Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Benign prostatic hyperplasia

Abstract

Benign prostatic hyperplasia (BPH), which causes lower urinary tract symptoms (LUTS), is a common diagnosis among the ageing male population with increasing prevalence. Many risks factors, both modifiable and non-modifiable, can increase the risk of development and progression of BPH and LUTS. The symptoms can be obstructive (resulting in urinary hesitancy, weak stream, straining or prolonged voiding) or irritative (resulting in increased urinary frequency and urgency, nocturia, urge incontinence and reduced voiding volumes), or can affect the patient after micturition (for example, postvoid dribble or incomplete emptying). BPH occurs when both stromal and epithelial cells of the prostate in the transitional zone proliferate by processes that are thought to be influenced by inflammation and sex hormones, causing prostate enlargement. Patients with LUTS undergo several key diagnostic investigations before being diagnosed with BPH. Treatment options for men with BPH start at watchful waiting and progress through medical to surgical interventions. For the majority of patients, the starting point on the treatment pathway will be dictated by their symptoms and degree of bother.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: BPH.
Figure 2: Incidence of lower urinary tract symptoms.
Figure 3: Role of testosterone in BPH.
Figure 4: Transrectal ultrasonography.
Figure 5: Management algorithm for men with lower urinary tract symptoms.

References

  1. 1

    Lepor, H. Pathophysiology of benign prostatic hyperplasia in the aging male population. Rev. Urol. 7, S3–S12 (2005).

    PubMed  PubMed Central  Google Scholar 

  2. 2

    Roehrborn, C. G. Pathology of benign prostatic hyperplasia. Int. J. Impot. Res. 20, S11–S18 (2008).

    Article  PubMed  Google Scholar 

  3. 3

    Young, J. M., Muscatello, D. J. & Ward, J. E. Are men with lower urinary tract symptoms at increased risk of prostate cancer? A systematic review and critique of the available evidence. BJU Int. 85, 1037–1048 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. 4

    Parsons, J. K. Benign prostatic hyperplasia and male lower urinary tract symptoms: epidemiology and risk factors. Curr. Bladder Dysfunct. Rep. 5, 212–218 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Berry, S. J., Coffey, D. S., Walsh, P. C. & Ewing, L. L. The development of human benign prostatic hyperplasia with age. J. Urol. 132, 474–479 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. 6

    Platz, E. et al. Incidence and progression of lower urinary tract symptoms in a large prospective cohort of united states men. J. Urol. 188, 496–501 (2012). This study followed up 26,000 men with LUTS for 16 years and reported that the incidence and progression rates are high and increase steeply as men age.

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Bosch, J. L., Hop, W. C., Kirkels, W. J. & Schroder, F. H. Natural history of benign prostatic hyperplasia: appropriate case definition and estimation of its prevalence in the community. Urology 46, 34–40 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. 8

    Barry, M. J. et al. Measuring disease-specific health status in men with benign prostatic hyperplasia. Measurement Committee of The American Urological Association. Med. Care 33, AS145–AS155 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. 9

    Rohrmann, S., Smit, E., Giovannucci, E. & Platz, E. Association between markers of the metabolic syndrome and lower urinary tract symptoms in the Third National Health and Nutrition Examination Survey (NHANES III). Int. J. Obes. 29, 310–316 (2005). This study involved 2,372 men >60 years of age and demonstrated that diabetes and hypertension seem to be positively associated with the development of LUTS.

    Article  CAS  Google Scholar 

  10. 10

    Jin, B., Turner, L., Zhou, Z., Zhou, E. & Handelsman, D. Ethnicity and migration as determinants of human prostate size. J. Clin. Endocrinol. Metab. 84, 3613–3619 (1999). This study focused on the roles of ethnicity and migration on prostate size, demonstrating that prostate size in middle life is subject to environmental factors that are related to migration.

    CAS  PubMed  Google Scholar 

  11. 11

    Loeb, S. et al. Prostate volume changes over time: results from the Baltimore Longitudinal Study of Aging. J. Urol. 182, 1458–1462 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Roehrborn, C. G. et al. Clinical outcomes after combined therapy with dutasteride plus tamsulosin or either monotherapy in men with benign prostatic hyperplasia (BPH) by baseline characteristics: 4-year results from the randomized, double-blind Combination of Avodart and Tamsulosin (CombAT) trial. BJU Int. 107, 946–954 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. 13

    De Nunzio, C., Aronson, W., Freedland, S., Giovannucci, E. & Parsons, J. The correlation between metabolic syndrome and prostatic diseases. Eur. Urol. 61, 560–570 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. 14

    Hammarsten, J., Hogstedt, B., Holthuis, N. & Mellstrom, D. Components of the metabolic syndrome-risk factors for the development of benign prostatic hyperplasia. Prostate Cancer Prostatic Dis. 1, 157–162 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Gacci, M. et al. Metabolic syndrome and benign prostatic enlargement: a systematic review and meta-analysis. BJU Int. 115, 24–31 (2015). This review summarizes the literature on the relationship between metabolic syndrome and BPH and concluded that obese, dyslipidaemic and aged men have a higher risk of having metabolic syndrome as a determinant of their prostate enlargement.

    Article  PubMed  Google Scholar 

  16. 16

    Golbidi, S. & Laher, I. Bladder dysfunction in diabetes mellitus. Front. Pharmacol. 1, 136 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Yoshimura, N., Chancellor, M. B., Andersson, K. E. & Christ, G. J. Recent advances in understanding the biology of diabetes-associated bladder complications and novel therapy. BJU Int. 95, 733–738 (2005).

    Article  PubMed  Google Scholar 

  18. 18

    Michel, M. C., Chess-Williams, R. & Hegde, S. S. Are blood vessels a target to treat lower urinary tract dysfunction? Naunyn Schmiedebergs Arch. Pharmacol. 388, 687–694 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Abdollah, F. et al. Metabolic syndrome and benign prostatic hyperplasia: evidence of a potential relationship, hypothesized etiology, and prevention. Korean J. Urol. 52, 507–516 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    Vignozzi, L. et al. Testosterone protects from metabolic syndrome-associated prostate inflammation: an experimental study in rabbit. J. Endocrinol. 212, 71–84 (2012). This experimental animal study reported the protective effect of testosterone on metabolic syndrome-induced prostatic hypoxia, fibrosis and inflammation, which can play a part in the development of BPH and LUTS.

    Article  CAS  PubMed  Google Scholar 

  21. 21

    Vignozzi, L. et al. Fat boosts, while androgen receptor activation counteracts, BPH-associated prostate inflammation. Prostate 73, 789–800 (2013). This study examined BPH specimens from men and reported that fats and insulin might be a factor in the development of BPH as they boost inflammation; DHT might counteract these actions and benefit prostate health.

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Kellogg Parsons, J., Sarma, A., McVary, K. & Wei, J. Obesity and benign prostatic hyperplasia: clinical connections, emerging etiological paradigms and future directions. J. Urol. 189, S102–S106 (2013). This review showed that obesity markedly increases the risk of BPH, but this risk can be reduced by physical activity.

    PubMed  Google Scholar 

  23. 23

    Patel, N. & Parsons, J. Epidemiology and etiology of benign prostatic hyperplasia and bladder outlet obstruction. Indian J. Urol. 30, 170–176 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Kristal, A. et al. Race/ethnicity, obesity, health related behaviors and the risk of symptomatic benign prostatic hyperplasia: results from the Prostate Cancer Prevention trial. J. Urol. 177, 1395–1400 (2007).

    Article  PubMed  Google Scholar 

  25. 25

    Parsons, J. et al. Metabolic factors associated with benign prostatic hyperplasia. J. Clin. Endocrinol. Metab. 91, 2562–2568 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Furukawa, S. et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 114, 1752–1761 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Rohrmann, S., De Marzo, A., Smit, E., Giovannucci, E. & Platz, E. Serum C-reactive protein concentration and lower urinary tract symptoms in older men in the Third National Health and Nutrition Examination Survey (NHANES III). Prostate 62, 27–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Lagiou, P. et al. Diet and benign prostatic hyperplasia: a study in Greece. Urology 54, 284–290 (1999). This case–control study compared patients with confirmed BPH to a control group to assess the role of diet in the disease. The authors concluded that lipids, butter and margarine increase the risk of BPH, whereas fruit intake reduces the risk.

    Article  CAS  PubMed  Google Scholar 

  29. 29

    Bravi, F. et al. Food groups and risk of benign prostatic hyperplasia. Urology 67, 73–79 (2006).

    Article  PubMed  Google Scholar 

  30. 30

    Denis, L., Morton, M. & Griffiths, K. Diet and its preventive role in prostatic disease. Eur. Urol. 35, 377–387 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. 31

    Qi, J. et al. Genetic variants in 2q31 and 5p15 are associated with aggressive benign prostatic hyperplasia in a Chinese population. Prostate 73, 1182–1190 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Jiao, Y. et al. LILRA3 is associated with benign prostatic hyperplasia risk in a Chinese population. Int. J. Mol. Sci. 14, 8832–8840 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Sanda, M. G., Beaty, T. H., Stutzman, R. E., Childs, B. & Walsh, P. C. Genetic susceptibility of benign prostatic hyperplasia. J. Urol. 152, 115–119 (1994). This study assessed the genetic susceptibility in men undergoing prostatectomy for BPH and reported that the first-degree relatives of men from this group had a fourfold increased risk of developing BPH that required surgery compared with the relatives of control men.

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Pearson, J. D. et al. Familial aggregation of bothersome benign prostatic hyperplasia symptoms. Urology 61, 781–785 (2003). This study reported that the mode of inheritance for BPH has been suggested to be autosomal dominant for certain men.

    Article  PubMed  Google Scholar 

  35. 35

    Meikle, A., Bansal, A., Murray, D., Stephenson, R. & Middleton, R. Heritability of the symptoms of benign prostatic hyperplasia and the roles of age and zonal prostate volumes in twins. Urology 53, 701–706 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. 36

    Rohrmann, S. et al. Concordance rates and modifiable risk factors for lower urinary tract symptoms in twins. Epidemiology 17, 419–427 (2006). In this study, the concordance rates for LUTS in 1,723 twin pairs were higher in monozygotic than in dizygotic twins and suggested that 72% of the risk of high-to-moderate and severe LUTS was attributable to genetic factors.

    Article  PubMed  Google Scholar 

  37. 37

    Foster, C. S. Pathology of benign prostatic hyperplasia. Prostate Suppl. 9, 4–14 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Griffiths, K., Morton, M. S. & Nicholson, R. I. Androgens, androgen receptors, antiandrogens and the treatment of prostate cancer. Eur. Urol. 32 (Suppl. 3), 24–40 (1997).

    CAS  PubMed  Google Scholar 

  39. 39

    Carson, C. 3rd & Rittmaster, R. The role of dihydrotestosterone in benign prostatic hyperplasia. Urology 61, 2–7 (2003). Growth factors stimulated by DHT, including EGF, KGF and IGFs, modulate cellular proliferation in the prostate in humans.

    Article  PubMed  Google Scholar 

  40. 40

    Isaacs, J. T. Antagonistic effect of androgen on prostatic cell death. Prostate 5, 545–557 (1984).

    Article  CAS  PubMed  Google Scholar 

  41. 41

    Niu, Y. et al. Proliferation and differentiation of prostatic stromal cells. BJU Int. 87, 386–393 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. 42

    Kim, I. Y. et al. Modulation of sensitivity to transforming growth factor-β1 (TGF-β1) and the level of type II TGF-β receptor in LNCaP cells by dihydrotestosterone. Exp. Cell Res. 222, 103–110 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. 43

    Chughtai, B., Lee, R., Te, A. & Kaplan, S. Inflammation and benign prostatic hyperplasia: clinical implications. Curr. Urol. Rep. 12, 274–277 (2011).

    Article  PubMed  Google Scholar 

  44. 44

    Theyer, G. et al. Phenotypic characterization of infiltrating leukocytes in benign prostatic hyperplasia. Lab. Invest. 66, 96–107 (1992).

    CAS  PubMed  Google Scholar 

  45. 45

    Kramer, G., Mitteregger, D. & Marberger, M. Is benign prostatic hyperplasia (BPH) an immune inflammatory disease? Eur. Urol. 51, 1202–1216 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. 46

    Kramer, G. et al. Increased expression of lymphocyte-derived cytokines in benign hyperplastic prostate tissue, identification of the producing cell types, and effect of differentially expressed cytokines on stromal cell proliferation. Prostate 52, 43–58 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. 47

    Steiner, G. E. et al. Cytokine expression pattern in benign prostatic hyperplasia infiltrating T cells and impact of lymphocytic infiltration on cytokine mRNA profile in prostatic tissue. Lab. Invest. 83, 1131–1146 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Robert, G. et al. Inflammation in benign prostatic hyperplasia: a 282 patients’ immunohistochemical analysis. Prostate 69, 1774–1780 (2009). This study examined prostate tissue from men who underwent surgery for BPH and reported that patients with high-grade inflammation had a significantly higher IPSS, as well as larger prostate volumes, than those with low-grade inflammation.

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49

    Wang, W., Bergh, A. & Damber, J. E. Chronic inflammation in benign prostate hyperplasia is associated with focal upregulation of cyclooxygenase-2, Bcl-2, and cell proliferation in the glandular epithelium. Prostate 61, 60–72 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Shapiro, E., Becich, M. J., Hartanto, V. & Lepor, H. The relative proportion of stromal and epithelial hyperplasia is related to the development of symptomatic benign prostate hyperplasia. J. Urol. 147, 1293–1297 (1992).

    Article  CAS  PubMed  Google Scholar 

  51. 51

    Roehrborn, C. G. & Schwinn, D. A. α1-Adrenergic receptors and their inhibitors in lower urinary tract symptoms and benign prostatic hyperplasia. J. Urol. 171, 1029–1035 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. 52

    Lepor, H., Tang, R. & Shapiro, E. The alpha-adrenoceptor subtype mediating the tension of human prostatic smooth muscle. Prostate 22, 301–307 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Kobayashi, S., Tang, R., Shapiro, E. & Lepor, H. Characterization and localization of prostatic alpha 1 adrenoceptors using radioligand receptor binding on slide-mounted tissue section. J. Urol. 150, 2002–2006 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. 54

    Andersson, K.-E. α-Adrenoceptors and benign prostatic hyperplasia: basic principles for treatment with α-adrenoceptor antagonists. World J. Urol. 19, 390–396 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. 55

    Yamada, S. et al. Alpha-1 adrenoceptors in human prostate: characterization and alteration in benign prostatic hypertrophy. J. Pharmacol. Exp. Ther. 242, 326–330 (1987).

    CAS  PubMed  Google Scholar 

  56. 56

    Siroky, M. B. The aging bladder. Rev. Urol. 6, S3–S7 (2004).

    PubMed  PubMed Central  Google Scholar 

  57. 57

    Fowler, C. J. Neurological disorders of micturition and their treatment. Brain 122, 1213–1231 (1999).

    Article  PubMed  Google Scholar 

  58. 58

    Abrams, P. H., Farrar, D. J., Turner-Warwick, R. T., Whiteside, C. G. & Feneley, R. C. The results of prostatectomy: a symptomatic and urodynamic analysis of 152 patients. J. Urol. 121, 640–642 (1979). In this study, despite surgical intervention for obstruction due to BPH, approximately one-third of men continued to have symptoms of voiding dysfunction, including both detrusor overactivity and decreased detrusor compliance.

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Barry, M. J. et al. Relationship of symptoms of prostatism to commonly used physiological and anatomical measures of the severity of benign prostatic hyperplasia. J. Urol. 150, 351–358 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. 60

    Gosling, J. A. & Dixon, J. S. Structure of trabeculated detrusor smooth muscle in cases of prostatic hypertrophy. Urol. Intern. 35, 351–355 (1980).

    Article  CAS  Google Scholar 

  61. 61

    Gosling, J. A., Gilpin, S. A., Dixon, J. S. & Gilpin, C. J. Decrease in the autonomic innervation of human detrusor muscle in outflow obstruction. J. Urol. 136, 501–504 (1986).

    Article  CAS  PubMed  Google Scholar 

  62. 62

    Levin, R. M., Wein, A. J., Saito, M. & Longhurst, P. A. Factors that modulate the initiation of micturition. Scand. J. Urol. Nephrol. Suppl. 175, 3–10 (1995).

    CAS  PubMed  Google Scholar 

  63. 63

    Levin, R. M. et al. Obstructive response of human bladder to BPH versus rabbit bladder response to partial outlet obstruction: a direct comparison. Neurourol. Urodynam. 19, 609–629 (2000).

    Article  CAS  Google Scholar 

  64. 64

    Lin, V. K. & McConnell, J. D. Effects of obstruction on bladder contractile proteins. Prog. Clin. Biol. Res. 386, 263–269 (1994).

    CAS  PubMed  Google Scholar 

  65. 65

    Mannikarottu, A. S., Changolkar, A. K., Disanto, M. E., Wein, A. J. & Chacko, S. Over expression of smooth muscle thin filament associated proteins in the bladder wall of diabetics. J. Urol. 174, 360–364 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. 66

    Mannikarottu, A. S. et al. Regional alterations in the expression of smooth muscle myosin isoforms in response to partial bladder outlet obstruction. J. Urol. 173, 302–308 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. 67

    Cher, M. L., Abernathy, B. B., McConnell, J. D., Zimmern, P. E. & Lin, V. K. Smooth-muscle myosin heavy-chain isoform expression in bladder-outlet obstruction. World J. Urol. 14, 295–300 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. 68

    European Association of Urology. EAU guidelines on management of non-neurogenic male lower urinary tract symptoms (luts), incl. benign prostatic obstruction (BPO). EAU http://uroweb.org/wp-content/uploads/EAU-Guidelines-Management-of-non-neurogenic-male-LUTS-2016.pdf (2016).

  69. 69

    McVary, K. T. et al. Update on AUA guideline on the management of benign prostatic hyperplasia. J. Urol. 185, 1793–1803 (2011).

    Article  PubMed  Google Scholar 

  70. 70

    Gratzke, C. et al. EAU guidelines on the assessment of non-neurogenic male lower urinary tract symptoms including benign prostatic obstruction. Eur. Urol. 67, 1099–1109 (2015). Together with reference 69, the American and European guidelines highlight the importance of the medical history as the most important assessment tool and recommend the use of the validated IPSS questionnaire to objectively assess male LUTS, as well as routine urinalysis (either dipstick analysis or microscopic evaluation) in the primary evaluation of a patient presenting with LUTS.

    Article  PubMed  Google Scholar 

  71. 71

    Roehrborn, C. G. Accurate determination of prostate size via digital rectal examination and transrectal ultrasound. Urology 51, 19–22 (1998).

    PubMed  Google Scholar 

  72. 72

    Abrams, P. et al. The standardisation of terminology of lower urinary tract function: report from the Standardisation Sub-committee of the International Continence Society. Neurourol. Urodynam. 21, 167–178 (2002).

    Article  Google Scholar 

  73. 73

    Yap, T. L., Cromwell, D. C. & Emberton, M. A systematic review of the reliability of frequency-volume charts in urological research and its implications for the optimum chart duration. BJU Int. 99, 9–16 (2007).

    Article  PubMed  Google Scholar 

  74. 74

    Bright, E., Drake, M. J. & Abrams, P. Urinary diaries: evidence for the development and validation of diary content, format, and duration. Neurourol. Urodynam. 30, 348–352 (2011).

    Article  Google Scholar 

  75. 75

    Cornu, J. N. et al. A contemporary assessment of nocturia: definition, epidemiology, pathophysiology, and management — a systematic review and meta-analysis. Eur. Urol. 62, 877–890 (2012).

    Article  PubMed  Google Scholar 

  76. 76

    Weiss, J. P. et al. Nocturia Think Tank: focus on nocturnal polyuria: ICI-RS 2011. Neurourol. Urodynam. 31, 330–339 (2012).

    Article  Google Scholar 

  77. 77

    American Urological Association. American Urological Association guideline: management of benign prostatic hyperplasia (BPH). AUA https://www.auanet.org/common/pdf/education/clinical-guidance/Benign-Prostatic-Hyperplasia.pdf (2010).

  78. 78

    Davis, R. et al. Diagnosis, evaluation and follow-up of asymptomatic microhematuria (AMH) in adults: AUA guideline. J. Urol. 188, 2473–2481 (2012).

    Article  PubMed  Google Scholar 

  79. 79

    Asimakopoulos, A. D. et al. Measurement of post-void residual urine. Neurourol. Urodynam. 35, 55–57 (2016).

    Article  Google Scholar 

  80. 80

    Rule, A. D. et al. Longitudinal changes in post-void residual and voided volume among community dwelling men. J. Urol. 174, 1317–1321 (2005).

    Article  PubMed  Google Scholar 

  81. 81

    Sullivan, M. P. & Yalla, S. V. Detrusor contractility and compliance characteristics in adult male patients with obstructive and nonobstructive voiding dysfunction. J. Urol. 155, 1995–2000 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. 82

    Oelke, M. et al. Diagnostic accuracy of noninvasive tests to evaluate bladder outlet obstruction in men: detrusor wall thickness, uroflowmetry, postvoid residual urine, and prostate volume. Eur. Urol. 52, 827–834 (2007).

    Article  PubMed  Google Scholar 

  83. 83

    Roehrborn, C. G. Alfuzosin 10 mg once daily prevents overall clinical progression of benign prostatic hyperplasia but not acute urinary retention: results of a 2-year placebo-controlled study. BJU Int. 97, 734–741 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. 84

    Jorgensen, J. B., Jensen, K. M. & Mogensen, P. Age-related variation in urinary flow variables and flow curve patterns in elderly males. Br. J. Urol. 69, 265–271 (1992).

    Article  CAS  PubMed  Google Scholar 

  85. 85

    Kranse, R. & van Mastrigt, R. Causes for variability in repeated pressure-flow measurements. Urology 61, 930–934; discussion 934–935 (2003).

    Article  PubMed  Google Scholar 

  86. 86

    Reynard, J. M. et al. The ICS-’BPH’ study: uroflowmetry, lower urinary tract symptoms and bladder outlet obstruction. Br. J. Urol. 82, 619–623 (1998). The authors studied 1,271 men (45–88 years of age) in 12 centres worldwide over a 2-year period and reported that a Qmax of <10 ml per second had a positive predictive value of 70% for BOO.

    Article  CAS  PubMed  Google Scholar 

  87. 87

    Bohnen, A. M., Groeneveld, F. P. & Bosch, J. L. Serum prostate-specific antigen as a predictor of prostate volume in the community: the Krimpen study. Eur. Urol. 51, 1645–1652 (2007). This study demonstrated that the level of serum PSA reflects prostate volume; the higher the PSA level, the greater the likelihood of an enlarged prostate.

    Article  PubMed  Google Scholar 

  88. 88

    Roehrborn, C. G., Boyle, P., Gould, A. L. & Waldstreicher, J. Serum prostate-specific antigen as a predictor of prostate volume in men with benign prostatic hyperplasia. Urology 53, 581–589 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. 89

    Vickers, A., Carlsson, S., Laudone, V. & Lilja, H. It ain’t what you do, it’s the way you do it: five golden rules for transforming prostate-specific antigen screening. Eur. Urol. 66, 188–190 (2014).

    Article  PubMed  Google Scholar 

  90. 90

    Gerber, G. S., Goldfischer, E. R., Karrison, T. G. & Bales, G. T. Serum creatinine measurements in men with lower urinary tract symptoms secondary to benign prostatic hyperplasia. Urology 49, 697–702 (1997). Serum creatinine measurements in 246 consecutive men with LUTS due to BPH revealed that 11% of men have renal insufficiency; however, diabetes mellitus or hypertension are the most likely causes of the increased creatinine concentration in this group.

    Article  CAS  PubMed  Google Scholar 

  91. 91

    Weinstein, J. R. & Anderson, S. The aging kidney: physiological changes. Adv. Chronic Kidney Dis. 17, 302–307 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92

    Davies, D. F. & Shock, N. W. Age changes in glomerular filtration rate, effective renal plasma flow, and tubular excretory capacity in adult males. J. Clin. Invest. 29, 496–507 (1950).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Rowe, J. W., Andres, R., Tobin, J. D., Norris, A. H. & Shock, N. W. The effect of age on creatinine clearance in men: a cross-sectional and longitudinal study. J. Gerontol. 31, 155–163 (1976).

    Article  CAS  PubMed  Google Scholar 

  94. 94

    Koch, W. F., Ezz el Din, K., de Wildt, M. J., Debruyne, F. M. & de la Rosette, J. J. The outcome of renal ultrasound in the assessment of 556 consecutive patients with benign prostatic hyperplasia. J. Urol. 155, 186–189 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. 95

    Mebust, W. K., Holtgrewe, H. L., Cockett, A. T. & Peters, P. C. Transurethral prostatectomy: immediate and postoperative complications. A cooperative study of 13 participating institutions evaluating 3,885 patients. J. Urol. 141, 243–247 (1989).

    Article  CAS  PubMed  Google Scholar 

  96. 96

    Loch, A. C. et al. Technical and anatomical essentials for transrectal ultrasound of the prostate. World J. Urol. 25, 361–366 (2007).

    Article  PubMed  Google Scholar 

  97. 97

    Stravodimos, K. G. et al. TRUS versus transabdominal ultrasound as a predictor of enucleated adenoma weight in patients with BPH: a tool for standard preoperative work-up? Int. Urol. Nephrol. 41, 767–771 (2009).

    Article  PubMed  Google Scholar 

  98. 98

    Chia, S. J., Heng, C. T., Chan, S. P. & Foo, K. T. Correlation of intravesical prostatic protrusion with bladder outlet obstruction. BJU Int. 91, 371–374 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. 99

    Jeong, S. J. et al. Prevalence and clinical features of detrusor underactivity among elderly with lower urinary tract symptoms: a comparison between men and women. Korean J. Urol. 53, 342–348 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  100. 100

    Thomas, A. W., Cannon, A., Bartlett, E., Ellis-Jones, J. & Abrams, P. The natural history of lower urinary tract dysfunction in men: the influence of detrusor underactivity on the outcome after transurethral resection of the prostate with a minimum 10-year urodynamic follow-up. BJU Int. 93, 745–750 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. 101

    Stohrer, M. et al. EAU guidelines on neurogenic lower urinary tract dysfunction. Eur. Urol. 56, 81–88 (2009).

    Article  PubMed  Google Scholar 

  102. 102

    Verhamme, K. M., Sturkenboom, M. C., Stricker, B. H. & Bosch, R. Drug-induced urinary retention: incidence, management and prevention. Drug Saf. 31, 373–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. 103

    Djavan, B. et al. Longitudinal study of men with mild symptoms of bladder outlet obstruction treated with watchful waiting for four years. 64, 1144–1148 (2004). This longitudinal study over a period of 4 years, involving almost 400 men, demonstrated that the cumulative clinical progression rate was 6%, 13%, 15%, 24%, 28% and 31% at 6, 12, 18, 24, 36 and 48 months, respectively; 4.9% of patients developed acute urinary retention.

  104. 104

    Lepor, H. Alpha blockers for the treatment of benign prostatic hyperplasia. Rev. Urol. 9, 181–190 (2007). The pathophysiology of BOO in men with BPH has been attributed to both static (prostatic tissue) and dynamic (smooth muscle) factors, with the α1A-adrenoceptor being the predominate receptor in prostate stromal smooth muscle.

    PubMed  PubMed Central  Google Scholar 

  105. 105

    Foglar, R., Shibata, K., Horie, K., Hirasawa, A. & Tsujimoto, G. Use of recombinant alpha 1- adrenoceptors to characterize subtype selectivity of drugs for the treatment of prostatic hypertrophy. Eur. J. Pharmacol. 288, 201–207 (1995).

    Article  CAS  PubMed  Google Scholar 

  106. 106

    Montorsi, F. Profile of silodosin. Eur. Urol. Supplements 9, 491–495 (2010).

    Article  CAS  Google Scholar 

  107. 107

    Marks, L. S., Gittelman, M. C., Hill, L. A., Volinn, W. & Hoel, G. Rapid efficacy of the highly selective α1A-adrenoceptor antagonist silodosin in men with signs and symptoms of benign prostatic hyperplasia: pooled results of 2 Phase 3 studies. J. Urol. 181, 2634–2640 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. 108

    Yamanishi, T. et al. Urodynamic effects of silodosin, a new α1A-adrenoceptor selective antagonist, for the treatment of benign prostatic hyperplasia. Neurourol. Urodynam. 29, 558–562 (2010).

    CAS  Google Scholar 

  109. 109

    Michel, M. C. α1-Adrenoceptors and ejaculatory function. Br. J. Pharmacol. 152, 289–290 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Giuliano, F. et al. The mechanism of action of phosphodiesterase type 5 inhibitors in the treatment of lower urinary tract symptoms related to benign prostatic hyperplasia. Eur. Urol. 63, 506–516 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. 111

    Oelke, M. et al. Monotherapy with tadalafil or tamsulosin similarly improved lower urinary tract symptoms suggestive of benign prostatic hyperplasia in an international, randomised, parallel, placebo-controlled clinical trial. Eur. Urol. 61, 917–925 (2012). PDE5 inhibition possibly increases tissue perfusion, modulates autonomic nervous system activity and inhibits the prostatic inflammatory process, all of which lead to improvements in voiding symptoms.

    Article  CAS  PubMed  Google Scholar 

  112. 112

    Porst, H. et al. Effects of once-daily tadalafil on erectile function in men with erectile dysfunction and signs and symptoms of benign prostatic hyperplasia. Eur. Urol. 56, 727–735 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. 113

    Gacci, M. et al. A systematic review and meta-analysis on the use of phosphodiesterase 5 inhibitors alone or in combination with α-blockers for lower urinary tract symptoms due to benign prostatic hyperplasia. Eur. Urol. 61, 994–1003 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. 114

    Regadas, R. P. et al. Urodynamic effects of the combination of tamsulosin and daily tadalafil in men with lower urinary tract symptoms secondary to benign prostatic hyperplasia: a randomized, placebo-controlled clinical trial. Int. Urol. Nephrol. 45, 39–43 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. 115

    Wang, P., Luthin, G. R. & Ruggieri, M. R. Muscarinic acetylcholine receptor subtypes mediating urinary bladder contractility and coupling to GTP binding proteins. J. Pharmacol. Exp. Ther. 273, 959–966 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Hegde, S. S. & Eglen, R. M. Muscarinic receptor subtypes modulating smooth muscle contractility in the urinary bladder. Life Sci. 64, 419–428 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. 117

    Abrams, P. et al. Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder. Br. J. Pharmacol. 148, 565–578 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Robinson, D. & Cardozo, L. Solifenacin in the management of the overactive bladder syndrome. Int. J. Clin. Pract. 59, 1229–1236 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. 119

    Thiagamoorthy, G., Kotes, S., Zacchè, M. & Cardozo, L. The efficacy and tolerability of mirabegron, a β3 adrenoceptor agonist, in patients with symptoms of overactive bladder. Ther. Adv. Urol. 8, 38–46 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Roehrborn, C. G. et al. The effects of combination therapy with dutasteride and tamsulosin on clinical outcomes in men with symptomatic benign prostatic hyperplasia: 4-year results from the CombAT study. Eur. Urol. 57, 123–131 (2010). The combination of dutasteride and tamsulosin has been shown to not only produce durable improvements in voiding symptoms but also results in a significant reduction in the risk of disease progression; in particular, the time to first episode of acute urinary retention or BPH-related surgery was significantly lower with combination therapy than tamsulosin treatment alone.

    Article  CAS  PubMed  Google Scholar 

  121. 121

    Filson, C. P., Hollingsworth, J. M., Clemens, J. Q. & Wei, J. T. The efficacy and safety of combined therapy with α-blockers and anticholinergics for men with benign prostatic hyperplasia: a meta-analysis. J. Urol. 190, 2153–2160 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. 122

    FDA. New medical device treats urinary symptoms related to enlarged prostates. FDA http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm368325.htm (2013).

  123. 123

    Garcia, C., Chin, P., Rashid, P. & Woo, H. H. Prostatic urethral lift: a minimally invasive treatment for benign prostatic hyperplasia. Prostate Int. 3, 1–5 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  124. 124

    Marra, G. et al. Systematic review of lower urinary tract symptoms/benign prostatic hyperplasia surgical treatments on men’s ejaculatory function: time for a bespoke approach? Int. J. Urol. 23, 22–35 (2015).

    Article  PubMed  Google Scholar 

  125. 125

    Thomas, J. A. et al. A multicenter randomized noninferiority trial comparing GreenLight-XPS Laser vaporization of the prostate and transurethral resection of the prostate for the treatment of benign prostatic obstruction: two-yr outcomes of the GOLIATH study. Eur. Urol. 69, 94–102 (2016).

    Article  PubMed  Google Scholar 

  126. 126

    De La Rosette, J. J. et al. Transurethral resection versus microwave thermotherapy of the prostate: a cost-consequences analysis. BJU Int. 92, 713–718 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. 127

    Teng, J. et al. Photoselective vaporization with the green light laser versus transurethral resection of the prostate for treating benign prostate hyperplasia: a systematic review and meta-analysis. BJU Int. 111, 312–323 (2013).

    Article  PubMed  Google Scholar 

  128. 128

    Vincent, M. W. & Gilling, P. J. HoLEP has come of age. World J. Urol. 33, 487–493 (2015).

    Article  PubMed  Google Scholar 

  129. 129

    Yin, L., Teng, J., Huang, C. J., Zhang, X. & Xu, D. Holmium laser enucleation of the prostate versus transurethral resection of the prostate: a systematic review and meta-analysis of randomized controlled trials. J. Endourol. 27, 604–611 (2013).

    Article  PubMed  Google Scholar 

  130. 130

    O’Leary, M. P., Validity of the “bother score” in the evaluation and treatment of symptomatic benign prostatic hyperplasia. Rev. Urol. 7, 1–10 (2005).

    PubMed  PubMed Central  Google Scholar 

  131. 131

    Hong, S. J., Rayford, W., Valiquette, L. & Emberton, M. The importance of patient perception in the clinical assessment of benign prostatic hyperplasia and its management. BJU Int. 95, 15–19 (2005).

    Article  PubMed  Google Scholar 

  132. 132

    Tubaro, A. & La Vecchia, C. The relation of lower urinary tract symptoms with life-style factors and objective measures of benign prostatic enlargement and obstruction: an Italian survey. Eur. Urol. 45, 767–772 (2004). This study concluded that patients with more-severe symptoms that affected activities of daily living ultimately had a lower QOL.

    Article  PubMed  Google Scholar 

  133. 133

    Mitropoulos, D. et al. Symptomatic benign prostate hyperplasia: impact on partners’ quality of life. Eur. Urol. 41, 240–244; discussion 244–245 (2002).

    Article  PubMed  Google Scholar 

  134. 134

    Sells, H., Donovan, J., Ewings, P. & MacDonagh, R. P. The development and validation of a quality-of-life measure to assess partner morbidity in benign prostatic enlargement. BJU Int. 85, 440–445 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. 135

    O’Leary, M. P. et al. Improvements in benign prostatic hyperplasia-specific quality of life with dutasteride, the novel dual 5α-reductase inhibitor. BJU Int. 92, 262–266 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. 136

    Hunter, D. J., McKee, M., Black, N. A. & Sanderson, C. F. Health status and quality of life of British men with lower urinary tract symptoms: results from the SF-36. Urology 45, 962–971 (1995). In this study, 217 men ≥55 years of age with LUTS were surveyed; between 9% and 49% of those with moderate or severe urinary symptoms reported interference with some of their daily activities.

    Article  CAS  PubMed  Google Scholar 

  137. 137

    Derrett, S., Paul, C. & Morris, J. M. Waiting for elective surgery: effects on health-related quality of life. Int. J. Qual. Health Care 11, 47–57 (1999).

    Article  CAS  PubMed  Google Scholar 

  138. 138

    Thomas, K., Oades, G., Taylor-Hay, C. & Kirby, R. S. Acute urinary retention: what is the impact on patients' quality of life? BJU Int. 95, 72–76 (2005).

    Article  PubMed  Google Scholar 

  139. 139

    Faber, K. et al. Image-guided robot-assisted prostate ablation using water jet-hydrodissection: initial study of a novel technology for benign prostatic hyperplasia. J. Endourol. 29, 63–69 (2015).

    Article  PubMed  Google Scholar 

  140. 140

    Gilling, P., Reuther, R., Kahokehr, A. & Fraundorfer, M. Aquablation — image guided robotically-assisted waterjet ablation of the prostate: initial clinical experience. BJU Int. http://dx.doi.org/10.1111/bju.13358 (2015).

  141. 141

    Somani, B. K. et al. Prostate artery embolization (PAE) for benign prostatic hyperplasia (BPH). BJU Int. 114, 639–640 (2014).

    Article  PubMed  Google Scholar 

  142. 142

    Camara-Lopes, G. et al. The histology of prostate tissue following prostatic artery embolization for the treatment of benign prostatic hyperplasia. Int. Braz. J. Urol. 39, 222–227 (2013).

    Article  PubMed  Google Scholar 

  143. 143

    Pisco, J. M. et al. Embolisation of prostatic arteries as treatment of moderate to severe lower urinary symptoms (LUTS) secondary to benign hyperplasia: results of short- and mid-term follow-up. Eur. Radiol. 23, 2561–2572 (2013).

    Article  PubMed  Google Scholar 

  144. 144

    McNeal, J. E. Regional morphology and pathology of the prostate. Am. J. Clin. Pathol. 49, 347–357 (1968).

    Article  CAS  PubMed  Google Scholar 

  145. 145

    McNeal, J. E. Origin and evolution of benign prostatic enlargement. Invest. Urol. 15, 340–345 (1978).

    CAS  PubMed  Google Scholar 

  146. 146

    Roehrborn, C. G. Benign prostatic hyperplasia: an overview. Rev. Urol. 7, S3–S14 (2005).

    PubMed  PubMed Central  Google Scholar 

  147. 147

    Gravas, S. et al. Treatment of non-neurogenic male LUTS. Uroweb https://uroweb.org/guideline/treatment-of-non-neurogenic-male-luts/#5 (2016).

Download references

Acknowledgements

As the clinical fellow in voiding dysfunction at Weill Cornell Medical College, J.C.F. is supported by ‘The Frederick J. and Theresa Dow Wallace Fund of the New York Community Trust’.

Author information

Affiliations

Authors

Contributions

Introduction (B.C. and S.A.K.); Epidemiology (D.D.M.T. and B.C.); Mechanisms/pathophysiology (J.C.F., L.L. and B.C.); Diagnosis, screening and prevention (J.C.F. and A.E.T.); Management (T.H. and H.H.W.); Quality of life (J.C.F. and A.E.T.); Outlook (D.D.M.T. and B.C.); Overview of the Primer (S.A.K.). B.C. and J.C.F. contributed equally to this Primer.

Corresponding author

Correspondence to Steven A. Kaplan.

Ethics declarations

Competing interests

H.H.W. has received speaker's fees from Astellas and Janssen. All other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chughtai, B., Forde, J., Thomas, D. et al. Benign prostatic hyperplasia. Nat Rev Dis Primers 2, 16031 (2016). https://doi.org/10.1038/nrdp.2016.31

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing