 

  35. 35

    Miranda, E. et al. A novel monoclonal antibody to characterise pathogenic polymers in liver disease associated with α1-antitrypsin deficiency. Hepatology 52, 1078–1088 (2010).

    CAS  PubMed  Google Scholar 

  36. 36

    Lomas, D. A., Finch, J. T., Seyama, K., Nukiwa, T. & Carrell, R. W. α1-Antitrypsin Siiyama (Ser53→Phe); further evidence for intracellular loop-sheet polymerisation. J. Biol. Chem. 268, 15333–15335 (1993).

    CAS  PubMed  Google Scholar 

  37. 37

    Lomas, D. A. et al. α1-Antitrypsin Mmalton (Phe52-deleted) forms loop-sheet polymers in vivo: evidence for the C sheet mechanism of polymerisation. J. Biol. Chem. 270, 16864–16870 (1995).

    CAS  PubMed  Google Scholar 

  38. 38

    Ordonez, A. & Marciniak, S. J. in The Serpin Family: Proteins with Multiple Functions in Health and Disease (ed. Geiger, M. ) 229–251 (2015).

    Google Scholar 

  39. 39

    Irving, J. A., Haq, I., Dickens, J. A., Faull, S. V. & Lomas, D. A. Altered native stability is the dominant basis for susceptibility of α1-antitrypsin mutants to polymerization. Biochem. J. 460, 103–115 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Yamasaki, M., Li, W., Johnson, D. J. & Huntington, J. A. Crystal structure of a stable dimer reveals the molecular basis of serpin polymerization. Nature 455, 1255–1258 (2008).

    CAS  PubMed  Google Scholar 

  41. 41

    Yamasaki, M., Sendall, T. J., Pearce, M. C., Whisstock, J. C. & Huntington, J. A. Molecular basis of α1-antitrypsin deficiency revealed by the structure of a domain-swapped trimer. EMBO Rep. 12, 1011–1017 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Krishnan, B. & Gierasch, L. M. Dynamic local unfolding in the serpin α-1 antitrypsin provides a mechanism for loop insertion and polymerization. Nat. Struct. Mol. Biol. 18, 222–226 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Behrens, M. A. et al. The shapes of Z-α1-antitrypsin polymers in solution support the C-terminal domain-swap mechanism of polymerization. Biophys. J. 107, 1905–1912 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Weldon, S. et al. Decreased levels of secretory leucoprotease inhibitor in the Pseudomonas-infected cystic fibrosis lung are due to neutrophil elastase degradation. J. Immunol. 183, 8148–8156 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Nemoto, E. et al. Cleavage of CD14 on human gingival fibroblasts cocultured with activated neutrophils is mediated by human leukocyte elastase resulting in down-regulation of lipopolysaccharide-induced IL-8 production. J. Immunol. 165, 5807–5813 (2000).

    CAS  PubMed  Google Scholar 

  46. 46

    Hartl, D. et al. Cleavage of CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease. Nat. Med. 13, 1423–1430 (2007).

    CAS  PubMed  Google Scholar 

  47. 47

    Bergin, D. A. et al. α-1 Antitrypsin regulates human neutrophil chemotaxis induced by soluble immune complexes and IL-8. J. Clin. Invest. 120, 4236–4250 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Bergin, D. A. et al. The circulating proteinase inhibitor α-1 antitrypsin regulates neutrophil degranulation and autoimmunity. Sci. Transl Med. 6, 217ra1 (2014).

    PubMed  Google Scholar 

  49. 49

    Yasutake, A. & Powers, J. C. Reactivity of human leukocyte elastase and porcine pancreatic elastase toward peptide 4-nitroanilides containing model desmosine residues. Evidence that human leukocyte elastase is selective for cross-linked regions of elastin. Biochemistry 20, 3675–3679 (1981).

    CAS  PubMed  Google Scholar 

  50. 50

    Kafienah, W., Buttle, D. J., Burnett, D. & Hollander, A. P. Cleavage of native type I collagen by human neutrophil elastase. Biochem. J. 330, 897–902 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    McDonald, J. A. & Kelley, D. G. Degradation of fibronectin by human leukocyte elastase. Release of biologically active fragments. J. Biol. Chem. 255, 8848–8858 (1980).

    CAS  PubMed  Google Scholar 

  52. 52

    Malemud, C. J. & Janoff, A. Identification of neutral proteases in human neutrophil granules that degrade articular cartilage proteoglycan. Arthritis Rheum. 18, 361–368 (1975).

    CAS  PubMed  Google Scholar 

  53. 53

    Geraghty, P. et al. Neutrophil elastase up-regulates cathepsin B and matrix metalloprotease-2 expression. J. Immunol. 178, 5871–5878 (2007).

    CAS  PubMed  Google Scholar 

  54. 54

    Shao, M. X. & Nadel, J. A. Dual oxidase 1-dependent MUC5AC mucin expression in cultured human airway epithelial cells. Proc. Natl Acad. Sci. USA 102, 767–772 (2005).

    CAS  PubMed  Google Scholar 

  55. 55

    Shao, M. X. & Nadel, J. A. Neutrophil elastase induces MUC5AC mucin production in human airway epithelial cells via a cascade involving protein kinase C, reactive oxygen species, and TNF-α-converting enzyme. J. Immunol. 175, 4009–4016 (2005).

    CAS  PubMed  Google Scholar 

  56. 56

    Bergin, D. A. et al. Activation of the epidermal growth factor receptor (EGFR) by a novel metalloprotease pathway. J. Biol. Chem. 283, 31736–31744 (2008).

    CAS  PubMed  Google Scholar 

  57. 57

    Okada, Y. et al. Inactivation of tissue inhibitor of metalloproteinases by neutrophil elastase and other serine proteinases. FEBS Lett. 229, 157–160 (1988).

    CAS  PubMed  Google Scholar 

  58. 58

    Guyot, N. et al. Elafin, an elastase-specific inhibitor, is cleaved by its cognate enzyme neutrophil elastase in sputum from individuals with cystic fibrosis. J. Biol. Chem. 283, 32377–32385 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Abrahamson, M. et al. Human cystatin C. Role of the N-terminal segment in the inhibition of human cysteine proteinases and in its inactivation by leucocyte elastase. Biochem. J. 273, 621–626 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Greene, C. M., Hassan, T., Molloy, K. & McElvaney, N. G. The role of proteases, endoplasmic reticulum stress and SERPINA1 heterozygosity in lung disease and α-1 anti-trypsin deficiency. Expert Rev. Respir. Med. 5, 395–411 (2011).

    CAS  PubMed  Google Scholar 

  61. 61

    Petrache, I. et al. α-1 Antitrypsin inhibits caspase-3 activity, preventing lung endothelial cell apoptosis. Am. J. Pathol. 169, 1155–1166 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    O'Dwyer, C. A. et al. The BLT1 inhibitory function of α-1 antitrypsin augmentation therapy disrupts leukotriene B4 neutrophil signaling. J. Immunol. 195, 3628–3641 (2015).

    CAS  PubMed  Google Scholar 

  63. 63

    Hurley, K. et al. Alpha-1 antitrypsin augmentation therapy corrects accelerated neutrophil apoptosis in deficient individuals. J. Immunol. 193, 3978–3991 (2014).

    CAS  PubMed  Google Scholar 

  64. 64

    Geraghty, P. et al. α1-Antitrypsin activates protein phosphatase 2A to counter lung inflammatory responses. Am. J. Respir. Crit. Care Med. 190, 1229–1242 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Lindblad, D., Blomenkamp, K. & Teckman, J. Alpha-1-antitrypsin mutant Z protein content in individual hepatocytes correlates with cell death in a mouse model. Hepatology 46, 1228–1235 (2007).

    CAS  PubMed  Google Scholar 

  66. 66

    Kroeger, H. et al. Endoplasmic reticulum-associated degradation (ERAD) and autophagy cooperate to degrade polymerogenic mutant serpins. J. Biol. Chem. 284, 22793–22802 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Teckman, J. H. et al. The proteasome participates in degradation of mutant α1-antitrypsin Z in the endoplasmic reticulum of hepatoma-derived hepatocytes. J. Biol. Chem. 276, 44865–44872 (2001). This paper reports the involvement of the proteasome in the degradation of Z-type α1-antitrypsin in hepatocytes.

    CAS  PubMed  Google Scholar 

  68. 68

    Kruse, K. B., Brodsky, J. L. & McCracken, A. A. Characterization of an ERAD gene as VPS30/ATG6 reveals two alternative and functionally distinct protein quality control pathways: one for soluble Z variant of human α-1 proteinase inhibitor (A1PiZ) and another for aggregates of A1PiZ. Mol. Biol. Cell 17, 203–212 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Ekeowa, U. I. et al. Defining the mechanism of polymerization in the serpinopathies. Proc. Natl Acad. Sci. USA 107, 17146–17151 (2010).

    CAS  PubMed  Google Scholar 

  70. 70

    Hosokawa, N. et al. Enhancement of endoplasmic reticulum (ER) degradation of misfolded Null Hong Kong α1-antitrypsin by human ER mannosidaseI. J. Biol. Chem. 278, 26287–26294 (2003).

    CAS  PubMed  Google Scholar 

  71. 71

    Cabral, C. M., Choudhury, P., Liu, Y. & Sifers, R. N. Processing by endoplasmic reticulum mannosidases partitions a secretion-impaired glycoprotein into distinct disposal pathways. J. Biol. Chem. 275, 25015–25022 (2000).

    CAS  PubMed  Google Scholar 

  72. 72

    Wu, Y., Swulius, M. T., Moremen, K. W. & Sifers, R. N. Elucidation of the molecular logic by which misfolded α1-antitrypsin is preferentially selected for degradation. Proc. Natl Acad. Sci. USA 100, 8229–8234 (2003).

    CAS  PubMed  Google Scholar 

  73. 73

    Cabral, C. M., Liu, Y., Moremen, K. W. & Sifers, R. N. Organizational diversity among distinct glycoprotein endoplasmic reticulum-associated degradation programs. Mol. Biol. Cell 13, 2639–2650 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Hidvegi, T. et al. An autophagy-enhancing drug promotes degradation of mutant α1-antitrypsin Z and reduces hepatic fibrosis. Science 329, 229–232 (2010).

    CAS  PubMed  Google Scholar 

  75. 75

    Marciniak, S. J. & Lomas, D. A. Alpha1-antitrypsin deficiency and autophagy. N. Engl. J. Med. 363, 1863–1864 (2010).

    CAS  PubMed  Google Scholar 

  76. 76

    Chambers, J. E. & Marciniak, S. J. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 2. Protein misfolding and ER stress. Am. J. Physiol. Cell Physiol. 307, C657–C670 (2014). This article describes in detail the mechanisms by which misfolded proteins can cause ER stress.

    CAS  PubMed  Google Scholar 

  77. 77

    Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529 (2007).

    CAS  PubMed  Google Scholar 

  78. 78

    Sifers, R. N., Brashears-Macatee, S., Kidd, V. J., Muensch, H. & Woo, S. L. A frameshift mutation results in a truncated α1-antitrypsin that is retained within the rough endoplasmic reticulum. J. Biol. Chem. 263, 7330–7335 (1988).

    CAS  PubMed  Google Scholar 

  79. 79

    Brodbeck, R. M. & Brown, J. L. Secretion of α-1-proteinase inhibitor requires an almost full length molecule. J. Biol. Chem. 267, 294–297 (1992).

    CAS  PubMed  Google Scholar 

  80. 80

    Faber, J. P. et al. Identification and DNA sequence analysis of 15 new alpha 1-antitrypsin variants, including two PI*Q0 alleles and one deficient PI*M allele. Am. J. Hum. Genet. 55, 1113–1121 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Liu, Y., Choudhury, P., Cabral, C. M. & Sifers, R. N. Intracellular disposal of incompletely folded human α1-antitrypsin involves release from calnexin and post-translational trimming of asparagine-linked oligosaccharides. J. Biol. Chem. 272, 7946–7951 (1997).

    CAS  PubMed  Google Scholar 

  82. 82

    Hidvegi, T., Schmidt, B. Z., Hale, P. & Perlmutter, D. H. Accumulation of mutant α1-antitrypsin Z in the endoplasmic reticulum activates caspases-4 and -12, NFκB, and BAP31 but not the unfolded protein response. J. Biol. Chem. 280, 39002–39015 (2005).

    CAS  PubMed  Google Scholar 

  83. 83

    Ordonez, A. et al. Endoplasmic reticulum polymers impair luminal protein mobility and sensitize to cellular stress in alpha1-antitrypsin deficiency. Hepatology 57, 2049–2060 (2013).

    CAS  PubMed  Google Scholar 

  84. 84

    Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P. & Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2, 326–332 (2000).

    CAS  PubMed  Google Scholar 

  85. 85

    Credle, J. J., Finer-Moore, J. S., Papa, F. R., Stroud, R. M. & Walter, P. On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 102, 18773–18784 (2005).

    CAS  PubMed  Google Scholar 

  86. 86

    Graham, K. S., Le, A. & Sifers, R. N. Accumulation of the insoluble PiZ variant of human α1-antitrypsin within the hepatic endoplasmic reticulum does not elevate the steady-state level of grp78/BiP. J. Biol. Chem. 265, 20463–20468 (1990).

    CAS  PubMed  Google Scholar 

  87. 87

    Lawless, M. W. et al. Activation of endoplasmic reticulum-specific stress responses associated with the conformational disease Z α1-antitrypsin deficiency. J. Immunol. 172, 5722–5726 (2004). This paper was one of the first reports to describe the activation of the ER stress response in a cell culture model of Z-type A1ATD.

    CAS  PubMed  Google Scholar 

  88. 88

    Davies, M. J. et al. Neuroserpin polymers activate NF-κB by a calcium signaling pathway that is independent of the unfolded protein response. J. Biol. Chem. 284, 18202–18209 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    van 't Wout, E. F. et al. Increased ERK signalling promotes inflammatory signalling in primary airway epithelial cells expressing Z α1-antitrypsin. Hum. Mol. Genet. 23, 929–941 (2014).

    CAS  PubMed  Google Scholar 

  90. 90

    Van't Wout, E. F. et al. Function of monocytes and monocyte-derived macrophages in α1-antitrypsin deficiency. Eur. Respir. J. 45, 365–376 (2015).

    CAS  PubMed  Google Scholar 

  91. 91

    Carroll, T. P. et al. Evidence for unfolded protein response activation in monocytes from individuals with α-1 antitrypsin deficiency. J. Immunol. 184, 4538–4546 (2010).

    CAS  PubMed  Google Scholar 

  92. 92

    Tan, L. et al. Circulating polymers in α1-antitrypsin deficiency. Eur. Respir. J. 43, 1501–1504 (2014).

    CAS  PubMed  Google Scholar 

  93. 93

    Elliott, P. R., Bilton, D. & Lomas, D. A. Lung polymers in Z α1-antitrypsin deficiency-related emphysema. Am. J. Respir. Cell Mol. Biol. 18, 670–674 (1998).

    CAS  PubMed  Google Scholar 

  94. 94

    Mahadeva, R. et al. Polymers of Z α1-antitrypsin co-localize with neutrophils in emphysematous alveoli and are chemotactic in vivo. Am. J. Pathol. 166, 377–386 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Fra, A. et al. Polymers of Z α1-antitrypsin are secreted in cell models of disease. Eur. Respir. J. 47, 1005–1009 (2016).

    CAS  PubMed  Google Scholar 

  96. 96

    Blanco, I., Lipsker, D., Lara, B. & Janciauskiene, S. Neutrophilic panniculitis associated with alpha-1 antitrypsin deficiency: an update. Br. J. Dermatol. 174, 753–762 (2016).

    CAS  PubMed  Google Scholar 

  97. 97

    Greulich, T. et al. Alpha1-antitrypsin deficiency — diagnostic testing and disease awareness in Germany and Italy. Respir. Med. 107, 1400–1408 (2013).

    PubMed  Google Scholar 

  98. 98

    Jain, A., McCarthy, K., Xu, M. & Stoller, J. K. Impact of a clinical decision support system in an electronic health record to enhance detection of α1-antitrypsin deficiency. Chest 140, 198–204 (2011).

    PubMed  Google Scholar 

  99. 99

    American Thoracic Society & European Respiratory Society. American Thoracic Society/European Respiratory Society statement: standards for the diagnosis and management of individuals with alpha-1 antitrypsin deficiency. Am. J. Respir. Crit. Care Med. 168, 818–900 (2003). These are the current best practice guidelines for the management of lung disease in patients with A1ATD.

    Google Scholar 

  100. 100

    Brantly, M. in Alpha-1-Antitrypsin Deficiency: Biology, Pathogenesis, Clinical Manifestations, Therapy (ed. Crystal, R. G. ) 211–226 (Marcel Dekker, 1996).

    Google Scholar 

  101. 101

    McElvaney, N. G. Diagnosing α1-antitrypsin deficiency: how to improve the current algorithm. Eur. Respir. Rev. 24, 52–57 (2015).

    PubMed  Google Scholar 

  102. 102

    Brantly, M. Efficient and accurate approaches to the laboratory diagnosis of α1-antitrypsin deficiency: the promise of early diagnosis and intervention. Clin. Chem. 52, 2180–2181 (2006).

    CAS  PubMed  Google Scholar 

  103. 103

    Carroll, T. P. et al. The prevalence of alpha-1 antitrypsin deficiency in Ireland. Respir. Res. 12, 91 (2011).

    PubMed  PubMed Central  Google Scholar 

  104. 104

    Sveger, T. & Thelin, T. Four-year-old children with alpha 1-antitrypsin deficiency. Clinical follow-up and parental attitudes towards neonatal screening. Acta Paediatr. Scand. 70, 171–177 (1981).

    CAS  PubMed  Google Scholar 

  105. 105

    Global Initiative for Chronic Obstructive Lung Disease. Global Initiative for Chronic Obstructive Lung Disease (Global Initiative for Chronic Obstructive Lung Disease, Inc., 2014).

  106. 106

    [No authors listed.] Alpha 1-antitrypsin deficiency: memorandum from a WHO meeting. Bull. World Health Organ. 75, 397–415 (1997).

  107. 107

    EURORDIS-NORD-CORD. EURORDIS-NORD-CORD joint declaration of 10 key principles for rare disease patient registries. EURODIShttp://download.eurordis.org/documents/pdf/EURORDIS_NORD_CORD_JointDec_Registries_FINAL.pdf (2012).

  108. 108

    [No authors listed.] Survival and FEV1 decline in individuals with severe deficiency of α1-antitrypsin. The Alpha-1-Antitrypsin Deficiency Registry Study Group. Am. J. Respir. Crit. Care Med. 158, 49–59 (1998).

  109. 109

    Strange, C. et al. The United States Alpha-1 Foundation Research Registry: genesis, impact and future. COPD 12 (Suppl. 1), 42–45 (2015).

    PubMed  Google Scholar 

  110. 110

    Stockley, R. A. et al. Ongoing research in Europe: Alpha One International Registry (AIR) objectives and development. Eur. Respir. J. 29, 582–586 (2007).

    CAS  PubMed  Google Scholar 

  111. 111

    Chorostowska-Wynimko, J., Struniawski, R., Sliwinski, P., Wajda, B. & Czajkowska-Malinowska, M. The national alpha-1 antitrypsin deficiency registry in Poland. COPD 12 (Suppl. 1), 22–26 (2015).

    PubMed  Google Scholar 

  112. 112

    Stoller, J. K. et al. [American Thoracic Society/European Respiratory Society Statement: standards for the diagnosis and management of individuals with alpha-1 antitrypsin deficiency]. Pneumologie 59, 36–68 (in German) (2005).

    CAS  PubMed  Google Scholar 

  113. 113

    Mayer, A. S. et al. Occupational exposure risks in individuals with PI*Z α1-antitrypsin deficiency. Am. J. Respir. Crit. Care Med. 162, 553–558 (2000).

    CAS  PubMed  Google Scholar 

  114. 114

    Mayer, A. S. et al. Risk factors for symptom onset in PI*Z alpha-1 antitrypsin deficiency. Int. J. Chron. Obstruct Pulmon Dis. 1, 485–492 (2006).

    PubMed  PubMed Central  Google Scholar 

  115. 115

    Larsson, C. Natural history and life expectancy in severe alpha1-antitrypsin deficiency, Pi Z. Acta Med. Scand. 204, 345–351 (1978).

    CAS  PubMed  Google Scholar 

  116. 116

    Strange, C. et al. Genetic testing for alpha1-antitrypsin deficiency. Genet. Med. 6, 204–210 (2004).

    CAS  PubMed  Google Scholar 

  117. 117

    Strange, C. et al. Genetic testing of minors for alpha1-antitrypsin deficiency. Arch. Pediatr. Adolesc. Med. 160, 531–534 (2006).

    PubMed  Google Scholar 

  118. 118

    Piitulainen, E., Tornling, G. & Eriksson, S. Effect of age and occupational exposure to airway irritants on lung function in non-smoking individuals with α1-antitrypsin deficiency (PiZZ). Thorax 52, 244–248 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Eriksson, S., Carlson, J. & Velez, R. Risk of cirrhosis and primary liver cancer in alpha1-antitrypsin deficiency. N. Engl. J. Med. 314, 736–739 (1986).

    CAS  PubMed  Google Scholar 

  120. 120

    Nelson, D. R., Teckman, J., Di Bisceglie, A. M. & Brenner, D. A. Diagnosis and management of patients with α1-antitrypsin (A1AT) deficiency. Clin. Gastroenterol. Hepatol. 10, 575–580 (2012).

    PubMed  Google Scholar 

  121. 121

    He, X. X., Li, Y., Ren, H. P., Tian, D. A. & Lin, J. S. [2010 guideline for the management of hepatocellular carcinoma recommended by the American Association for the Study of Liver Diseases]. Zhonghua Gan Zang Bing Za Zhi 19, 249–250 (in Chinese) (2011).

    PubMed  Google Scholar 

  122. 122

    Pillai, A. P., Turner, A. M. & Stockley, R. A. Relationship of the 2011 Global Initiative for Chronic Obstructive Lung Disease strategy to clinically relevant outcomes in individuals with α1-antitrypsin deficiency. Ann. Am. Thorac Soc. 11, 859–864 (2014).

    PubMed  Google Scholar 

  123. 123

    Wewers, M. D. et al. Replacement therapy for alpha1-antitrypsin deficiency associated with emphysema. N. Engl. J. Med. 316, 1055–1062 (1987).

    CAS  PubMed  Google Scholar 

  124. 124

    Chapman, K. R. et al. Intravenous augmentation treatment and lung density in severe α1 antitrypsin deficiency (RAPID): a randomised, double-blind, placebo-controlled trial. Lancet 386, 360–368 (2015). This clinical trial report provides evidence that purified α1-antitrypsin augmentation slows the progression of emphysema in patients with A1ATD.

    CAS  PubMed  Google Scholar 

  125. 125

    Chotirmall, S. H., Al-Alawi, M., McEnery, T. & McElvaney, N. G. Alpha-1 proteinase inhibitors for the treatment of alpha-1 antitrypsin deficiency: safety, tolerability, and patient outcomes. Ther. Clin. Risk Manag. 11, 143–151 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    Casolaro, M. A. et al. Augmentation of lung antineutrophil elastase capacity with recombinant human alpha-1-antitrypsin. J. Appl. Physiol. (1985) 63, 2015–2023 (1987).

    CAS  Google Scholar 

  127. 127

    Hubbard, R. C., Brantly, M. L., Sellers, S. E., Mitchell, M. E. & Crystal, R. G. Anti-neutrophil-elastase defenses of the lower respiratory tract in α1-antitrypsin deficiency directly augmented with an aerosol of α1-antitrypsin. Ann. Intern. Med. 111, 206–212 (1989).

    CAS  PubMed  Google Scholar 

  128. 128

    Franciosi, A. N., McCarthy, C. & McElvaney, N. G. The efficacy and safety of inhaled human α1 antitrypsin in people with α-1 antitrypsin deficiency-related emphysema. Expert Rev. Respir. Med. 9, 143–151 (2015).

    CAS  PubMed  Google Scholar 

  129. 129

    Teckman, J. H. & Mangalat, N. Alpha-1 antitrypsin and liver disease: mechanisms of injury and novel interventions. Expert Rev. Gastroenterol. Hepatol. 9, 261–268 (2015).

    CAS  PubMed  Google Scholar 

  130. 130

    Murray, K. F. & Carithers, R. L. Jr & ASSLD. AASLD practice guidelines: evaluation of the patient for liver transplantation. Hepatology 41, 1407–1432 (2005).

    PubMed  Google Scholar 

  131. 131

    Tannuri, A. C. et al. Living related donor liver transplantation in children. Transplant. Proc. 43, 161–164 (2011).

    CAS  PubMed  Google Scholar 

  132. 132

    Hughes, M. G. Jr et al. Long-term outcome in 42 pediatric liver transplant patients with alpha 1-antitrypsin deficiency: a single-center experience. Clin. Transplant. 25, 731–736 (2011).

    PubMed  Google Scholar 

  133. 133

    Seersholm, N. & Kok-Jensen, A. Survival in relation to lung function and smoking cessation in patients with severe hereditary alpha 1-antitrypsin deficiency. Am. J. Respir. Crit. Care Med. 151, 369–373 (1995).

    CAS  PubMed  Google Scholar 

  134. 134

    Tanash, H. A., Nilsson, P. M., Nilsson, J. A. & Piitulainen, E. Clinical course and prognosis of never-smokers with severe alpha-1-antitrypsin deficiency (PiZZ). Thorax 63, 1091–1095 (2008).

    CAS  PubMed  Google Scholar 

  135. 135

    Brantly, M. L. et al. Clinical features and history of the destructive lung disease associated with alpha-1-antitrypsin deficiency of adults with pulmonary symptoms. Am. Rev. Respir. Dis. 138, 327–336 (1988).

    CAS  PubMed  Google Scholar 

  136. 136

    Stoller, J. K. et al. Mortality in individuals with severe deficiency of α1-antitrypsin: findings from the National Heart, Lung, and Blood Institute Registry. Chest 127, 1196–1204 (2005).

    CAS  PubMed  Google Scholar 

  137. 137

    Campos, M. A. et al. Clinical characteristics of subjects with symptoms of α1-antitrypsin deficiency older than 60 years. Chest 135, 600–608 (2009).

    PubMed  Google Scholar 

  138. 138

    Needham, M. & Stockley, R. A. α1-Antitrypsin deficiency. 3: clinical manifestations and natural history. Thorax 59, 441–445 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139

    Dawkins, P. A., Dowson, L. J., Guest, P. J. & Stockley, R. A. Predictors of mortality in α1-antitrypsin deficiency. Thorax 58, 1020–1026 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Demeo, D. L. et al. Determinants of airflow obstruction in severe alpha-1-antitrypsin deficiency. Thorax 62, 806–813 (2007).

    PubMed  PubMed Central  Google Scholar 

  141. 141

    Holm, K. E. et al. Differences in adjustment between individuals with alpha-1 antitrypsin deficiency (AATD)-associated COPD and non-AATD COPD. COPD 10, 226–234 (2013).

    PubMed  PubMed Central  Google Scholar 

  142. 142

    Campos, M. A., Alazemi, S., Zhang, G., Wanner, A. & Sandhaus, R. A. Effects of a disease management program in individuals with alpha-1 antitrypsin deficiency. COPD 6, 31–40 (2009).

    PubMed  Google Scholar 

  143. 143

    Dirksen, A. et al. Exploring the role of CT densitometry: a randomised study of augmentation therapy in α1-antitrypsin deficiency. Eur. Respir. J. 33, 1345–1353 (2009).

    CAS  PubMed  Google Scholar 

  144. 144

    Rashid, S. T. et al. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J. Clin. Invest. 120, 3127–3136 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145

    Tafaleng, E. N. et al. Induced pluripotent stem cells model personalized variations in liver disease resulting from α1-antitrypsin deficiency. Hepatology 62, 147–157 (2015).

    PubMed  PubMed Central  Google Scholar 

  146. 146

    Dirksen, A. et al. A randomized clinical trial of α1-antitrypsin augmentation therapy. Am. J. Respir. Crit. Care Med. 160, 1468–1472 (1999).

    CAS  PubMed  Google Scholar 

  147. 147

    Kaushal, S. et al. Rapamycin reduces intrahepatic alpha-1-antitrypsin mutant Z protein polymers and liver injury in a mouse model. Exp. Biol. Med. (Maywood) 235, 700–709 (2010).

    CAS  Google Scholar 

  148. 148

    Mahadeva, R., Dafforn, T. R., Carrell, R. W. & Lomas, D. A. 6-mer peptide selectively anneals to a pathogenic serpin conformation and blocks polymerization. Implications for the prevention of Z α1-antitrypsin-related cirrhosis. J. Biol. Chem. 277, 6771–6774 (2002).

    CAS  PubMed  Google Scholar 

  149. 149

    Guo, S. et al. Antisense oligonucleotide treatment ameliorates alpha-1 antitrypsin-related liver disease in mice. J. Clin. Invest. 124, 251–261 (2014).

    CAS  PubMed  Google Scholar 

  150. 150

    US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT01379469 (2011).

  151. 151

    Burrows, J. A., Willis, L. K. & Perlmutter, D. H. Chemical chaperones mediate increased secretion of mutant α1-antitrypsin (α1-AT) Z: a potential pharmacological strategy for prevention of liver injury and emphysema in α1-AT deficiency. Proc. Natl Acad. Sci. USA 97, 1796–1801 (2000).

    CAS  PubMed  Google Scholar 

  152. 152

    Teckman, J. H. Lack of effect of oral 4-phenylbutyrate on serum alpha-1-antitrypsin in patients with alpha-1-antitrypsin deficiency: a preliminary study. J. Pediatr. Gastroenterol. Nutr. 39, 34–37 (2004).

    CAS  PubMed  Google Scholar 

  153. 153

    Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Adapting proteostasis for disease intervention. Science 319, 916–919 (2008).

    CAS  PubMed  Google Scholar 

  154. 154

    Roth, D. M. et al. Modulation of the maladaptive stress response to manage diseases of protein folding. PLoS Biol. 12, e1001998 (2014).

    PubMed  PubMed Central  Google Scholar 

  155. 155

    Bouchecareilh, M., Hutt, D. M., Szajner, P., Flotte, T. R. & Balch, W. E. Histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA)-mediated correction of α1-antitrypsin deficiency. J. Biol. Chem. 287, 38265–38278 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156

    Parfrey, H., Dafforn, T. R., Belorgey, D., Lomas, D. A. & Mahadeva, R. Inhibiting polymerization: new therapeutic strategies for Z α1-antitrypsin-related emphysema. Am. J. Respir. Cell Mol. Biol. 31, 133–139 (2004).

    CAS  PubMed  Google Scholar 

  157. 157

    Nyon, M. P. & Gooptu, B. Therapeutic targeting of misfolding and conformational change in α1-antitrypsin deficiency. Future Med. Chem. 6, 1047–1065 (2014).

    CAS  PubMed  Google Scholar 

  158. 158

    Chang, Y. P. et al. Targeting serpins in high-throughput and structure-based drug design. Methods Enzymol. 501, 139–175 (2011).

    CAS  PubMed  Google Scholar 

  159. 159

    Chang, Y. P., Mahadeva, R., Chang, W. S., Lin, S. C. & Chu, Y. H. Small-molecule peptides inhibit Z α1-antitrypsin polymerization. J. Cell. Mol. Med. 13, 2304–2316 (2009).

    PubMed  Google Scholar 

  160. 160

    Nyon, M. P. et al. An integrative approach combining ion mobility mass spectrometry, X-ray crystallography, and nuclear magnetic resonance spectroscopy to study the conformational dynamics of α1-antitrypsin upon ligand binding. Protein Sci. 24, 1301–1312 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161

    Gooptu, B. et al. Crystallographic and cellular characterisation of two mechanisms stabilising the native fold of α1-antitrypsin: implications for disease and drug design. J. Mol. Biol. 387, 857–868 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162

    Mallya, M. et al. Small molecules block the polymerization of Z α1-antitrypsin and increase the clearance of intracellular aggregates. J. Med. Chem. 50, 5357–5363 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163

    Patschull, A. O., Gooptu, B., Ashford, P., Daviter, T. & Nobeli, I. In silico assessment of potential druggable pockets on the surface of α1-antitrypsin conformers. PLoS ONE 7, e36612 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. 164

    Loring, H. S. & Flotte, T. R. Current status of gene therapy for α-1 antitrypsin deficiency. Expert Opin. Biol. Ther. 15, 329–336 (2015).

    CAS  PubMed  Google Scholar 

  165. 165

    Flotte, T. R. et al. Phase 2 clinical trial of a recombinant adeno-associated viral vector expressing α1-antitrypsin: interim results. Hum. Gene Ther. 22, 1239–1247 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. 166

    Chulay, J. D. et al. Preclinical evaluation of a recombinant adeno-associated virus vector expressing human alpha-1 antitrypsin made usinga recombinant herpes simplex virus production method. Hum. Gene Ther. 22, 155–165 (2011).

    CAS  PubMed  Google Scholar 

  167. 167

    Brantly, M. L. et al. Sustained transgene expression despite T lymphocyte responses in a clinical trial of rAAV1-AAT gene therapy. Proc. Natl Acad. Sci. USA 106, 16363–16368 (2009).

    CAS  PubMed  Google Scholar 

  168. 168

    Brantly, M. L. et al. Phase I trial of intramuscular injection of a recombinant adeno-associated virus serotype 2 α1-antitrypsin (AAT) vector in AAT-deficient adults. Hum. Gene Ther. 17, 1177–1186 (2006).

    CAS  PubMed  Google Scholar 

  169. 169

    Liqun Wang, R. et al. Recombinant AAV serotype and capsid mutant comparison for pulmonary gene transfer of α-1-antitrypsin using invasive and noninvasive delivery. Mol. Ther. 17, 81–87 (2009).

    CAS  PubMed  Google Scholar 

  170. 170

    Mueller, C. et al. Human Treg responses allow sustained recombinant adeno-associated virus-mediated transgene expression. J. Clin. Invest. 123, 5310–5318 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. 171

    Ghaedi, M., Lotfi, A. S. & Soleimani, M. Establishment of lentiviral-vector-mediated model of human alpha-1 antitrypsin delivery into hepatocyte-like cells differentiated from mesenchymal stem cells. Tissue Cell 42, 181–189 (2010).

    CAS  PubMed  Google Scholar 

  172. 172

    Argyros, O. et al. Persistent episomal transgene expression in liver following delivery of a scaffold/matrix attachment region containing non-viral vector. Gene Ther. 15, 1593–1605 (2008).

    CAS  PubMed  Google Scholar 

  173. 173

    Chiuchiolo, M. J. et al. Phase I/II study of intrapleural administration of a serotype rh.10 replication-deficient adeno-associated virus gene transfer vector expressing the human alpha1-antitrypsin cDNA to individuals with α1-antitrypsin deficiency. Hum. Gene Ther. Clin. Dev. 25, 112–133 (2014).

    CAS  PubMed  Google Scholar 

  174. 174

    Yusa, K. et al. Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478, 391–394 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. 175

    Wilson, A. A. et al. Emergence of a stage-dependent human liver disease signature with directed differentiation of alpha-1 antitrypsin-deficient iPS cells. Stem Cell Rep. 4, 873–885 (2015).

    CAS  Google Scholar 

  176. 176

    Roussel, B. D. et al. Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol. 12, 105–118 (2013).

    CAS  PubMed  Google Scholar 

  177. 177

    Griese, M. et al. α1-Antitrypsin inhalation reduces airway inflammation in cystic fibrosis patients. Eur. Respir. J. 29, 240–250 (2007).

    CAS  PubMed  Google Scholar 

  178. 178

    McElvaney, N. G. et al. Aerosol α1-antitrypsin treatment for cystic fibrosis. Lancet 337, 392–394 (1991).

    CAS  PubMed  Google Scholar 

  179. 179

    Pahl, H. L. & Baeuerle, P. A. A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF-kappa B. EMBO J. 14, 2580–2588 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. 180

    Pahl, H. L. & Baeuerle, P. A. Expression of influenza virus hemagglutinin activates transcription factor NF-κB. J. Virol. 69, 1480–1484 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. 181

    Sveger, T. The natural history of liver disease in α1-antitrypsin deficient children. Acta Paediatr. Scand. 77, 847–851 (1988).

    CAS  PubMed  Google Scholar 

  182. 182

    Sveger, T. & Eriksson, S. The liver in adolescents with α1-antitrypsin deficiency. Hepatology 22, 514–517 (1995).

    CAS  PubMed  Google Scholar 

  183. 183

    Sveger, T. α1-Antitrypsin deficiency in early childhood. Pediatrics 62, 22–25 (1978).

    CAS  PubMed  Google Scholar 

  184. 184

    Eden, E. et al. Atopy, asthma, and emphysema in patients with severe α-1-antitrypysin deficiency. Am. J. Respir. Crit. Care Med. 156, 68–74 (1997).

    CAS  PubMed  Google Scholar 

  185. 185

    Franciosi, A. N., McCarthy, C., Carroll, T. P. & McElvaney, N. G. Unusual acute sequelae of α1-antitrypsin deficiency: a myriad of symptoms with one common cure. Chest 148, e136–138 (2015).

    Google Scholar 

  186. 186

    Elzouki, A. N., Segelmark, M., Wieslander, J. & Eriksson, S. Strong link between the alpha1-antitrypsin PiZ allele and Wegener's granulomatosis. J. Intern. Med. 236, 543–548 (1994).

    CAS  PubMed  Google Scholar 

  187. 187

    Ciliberto, G., Dente, L. & Cortese, R. Cell-specific expression of a transfected human α1-antitrypsin gene. Cell 41, 531–540 (1985).

    CAS  PubMed  Google Scholar 

  188. 188

    Rollini, P. & Fournier, R. E. Differential regulation of gene activity and chromatin structure within the human serpin gene cluster at 14q32.1 in macrophage microcell hybrids. Nucleic Acids Res. 28, 1767–1777 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. 189

    Seersholm, N. et al. Does alpha1-antitrypsin augmentation therapy slow the annual decline in FEV1 in patients with severe hereditary alpha1-antitrypsin deficiency? Wissenschaftliche Arbeitsgemeinschaft zur Therapie von Lungenerkrankungen (WATL) alpha1-AT study group. Eur. Respir. J. 10, 2260–2263 (1997).

    CAS  PubMed  Google Scholar 

  190. 190

    Lieberman, J. Augmentation therapy reduces frequency of lung infections in antitrypsin deficiency: a new hypothesis with supporting data. Chest 118, 1480–1485 (2000).

    CAS  PubMed  Google Scholar 

  191. 191

    Wencker, M., Fuhrmann, B., Banik, N., Konietzko, N. & Wissenschaftliche Arbeitsgemeinschaft zur Therapie von Lungenerkrankungen. Longitudinal follow-up of patients with alpha1-protease inhibitor deficiency before and during therapy with IV α1-protease inhibitor. Chest 119, 737–744 (2001).

    CAS  PubMed  Google Scholar 

  192. 192

    Tonelli, A. R., Rouhani, F., Li, N., Schreck, P. & Brantly, M. L. Alpha-1-antitrypsin augmentation therapy in deficient individuals enrolled in the Alpha-1 Foundation DNA and Tissue Bank. Int. J. Chron. Obstruct Pulmon Dis. 4, 443–452 (2009).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding for research in C.M.G.'s group is gratefully acknowledged from the Health Research Board, Science Foundation Ireland, the Irish Research Council, the National Children's Research Centre, the European Respiratory Society, Horizon 2020, Cystic Fibrosis Foundation Therapeutics and the Alpha One Foundation USA. The authors thank J. Irving, University College London (UCL), UK, for preparing the crystal structures used in Figure 3.

Author information

Affiliations

Authors

Contributions

Introduction (C.M.G.); Epidemiology (C.M.G. and J.K.S.); Mechanisms/pathophysiology (C.M.G., D.A.L., I.F., S.J.M. and J.T.); Diagnosis, screening and prevention (C.M.G., M.L.B., J.K.S. and N.G.M.); Management (C.M.G., J.T. and N.G.M.); Quality of life (C.M.G. and J.K.S.); Outlook (C.M.G., S.J.M. and N.G.M.); Overview of Primer (C.M.G.).

Corresponding author

Correspondence to Catherine M. Greene.

Ethics declarations

Competing interests

C.M.G. has received research grants from the Alpha-1 Foundation and received an honorarium for educational materials from Vertex Pharmaceuticals. J.T. has served as a consultant for Alnylam Pharmaceuticals, Arrowhead Research, Proteostasis Therapeutics, Isis Pharmaceuticals (now Ionis Pharmaceuticals), Editas Medicine, Genkyotex, GLG Pharma, INSERM, Intellia Therapeutics, Retrophin, RxCelerate and Velgene. He also received honoraria for speaking from the Alpha-1 Foundation and the Cystic Fibrosis Foundation and research grants or support from the Alpha-1 Foundation, US NIH, Alnylam Pharmaceuticals, Arrowhead Research and the Cardinal Glennon Children's Foundation. M.L.B. has received research support for clinical trials from Baxalta, Kamada and Grifols, is an owner of GeneAidyx, a genetic diagnostic company, and holds patents for α1-antitrypsin gene therapy and compounds to modify α1-antitrypsin secretion. D.A.L. has received research funding from GlaxoSmithKline to develop small-molecule therapies for α1-antitrypsin deficiency. He was also chair of the GlaxoSmithKline Respiratory Therapy Area Board between 2012 and 2015. J.K.S. has served as a consultant for Kamada, Grifols, Arrowhead Research, CSL Behring, Baxalta, Pfizer and Boehringer-Ingelheim. He is a member of the board of directors of the Alpha-1 Foundation, and the Medical and Scientific Advisory Council for both the COPD Foundation and the Alpha-1 Foundation. N.G.M. has served as a consultant for Chiesi and Bayer and received honoraria for speaking from Chiesi, Grifols and CSL Behring. He also received grants or research support from Chiesi, Grifols, Vertex and the Alpha-1 Foundation. S.J.M. and I.F. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Greene, C., Marciniak, S., Teckman, J. et al. α1-Antitrypsin deficiency. Nat Rev Dis Primers 2, 16051 (2016). https://doi.org/10.1038/nrdp.2016.51

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing