Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Diabetic retinopathy

A Corrigendum to this article was published on 07 April 2016

Abstract

Diabetic retinopathy (DR) is a common complication of diabetes mellitus and is a major cause of vision loss in middle-aged and elderly people. One-third of people with diabetes have DR. Severe stages of DR include proliferative DR, caused by the abnormal growth of new retinal blood vessels, and diabetic macular oedema, in which there is exudation and oedema in the central part of the retina. DR is strongly associated with a prolonged duration of diabetes, hyperglycaemia and hypertension. It is traditionally regarded as a microvascular disease, but retinal neurodegeneration is also involved. Complex interrelated pathophysiological mechanisms triggered by hyperglycaemia underlie the development of DR. These mechanisms include genetic and epigenetic factors, increased production of free radicals, advanced glycosylation end products, inflammatory factors and vascular endothelial growth factor (VEGF). Optimal control of blood glucose and blood pressure in individuals with diabetes remains the cornerstone for preventing the development and arresting the progression of DR. Anti-VEGF therapy is currently indicated for diabetic macular oedema associated with vision loss, whereas laser photocoagulation prevents severe vision loss in eyes with proliferative DR. These measures, together with increasing public awareness and access to regular screening for DR with retinal photography, and the development of new treatments to address early disease stages, will lead to better outcomes and prevent blindness for patients with DR.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Clinical stages and main pathogenetic events of diabetic retinopathy.
Figure 2: Main pathogenetic events in diabetic retinopathy.
Figure 3: Potential mechanisms linking neurodegeneration and microangiopathy in diabetic retinopathy.
Figure 4: Clinical signs of diabetic retinopathy on fundoscopic examination.
Figure 5: Optical coherence tomography showing treatment outcomes for diabetic macular oedema.
Figure 6: Management of diabetic macular oedema.
Figure 7: Time trade-off technique to evaluate quality of life.

References

  1. 1

    Shaw, J. E., Sicree, R. A. & Zimmet, P. Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 87, 4–14 (2010).

    CAS  Article  Google Scholar 

  2. 2

    Antonetti, D. A., Klein, R. & Gardner, Diabetic, T. W. retinopathy. N. Engl. J. Med. 366, 1227–1239 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Cheung, N., Mitchell, P. & Wong, T. Y. Diabetic retinopathy. Lancet 376, 124–136 (2010).

    Article  Google Scholar 

  4. 4

    Klein, R., Lee, K. E., Gangnon, R. E. & Klein, B. E. The 25-year incidence of visual impairment in type 1 diabetes mellitus. the wisconsin epidemiologic study of diabetic retinopathy. Ophthalmology 117, 63–70 (2010).

    Article  Google Scholar 

  5. 5

    Moss, S. E., Klein, R. & Klein, B. E. The 14-year incidence of visual loss in a diabetic population. Ophthalmology 105, 998–1003 (1998).

    CAS  Article  Google Scholar 

  6. 6

    Fenwick, E. K. et al. The impact of diabetic retinopathy: understanding the patient's perspective. Br. J. Ophthalmol. 95, 774–782 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Wong, T. Y. et al. Diabetic retinopathy in a multi-ethnic cohort in the United States. Am. J. Ophthalmol. 141, 446–455 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Zhang, X. et al. Prevalence of diabetic retinopathy in the United States, 2005–2008. JAMA 304, 649–656 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9

    Klein, R., Klein, B. E., Moss, S. E., Davis, M. D. & DeMets, D. L. The Wisconsin epidemiologic study of diabetic retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch. Ophthalmol. 102, 520–526 (1984).

    CAS  Article  Google Scholar 

  10. 10

    Klein, R., Klein, B. E., Moss, S. E., Davis, M. D. & DeMets, D. L. The Wisconsin epidemiologic study of diabetic retinopathy. III. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years. Arch. Ophthalmol. 102, 527–532 (1984).

    CAS  Article  Google Scholar 

  11. 11

    Yau, J. W. et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35, 556–564 (2012). This article is an individual participant meta-analysis of 35 population-based studies from around the world, reporting on the prevalence and risk factors of DR.

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Lieth, E., Gardner, T. W., Barber, A. J. & Antonetti, D. A. Retinal neurodegeneration: early pathology in diabetes. Clin. Experiment. Ophthalmol. 28, 3–8 (2000).

    CAS  Article  Google Scholar 

  13. 13

    Mohamed, Q., Gillies, M. C. & Wong, T. Y. Management of diabetic retinopathy: a systematic review. JAMA 298, 902–916 (2007). A systematic review of all major trials of treatment options for DR.

    CAS  Article  Google Scholar 

  14. 14

    Bressler, N. M., Beck, R. W. & Ferris 3rd, F. L. Panretinal photocoagulation for proliferative diabetic retinopathy. N. Engl. J. Med. 365, 1520–1526 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Frank, R. N. Diabetic retinopathy. N. Engl. J. Med. 350, 48–58 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Mitchell, P. & Wong, T. Y. Management paradigms for diabetic macular edema. Am. J. Ophthalmol. 157, 505–513 e1–e8 (2014). A review and updated guideline on the management of DME.

    CAS  Article  Google Scholar 

  17. 17

    Bressler, N. M. et al. Vision-related function after ranibizumab treatment for diabetic macular edema: results from RIDE and RISE. Ophthalmology 121, 2461–2472 (2014).

    Article  Google Scholar 

  18. 18

    Varma, R. et al. Visual impairment and blindness avoided with ranibizumab in hispanic and non-hispanic whites with diabetic macular edema in the united states. Ophthalmology 122, 982–989 (2015).

    Article  Google Scholar 

  19. 19

    Brown, G. C., Brown, M. M., Turpcu, A. & Rajput, Y. The cost-effectiveness of ranibizumab for the treatment of diabetic macular edema. Ophthalmology 122, 1416–1425 (2015).

    Article  Google Scholar 

  20. 20

    Writing Committee for the Diabetic Retinopathy Clinical Research Network. Panretinal photocoagulation versus intravitreous ranibizumab for proliferative diabetic retinopathy: A randomized clinical trial. JAMA 314, 2137–2146 (2015). This clinical trial shows that anti-VEGF therapy is as effective as panretinal laser photocoagulation for proliferative DR.

    Article  CAS  Google Scholar 

  21. 21

    James, M., Turner, D. A., Broadbent, D. M., Vora, J. & Harding, S. P. Cost effectiveness analysis of screening for sight threatening diabetic eye disease. BMJ 320, 1627–1631 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Shi, L. et al. Telemedicine for detecting diabetic retinopathy: a systematic review and meta-analysis. Br. J. Ophthalmol. 99, 823–831 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Klein, R., Klein, B. E., Moss, S. E., Davis, M. D. & DeMets, D. L. The Wisconsin epidemiologic study of diabetic retinopathy. IV. Diabetic macular edema. Ophthalmology 91, 1464–1474 (1984).

    CAS  Article  Google Scholar 

  24. 24

    Klein, R., Klein, B. E., Moss, S. E. & Cruickshanks, K. J. The Wisconsin epidemiologic study of diabetic retinopathy: XVII. The 14-year incidence and progression of diabetic retinopathy and associated risk factors in type 1 diabetes. Ophthalmology 105, 1801–1815 (1998).

    CAS  Article  Google Scholar 

  25. 25

    Klein, R., Klein, B. E., Moss, S. E. & Cruickshanks, K. J. The Wisconsin epidemiologic study of diabetic retinopathy. XV. The long-term incidence of macular edema. Ophthalmology 102, 7–16 (1995).

    CAS  Article  Google Scholar 

  26. 26

    Klein, R., Knudtson, M. D., Lee, K. E., Gangnon, R. & Klein, B. E. The Wisconsin epidemiologic study of diabetic retinopathy: XXII the twenty-five-year progression of retinopathy in persons with type 1 diabetes. Ophthalmology 115, 1859–1868 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Stratton, I. M. et al. UKPDS 50: risk factors for incidence and progression of retinopathy in Type II diabetes over 6 years from diagnosis. Diabetologia 44, 156–163 (2001).

    CAS  Article  Google Scholar 

  28. 28

    Younis, N., Broadbent, D. M., Vora, J. P. & Harding, S. P. Incidence of sight-threatening retinopathy in patients with type 2 diabetes in the Liverpool Diabetic Eye Study: a cohort study. Lancet 361, 195–200 (2003).

    Article  Google Scholar 

  29. 29

    Jones, C. D., Greenwood, R. H., Misra, A. & Bachmann, M. O. Incidence and progression of diabetic retinopathy during 17 years of a population-based screening program in England. Diabetes Care 35, 592–596 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30

    Kawasaki, R. et al. Incidence and progression of diabetic retinopathy in Japanese adults with type 2 diabetes: 8 year follow-up study of the Japan Diabetes Complications Study (JDCS). Diabetologia 54, 2288–2294 (2011).

    CAS  Article  Google Scholar 

  31. 31

    Varma, R. et al. Four-year incidence and progression of diabetic retinopathy and macular edema: the Los Angeles Latino Eye Study. Am. J. Ophthalmol. 149, 752–761 e1–e3 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Kempen, J. H. et al. The prevalence of diabetic retinopathy among adults in the United States. Arch. Ophthalmol. 122, 552–563 (2004). A meta-analysis of the prevalence of DR in the United States.

    Article  Google Scholar 

  33. 33

    Roy, M. S. et al. The prevalence of diabetic retinopathy among adult type 1 diabetic persons in the United States. Arch. Ophthalmol. 122, 546–551 (2004).

    Article  Google Scholar 

  34. 34

    Varma, R. et al. Prevalence of and risk factors for diabetic macular edema in the United States. JAMA Ophthalmol. 132, 1334–1340 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    West, S. K. et al. Diabetes and diabetic retinopathy in a Mexican-American population: Proyecto VER. Diabetes Care 24, 1204–1209 (2001).

    CAS  Article  Google Scholar 

  36. 36

    Bertelsen, G. et al. Tromso eye study: prevalence and risk factors of diabetic retinopathy. Acta Ophthalmol. 91, 716–721 (2013).

    Article  Google Scholar 

  37. 37

    Thomas, R. L. et al. Prevalence of diabetic retinopathy within a national diabetic retinopathy screening service. Br. J. Ophthalmol. 99, 64–68 (2015).

    Article  Google Scholar 

  38. 38

    Jee, D., Lee, W. K. & Kang, S. Prevalence and risk factors for diabetic retinopathy: the Korea National Health and Nutrition Examination Survey 2008–2011. Invest. Ophthalmol. Vis. Sci. 54, 6827–6833 (2013).

    Article  Google Scholar 

  39. 39

    Raman, R. et al. Prevalence of diabetic retinopathy in india: Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetics Study report 2. Ophthalmology 116, 311–318 (2009).

    Article  Google Scholar 

  40. 40

    Wang, F. H. et al. Prevalence of diabetic retinopathy in rural China: the Handan Eye Study. Ophthalmology 116, 461–467 (2009).

    Article  Google Scholar 

  41. 41

    Wong, T. Y. et al. Prevalence and risk factors for diabetic retinopathy: the Singapore Malay Eye Study. Ophthalmology 115, 1869–1875 (2008).

    Article  Google Scholar 

  42. 42

    Zheng, Y. et al. Prevalence and risk factors of diabetic retinopathy in migrant Indians in an urbanized society in Asia: the Singapore Indian eye study. Ophthalmology 119, 2119–2124 (2012).

    Article  Google Scholar 

  43. 43

    Klein, R. & Klein, B. E. Are individuals with diabetes seeing better?: a long-term epidemiological perspective. Diabetes 59, 1853–1860 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44

    Wong, T. Y. et al. Rates of progression in diabetic retinopathy during different time periods: a systematic review and meta-analysis. Diabetes Care 32, 2307–2313 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Klein, R., Lee, K. E., Knudtson, M. D., Gangnon, R. E. & Klein, B. E. Changes in visual impairment prevalence by period of diagnosis of diabetes: the Wisconsin Epidemiologic Study of Diabetic Retinopathy. Ophthalmology 116, 1937–1942 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46

    Ding, J. & Wong, T. Y. Current epidemiology of diabetic retinopathy and diabetic macular edema. Curr. Diab. Rep. 12, 346–354 (2012).

    Article  Google Scholar 

  47. 47

    Keenan, H. A. et al. Clinical factors associated with resistance to microvascular complications in diabetic patients of extreme disease duration: the 50-year medalist study. Diabetes Care 30, 1995–1997 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48

    Zhang, L., Krzentowski, G., Albert, A. & Lefebvre, P. J. Risk of developing retinopathy in Diabetes Control and Complications Trial type 1 diabetic patients with good or poor metabolic control. Diabetes Care 24, 1275–1279 (2001).

    CAS  Article  Google Scholar 

  49. 49

    Donaghue, K. C. et al. Do all prepubertal years of diabetes duration contribute equally to diabetes complications? Diabetes Care 26, 1224–1229 (2003).

    Article  Google Scholar 

  50. 50

    Olsen, B. S. et al. The significance of the prepubertal diabetes duration for the development of retinopathy and nephropathy in patients with type 1 diabetes. J. Diabetes Compl. 18, 160–164 (2004).

    Article  Google Scholar 

  51. 51

    Lim, L. S. & Wong, T. Y. Lipids and diabetic retinopathy. Expert Opin. Biol. Ther. 12, 93–105 (2012).

    Article  CAS  Google Scholar 

  52. 52

    Benarous, R. et al. Differential association of serum lipids with diabetic retinopathy and diabetic macular edema. Invest. Ophthalmol. Vis. Sci. 52, 7464–7469 (2011).

    CAS  Article  Google Scholar 

  53. 53

    Lyons, T. J. et al. Diabetic retinopathy and serum lipoprotein subclasses in the DCCT/EDIC cohort. Invest. Ophthalmol. Vis. Sci. 45, 910–918 (2004).

    Article  Google Scholar 

  54. 54

    Sasongko, M. B. et al. Serum apolipoprotein AI and B are stronger biomarkers of diabetic retinopathy than traditional lipids. Diabetes Care 34, 474–479 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55

    Sasongko, M. B. et al. Novel versus traditional risk markers for diabetic retinopathy. Diabetologia 55, 666–670 (2012).

    CAS  Article  Google Scholar 

  56. 56

    Wong, C. W., Wong, T. Y., Cheng, C. Y. & Sabanayagam, C. Kidney and eye diseases: common risk factors, etiological mechanisms, and pathways. Kidney Int. 85, 1290–1302 (2014).

    Article  Google Scholar 

  57. 57

    Cheung, N. & Wong, T. Y. Obesity and eye diseases. Surv. Ophthalmol. 52, 180–195 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  58. 58

    Conway, B. N., Miller, R. G., Klein, R. & Orchard, T. J. Prediction of proliferative diabetic retinopathy with hemoglobin level. Arch. Ophthalmol. 127, 1494–1499 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  59. 59

    Nguyen, T. T. et al. Inflammatory, hemostatic, and other novel biomarkers for diabetic retinopathy: the multi-ethnic study of atherosclerosis. Diabetes Care 32, 1704–1709 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60

    Hong, T. et al. Development and progression of diabetic retinopathy 12 months after phacoemulsification cataract surgery. Ophthalmology 116, 1510–1514 (2009).

    Article  Google Scholar 

  61. 61

    Squirrell, D., Bhola, R., Bush, J., Winder, S. & Talbot, J. F. A prospective, case controlled study of the natural history of diabetic retinopathy and maculopathy after uncomplicated phacoemulsification cataract surgery in patients with type 2 diabetes. Br. J. Ophthalmol. 86, 565–571 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62

    Lim, L. S. et al. Are myopic eyes less likely to have diabetic retinopathy? Ophthalmology 117, 524–530 (2010).

    Article  Google Scholar 

  63. 63

    Man, R. E. et al. Longer axial length is protective of diabetic retinopathy and macular edema. Ophthalmology 119, 1754–1759 (2012).

    Article  Google Scholar 

  64. 64

    Arar, N. H. et al. Heritability of the severity of diabetic retinopathy: the FIND-Eye study. Invest. Ophthalmol. Vis. Sci. 49, 3839–3845 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  65. 65

    Hietala, K., Forsblom, C., Summanen, P. & Groop, P. H. Heritability of proliferative diabetic retinopathy. Diabetes 57, 2176–2180 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66

    Huang, Y. C. et al. Genome-wide association study of diabetic retinopathy in a Taiwanese population. Ophthalmology 118, 642–648 (2011).

    Article  Google Scholar 

  67. 67

    Sobrin, L. et al. Candidate gene association study for diabetic retinopathy in persons with type 2 diabetes: the Candidate gene Association Resource (CARe). Invest. Ophthalmol. Vis. Sci. 52, 7593–7602 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68

    Kowluru, R. A., Kowluru, A., Mishra, M. & Kumar, B. Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy. Prog. Retin. Eye Res. 48, 40–61 (2015).

    CAS  Article  Google Scholar 

  69. 69

    Perrone, L., Matrone, C. & Singh, L. P. Epigenetic modifications and potential new treatment targets in diabetic retinopathy. J. Ophthalmol. 2014, 789120 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. 70

    Chalmers, J. & Cooper, M. E. UKPDS and the legacy effect. N. Engl. J. Med. 359, 1618–1620 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. 71

    Nathan, D. M. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care 37, 9–16 (2014).

    CAS  Article  Google Scholar 

  72. 72

    Wilkinson, C. P. et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 110, 1677–1682 (2003).

    CAS  Article  Google Scholar 

  73. 73

    Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813–820 (2001). A seminal paper in which the integrating paradigm of hyperglycaemia-induced overproduction of superoxide by the mitochondrial electron-transport chain is described.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74

    Simo, R. & Hernandez, C. Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol. Metab. 25, 23–33 (2014). A comprehensive review of the mechanisms involved in retinal neurodegeneration, the link between neurodegeneration and microangiopathy, and the therapeutic implications based on this new concept.

    CAS  Article  Google Scholar 

  75. 75

    Tang, J. & Kern, T. S. Inflammation in diabetic retinopathy. Prog. Retin. Eye Res. 30, 343–358 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76

    Wilkinson-Berka, J. L., Agrotis, A. & Deliyanti, D. The retinal renin–angiotensin system: roles of angiotensin II and aldosterone. Peptides 36, 142–150 (2012).

    CAS  Article  Google Scholar 

  77. 77

    Kowluru, R. A. & Chan, P. S. Oxidative stress and diabetic retinopathy. Exp. Diabetes Res. 2007, 43603 (2007).

    PubMed  PubMed Central  Google Scholar 

  78. 78

    Zhang, S. X., Sanders, E., Fliesler, S. J. & Wang, J. J. Endoplasmic reticulum stress and the unfolded protein responses in retinal degeneration. Exp. Eye Res. 125, 30–40 (2014).

    CAS  Article  Google Scholar 

  79. 79

    Riva, C. E., Logean, E. & Falsini, B. Visually evoked hemodynamical response and assessment of neurovascular coupling in the optic nerve and retina. Prog. Retin. Eye Res. 24, 183–215 (2005).

    Article  Google Scholar 

  80. 80

    Carrasco, E. et al. Lower somatostatin expression is an early event in diabetic retinopathy and is associated with retinal neurodegeneration. Diabetes Care 30, 2902–2908 (2007).

    CAS  Article  Google Scholar 

  81. 81

    Garcia-Ramirez, M. et al. Interphotoreceptor retinoid-binding protein (IRBP) is downregulated at early stages of diabetic retinopathy. Diabetologia 52, 2633–2641 (2009).

    CAS  Article  Google Scholar 

  82. 82

    Lopes de Faria, J. M., Russ, H. & Costa, V. P. Retinal nerve fibre layer loss in patients with type 1 diabetes mellitus without retinopathy. Br. J. Ophthalmol. 86, 725–728 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. 83

    van Dijk, H. W. et al. Early neurodegeneration in the retina of type 2 diabetic patients. Invest. Ophthalmol. Vis. Sci. 53, 2715–2719 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  84. 84

    Pulido, J. E. et al. A role for excitatory amino acids in diabetic eye disease. Exp. Diabetes Res. 2007, 36150 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Kusari, J., Zhou, S. X., Padillo, E., Clarke, K. G. & Gil, D. W. Inhibition of vitreoretinal VEGF elevation and blood–retinal barrier breakdown in streptozotocin-induced diabetic rats by brimonidine. Invest. Ophthalmol. Vis. Sci. 51, 1044–1051 (2010).

    Article  Google Scholar 

  86. 86

    Zhang, S. X., Wang, J. J., Gao, G., Parke, K. & Ma, J. X. Pigment epithelium-derived factor downregulates vascular endothelial growth factor (VEGF) expression and inhibits VEGF–VEGF receptor 2 binding in diabetic retinopathy. J. Mol. Endocrinol. 37, 1–12 (2006).

    Article  CAS  Google Scholar 

  87. 87

    Cervia, D., Catalani, E., Dal Monte, M. & Casini, G. Vascular endothelial growth factor in the ischemic retina and its regulation by somatostatin. J. Neurochem. 120, 818–829 (2012).

    CAS  Article  Google Scholar 

  88. 88

    Garcia-Ramirez, M., Hernandez, C. & Simo, R. Expression of erythropoietin and its receptor in the human retina: a comparative study of diabetic and nondiabetic subjects. Diabetes Care 31, 1189–1194 (2008).

    Article  Google Scholar 

  89. 89

    Hernandez, C. & Simo, R. Erythropoietin produced by the retina: its role in physiology and diabetic retinopathy. Endocrine 41, 220–226 (2012).

    CAS  Article  Google Scholar 

  90. 90

    Chen, J., Connor, K. M., Aderman, C. M. & Smith, L. E. Erythropoietin deficiency decreases vascular stability in mice. J. Clin. Invest. 118, 526–533 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Grant, M. B., Boulton, M. E. & Ljubimov, A. V. Erythropoietin: when liability becomes asset in neurovascular repair. J. Clin. Invest. 118, 467–470 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. 92

    Chou, J. C., Rollins, S. D., Ye, M., Batlle, D. & Fawzi, A. A. Endothelin receptor-A antagonist attenuates retinal vascular and neuroretinal pathology in diabetic mice. Invest. Ophthalmol. Vis. Sci. 55, 2516–2525 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. 93

    Minton, A. Z. et al. Endothelin B receptors contribute to retinal ganglion cell loss in a rat model of glaucoma. PLoS ONE 7, e43199 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. 94

    Silva, K. C., Pinto, C. C., Biswas, S. K., de Faria, J. B. & de Faria, J. M. Hypertension increases retinal inflammation in experimental diabetes: a possible mechanism for aggravation of diabetic retinopathy by hypertension. Curr. Eye Res. 32, 533–541 (2007).

    CAS  Article  Google Scholar 

  95. 95

    Xu, H., Chen, M. & Forrester, J. V. Para-inflammation in the aging retina. Prog. Retin. Eye Res. 28, 348–368 (2009).

    Article  CAS  Google Scholar 

  96. 96

    Joussen, A. M. et al. Leukocyte-mediated endothelial cell injury and death in the diabetic retina. Am. J. Pathol. 158, 147–152 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. 97

    McLeod, D. S., Lefer, D. J., Merges, C. & Lutty, G. A. Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid. Am. J. Pathol. 147, 642–653 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Sone, H. et al. Vascular endothelial growth factor is induced by long-term high glucose concentration and up-regulated by acute glucose deprivation in cultured bovine retinal pigmented epithelial cells. Biochem. Biophys. Res. Commun. 221, 193–198 (1996).

    CAS  Article  Google Scholar 

  99. 99

    Ferrara, N. Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 25, 581–611 (2004). An excellent review of the basic research and clinical implications of VEGF as a key mediator in DR.

    CAS  Article  Google Scholar 

  100. 100

    Takagi, H. et al. Potential role of the angiopoietin/tie2 system in ischemia-induced retinal neovascularization. Invest. Ophthalmol. Vis. Sci. 44, 393–402 (2003).

    Article  Google Scholar 

  101. 101

    Simo, R., Carrasco, E., Garcia-Ramirez, M. & Hernandez, C. Angiogenic and antiangiogenic factors in proliferative diabetic retinopathy. Curr. Diabetes Rev. 2, 71–98 (2006).

    CAS  Article  Google Scholar 

  102. 102

    Grosso, A., Cheung, N., Veglio, F. & Wong, T. Y. Similarities and differences in early retinal phenotypes in hypertension and diabetes. J. Hypertens. 29, 1667–1675 (2011).

    CAS  Article  Google Scholar 

  103. 103

    Klein, R., Klein, B. E., Moss, S. E. & Wong, T. Y. The relationship of retinopathy in persons without diabetes to the 15-year incidence of diabetes and hypertension: Beaver Dam Eye Study. Trans. Am. Ophthalmol. Soc. 104, 98–107 (2006).

    PubMed  PubMed Central  Google Scholar 

  104. 104

    Ojaimi, E. et al. Retinopathy signs in people without diabetes: the multi-ethnic study of atherosclerosis. Ophthalmology 118, 656–662 (2011).

    Article  Google Scholar 

  105. 105

    Wong, T. Y. et al. Relation between fasting glucose and retinopathy for diagnosis of diabetes: three population-based cross-sectional studies. Lancet 371, 736–743 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  106. 106

    Sim, D. A. et al. Patterns of peripheral retinal and central macula ischemia in diabetic retinopathy as evaluated by ultra-widefield fluorescein angiography. Am. J. Ophthalmol. 158, 144–153 (2014).

    Article  Google Scholar 

  107. 107

    Wessel, M. M. et al. Peripheral retinal ischaemia, as evaluated by ultra-widefield fluorescein angiography, is associated with diabetic macular oedema. Br. J. Ophthalmol. 96, 694–698 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  108. 108

    Holfort, S. K., Jackson, G. R. & Larsen, M. Dark adaptation during transient hyperglycemia in type 2 diabetes. Exp. Eye Res. 91, 710–714 (2010).

    CAS  Article  Google Scholar 

  109. 109

    International Council of Ophthalmology (ICO) Diabetic Eye Care Committee. ICO Guidelines for Diabetic Eye Care (ICO, 2014).

  110. 110

    Javitt, J. C. & Aiello, L. P. Cost-effectiveness of detecting and treating diabetic retinopathy. Ann. Intern. Med. 124, 164–169 (1996). This paper demonstrates the cost-effectiveness of screening for DR.

    CAS  Article  Google Scholar 

  111. 111

    Singer, D. E., Nathan, D. M., Fogel, H. A. & Schachat, A. P. Screening for diabetic retinopathy. Ann. Intern. Med. 116, 660–671 (1992).

    CAS  Article  Google Scholar 

  112. 112

    Arun, C. S., Al-Bermani, A., Stannard, K. & Taylor, R. Long-term impact of retinal screening on significant diabetes-related visual impairment in the working age population. Diabet. Med. 26, 489–492 (2009).

    CAS  Article  Google Scholar 

  113. 113

    Backlund, L. B., Algvere, P. V. & Rosenqvist, U. New blindness in diabetes reduced by more than one-third in Stockholm County. Diabet. Med. 14, 732–740 (1997).

    CAS  Article  Google Scholar 

  114. 114

    Rohan, T. E., Frost, C. D. & Wald, N. J. Prevention of blindness by screening for diabetic retinopathy: a quantitative assessment. BMJ 299, 1198–1201 (1989).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  115. 115

    Williams, G. A. et al. Single-field fundus photography for diabetic retinopathy screening: a report by the American Academy of Ophthalmology. Ophthalmology 111, 1055–1062 (2004).

    Article  Google Scholar 

  116. 116

    Cavallerano, A. A. et al. A telemedicine program for diabetic retinopathy in a Veterans Affairs Medical Center — the Joslin Vision Network Eye Health Care Model. Am. J. Ophthalmol. 139, 597–604 (2005).

    Article  Google Scholar 

  117. 117

    Bragge, P., Gruen, R. L., Chau, M., Forbes, A. & Taylor, H. R. Screening for presence or absence of diabetic retinopathy: a meta-analysis. Arch. Ophthalmol. 129, 435–444 (2011).

    Article  Google Scholar 

  118. 118

    Scanlon, P. H. The English national screening programme for sight-threatening diabetic retinopathy. J. Med. Screen. 15, 1–4 (2008).

    CAS  Article  Google Scholar 

  119. 119

    Looker, H. C. et al. Rates of referable eye disease in the Scottish National Diabetic Retinopathy Screening Programme. Br. J. Ophthalmol. 98, 790–795 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  120. 120

    Scanlon, P. H. et al. Development of a cost-effectiveness model for optimisation of the screening interval in diabetic retinopathy screening. Health Technol. Assess. 19, 1–116 (2015). This paper describes the UK DR screening programme and its cost-effectiveness.

    Article  PubMed  PubMed Central  Google Scholar 

  121. 121

    Taylor-Phillips, S. et al. Extending the diabetic retinopathy screening interval beyond 1 year: systematic review. Br. J. Ophthalmol. (2015).

  122. 122

    Olson, J. et al. Improving the economic value of photographic screening for optical coherence tomography-detectable macular oedema: a prospective, multicentre, UK study. Health Technol. Assess. 17, 1–142 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  123. 123

    Kernt, M. et al. Assessment of diabetic retinopathy using nonmydriatic ultra-widefield scanning laser ophthalmoscopy (Optomap) compared with ETDRS 7-field stereo photography. Diabetes Care 35, 2459–2463 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  124. 124

    Silva, P. S. et al. Peripheral lesions identified on ultrawide field imaging predict increased risk of diabetic retinopathy progression over 4 years. Ophthalmology 122, 949–956 (2015).

    Article  Google Scholar 

  125. 125

    Abramoff, M. D. et al. Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmol. 131, 351–357 (2013).

    Article  Google Scholar 

  126. 126

    Abramoff, M. D. et al. Automated early detection of diabetic retinopathy. Ophthalmology 117, 1147–1154 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  127. 127

    Virk, S. A., Donaghue, K. C., Wong, T. Y. & Craig, M. E. Interventions for diabetic retinopathy in type 1 diabetes: systematic review and meta-analysis. Am. J. Ophthalmol. (2015).

  128. 128

    The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993). This landmark clinical trial is the first to show that tight glycaemic control prevents the development and progression DR in T1DM.

    Article  Google Scholar 

  129. 129

    UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352, 837–853 (1998). This landmark clinical trial shows that tight glycaemic control prevents DR and other microvascular complications in T2DM.

    Article  Google Scholar 

  130. 130

    The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N. Engl. J. Med. 342, 381–389 (2000). The follow-up of the landmark DCCT clinical trial demonstrates the long-term effectiveness of tight glycaemic control in preventing progression of DR in T1DM.

    Article  PubMed  PubMed Central  Google Scholar 

  131. 131

    Holman, R. R., Paul, S. K., Bethel, M. A., Matthews, D. R. & Neil, H. A. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 359, 1577–1589 (2008). The follow-up of the landmark UK Prospective Diabetes Study demonstrates long-term effectiveness of tight glycaemic control in preventing progression of DR in T2DM.

    CAS  Article  Google Scholar 

  132. 132

    The ACCORD Study Group & ACCORD Eye Study Group. Effects of medical therapies on retinopathy progression in type 2 diabetes. N. Engl. J. Med. 363, 233–244 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. 133

    The ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 358, 2560–2572 (2008).

    Article  Google Scholar 

  134. 134

    UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 317, 703–713 (1998). This landmark clinical trial shows that tight blood pressure control prevents DR and vision loss in T2DM.

    Article  PubMed  PubMed Central  Google Scholar 

  135. 135

    Tripathi, K. EUCLID study. Lancet 350, 1102–1103 (1997).

    CAS  Article  Google Scholar 

  136. 136

    Chaturvedi, N. et al. Effect of candesartan on prevention (DIRECT-Prevent 1) and progression (DIRECT-Protect 1) of retinopathy in type 1 diabetes: randomised, placebo-controlled trials. Lancet 372, 1394–1402 (2008).

    CAS  Article  Google Scholar 

  137. 137

    Sjolie, A. K. et al. Effect of candesartan on progression and regression of retinopathy in type 2 diabetes (DIRECT-Protect 2): a randomised placebo-controlled trial. Lancet 372, 1385–1393 (2008).

    Article  CAS  Google Scholar 

  138. 138

    Mauer, M. et al. Renal and retinal effects of enalapril and losartan in type 1 diabetes. N. Engl. J. Med. 361, 40–51 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  139. 139

    Keech, A. C. et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomized controlled trial. Lancet 370, 1687–1697 (2007). This clinical trial shows that fenofibrate treatment reduces DR progression in T2DM.

    CAS  Article  Google Scholar 

  140. 140

    Wong, T. Y., Simo, R. & Mitchell, P. Fenofibrate — a potential systemic treatment for diabetic retinopathy? Am. J. Ophthalmol. 154, 6–12 (2012).

    CAS  Article  Google Scholar 

  141. 141

    Ip, M. S., Domalpally, A., Hopkins, J. J., Wong, P. & Ehrlich, J. S. Long-term effects of ranibizumab on diabetic retinopathy severity and progression. Arch. Ophthalmol. 130, 1145–1152 (2012).

    CAS  Article  Google Scholar 

  142. 142

    The Diabetic Retinopathy Study Research Group. Photocoagulation treatment of proliferative diabetic retinopathy. Clinical application of Diabetic Retinopathy Study (DRS) findings, DRS Report Number 8. Ophthalmology 88, 583–600 (1981). This landmark clinical trial shows that panretinal laser photocoagulation prevents severe vision loss in eyes with proliferative DR.

    Article  Google Scholar 

  143. 143

    Early Treatment Diabetic Retinopathy Study Research Group. Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Ophthalmology 98, 766–785 (1991). This landmark clinical trial shows that focal laser photocoagulation prevents moderate vision loss in eyes with clinically significant DME.

    Article  Google Scholar 

  144. 144

    Nauck, M., Karakiulakis, G., Perruchoud, A. P., Papakonstantinou, E. & Roth, M. Corticosteroids inhibit the expression of the vascular endothelial growth factor gene in human vascular smooth muscle cells. Eur. J. Pharmacol. 341, 309–315 (1998).

    CAS  Article  Google Scholar 

  145. 145

    Rajendram, R. et al. A 2-year prospective randomized controlled trial of intravitreal bevacizumab or laser therapy (BOLT) in the management of diabetic macular edema: 24-month data: report 3. Arch. Ophthalmol. 130, 972–979 (2012).

    CAS  Article  Google Scholar 

  146. 146

    Elman, M. J. et al. Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 118, 609–614 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  147. 147

    Nelson, M. L. et al. Infectious and presumed noninfectious endophthalmitis after intravitreal triamcinolone acetonide injection. Retina 23, 686–691 (2003).

    Article  Google Scholar 

  148. 148

    Boyer, D. S. et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology 121, 1904–1914 (2014).

    Article  Google Scholar 

  149. 149

    Campochiaro, P. A. et al. Long-term benefit of sustained-delivery fluocinolone acetonide vitreous inserts for diabetic macular edema. Ophthalmology 118, 626–635 (2011).

    Article  Google Scholar 

  150. 150

    Aiello, L. P. et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 331, 1480–1487 (1994). This translational study is the first to demonstrate that higher VEGF levels occur in the vitreous in eyes with proliferative DR; this result led to the development of anti-VEGF agents in the treatment of DR.

    CAS  Article  Google Scholar 

  151. 151

    Cheung, N., Wong, I. Y. & Wong, T. Y. Ocular anti-VEGF therapy for diabetic retinopathy: overview of clinical efficacy and evolving applications. Diabetes Care 37, 900–905 (2014).

    CAS  Article  Google Scholar 

  152. 152

    Wirostko, B., Wong, T. Y. & Simo, R. Vascular endothelial growth factor and diabetic complications. Prog. Retin. Eye Res. 27, 608–621 (2008).

    CAS  Article  Google Scholar 

  153. 153

    Nguyen, Q. D. et al. Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology 119, 789–801 (2012). This large Phase III clinical trial demonstrates the effectiveness of anti-VEGF treatment for DME.

    Article  Google Scholar 

  154. 154

    Mitchell, P. et al. The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology 118, 615–625 (2011).

    Article  Google Scholar 

  155. 155

    Massin, P. et al. Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II study. Diabetes Care 33, 2399–2405 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  156. 156

    Nguyen, Q. D. et al. Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study. Ophthalmology 117, 2146–2151 (2010).

    Article  Google Scholar 

  157. 157

    Do, D. V. et al. One-year outcomes of the DA VINCI Study of VEGF Trap-Eye in eyes with diabetic macular edema. Ophthalmology 119, 1658–1665 (2012).

    Article  Google Scholar 

  158. 158

    Korobelnik, J. F. et al. Intravitreal aflibercept for diabetic macular edema. Ophthalmology 121, 2247–2254 (2014).

    Article  Google Scholar 

  159. 159

    The Diabetic Retinopathy Clinical Research Network. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N. Engl. J. Med. 372, 1193–1203 (2015). This clinical trial demonstrates that different anti-VEGF therapies are effective for treating DME.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. 160

    Elman, M. J. et al. Intravitreal Ranibizumab for diabetic macular edema with prompt versus deferred laser treatment: 5-year randomized trial results. Ophthalmology 122, 375–381 (2015).

    Article  Google Scholar 

  161. 161

    Simo, R., Sundstrom, J. M. & Antonetti, D. A. Ocular Anti-VEGF therapy for diabetic retinopathy: the role of VEGF in the pathogenesis of diabetic retinopathy. Diabetes Care 37, 893–899 (2014).

    CAS  Article  Google Scholar 

  162. 162

    Lim, L. S., Cheung, C. M., Mitchell, P. & Wong, T. Y. Emerging evidence concerning systemic safety of anti-VEGF agents — should ophthalmologists be concerned? Am. J. Ophthalmol. 152, 329–331 (2011).

    Article  Google Scholar 

  163. 163

    Cheung, N. & Wong, T. Y. Diabetic retinopathy and systemic vascular complications. Prog. Retin. Eye Res. 27, 161–176 (2008).

    CAS  Article  Google Scholar 

  164. 164

    Nicholson, B. P. & Schachat, A. P. A review of clinical trials of anti-VEGF agents for diabetic retinopathy. Graefes Arch. Clin. Exp. Ophthalmol. 248, 915–930 (2010).

    CAS  Article  Google Scholar 

  165. 165

    Thulliez, M. et al. Cardiovascular events and bleeding risk associated with intravitreal antivascular endothelial growth factor monoclonal antibodies: systematic review and meta-analysis. JAMA Ophthalmol. 132, 1317–1326 (2014).

    Article  Google Scholar 

  166. 166

    Bandello, F. et al. New approaches for the treatment of diabetic macular oedema: recommendations by an expert panel. Eye 26, 485–493 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  167. 167

    Thomas, B. J., Shienbaum, G., Boyer, D. S. & Flynn, H. W. Jr. Evolving strategies in the management of diabetic macular edema: clinical trials and current management. Can. J. Ophthalmol. 48, 22–30 (2013).

    Article  Google Scholar 

  168. 168

    Avery, R. L. & Gordon, G. M. Systemic safety of prolonged monthly anti-vascular endothelial growth factor therapy for diabetic macular edema: A systematic review and meta-analysis. JAMA Ophthalmol 134, 21–29 (2015).

    Article  Google Scholar 

  169. 169

    Brown, M. M., Brown, G. C., Sharma, S., Landy, J. & Bakal, J. Quality of life with visual acuity loss from diabetic retinopathy and age-related macular degeneration. Arch. Ophthalmol. 120, 481–484 (2002).

    Article  Google Scholar 

  170. 170

    Sharma, S. et al. Utilities associated with diabetic retinopathy: results from a Canadian sample. Br. J. Ophthalmol. 87, 259–261 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  171. 171

    Huang, E. S., Brown, S. E., Ewigman, B. G., Foley, E. C. & Meltzer, D. O. Patient perceptions of quality of life with diabetes-related complications and treatments. Diabetes Care 30, 2478–2483 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  172. 172

    Lloyd, A. et al. Health utility values associated with diabetic retinopathy. Diabet. Med. 25, 618–624 (2008).

    CAS  Article  Google Scholar 

  173. 173

    Torrance, G. W. Measurement of health state utilities for economic appraisal. J. Health Econ. 5, 1–30 (1986).

    CAS  Article  Google Scholar 

  174. 174

    Heintz, E., Wirehn, A. B., Peebo, B. B., Rosenqvist, U. & Levin, L. A. QALY weights for diabetic retinopathy — a comparison of health state valuations with HUI-3, EQ-5D, EQ-VAS, and TTO. Value Health 15, 475–484 (2012).

    Article  Google Scholar 

  175. 175

    Brown, D. M. et al. Long-term outcomes of ranibizumab therapy for diabetic macular edema: the 36-month results from two phase III trials: RISE and RIDE. Ophthalmology 120, 2013–2022 (2013).

    Article  Google Scholar 

  176. 176

    Regnier, S. A., Malcolm, W., Haig, J. & Xue, W. Cost-effectiveness of ranibizumab versus aflibercept in the treatment of visual impairment due to diabetic macular edema: a UK healthcare perspective. Clinicoecon. Outcomes Res. 7, 235–247 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  177. 177

    Smiddy, W. E. Clinical applications of cost analysis of diabetic macular edema treatments. Ophthalmology 119, 2558–2562 (2012).

    Article  Google Scholar 

  178. 178

    Stein, J. D. et al. Cost-effectiveness of various interventions for newly diagnosed diabetic macular edema. Ophthalmology 120, 1835–1842 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  179. 179

    Truong, A., Wong, T. Y. & Khachigian, L. M. Emerging therapeutic approaches in the management of retinal angiogenesis and edema. J. Mol. Med. 89, 343–361 (2011).

    CAS  Article  Google Scholar 

  180. 180

    Simo, R. & Hernandez, C. Novel approaches for treating diabetic retinopathy based on recent pathogenic evidence. Prog. Retin. Eye Res. 48, 160–180 (2015).

    Article  Google Scholar 

  181. 181

    McAuley, A. K. et al. Vitreous biomarkers in diabetic retinopathy: a systematic review and meta-analysis. J. Diabetes Compl. 28, 419–425 (2014).

    Article  Google Scholar 

  182. 182

    Zampetaki, A. et al. Angiogenic microRNAs linked to incidence and progression of diabetic retinopathy in type 1 diabetes. Diabetes 65, 216–227 (2016).

    CAS  Google Scholar 

  183. 183

    Yeung, L., Lima, V. C., Garcia, P., Landa, G. & Rosen, R. B. Correlation between spectral domain optical coherence tomography findings and fluorescein angiography patterns in diabetic macular edema. Ophthalmology 116, 1158–1167 (2009).

    Article  Google Scholar 

  184. 184

    Maheshwary, A. S. et al. The association between percent disruption of the photoreceptor inner segment–outer segment junction and visual acuity in diabetic macular edema. Am. J. Ophthalmol. 150, 63–67 e1 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  185. 185

    Ishibazawa, A. et al. Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am. J. OphthalmoL. 160, 35–44 (2015).

    Article  Google Scholar 

  186. 186

    Lee, P. P., Feldman, Z. W., Ostermann, J., Brown, D. S. & Sloan, F. A. Longitudinal rates of annual eye examinations of persons with diabetes and chronic eye diseases. Ophthalmology 110, 1952–1959 (2003). This study demonstrates that over a 9-year period, only just over half of patients with chronic eye diseases, including diabetes, complied with practice guidelines.

    Article  Google Scholar 

  187. 187

    Bressler, N. M. et al. Underuse of the health care system by persons with diabetes mellitus and diabetic macular edema in the United States. JAMA Ophthalmol. 132, 168–173 (2014). This study, based on the US National Health and Nutrition Examination Survey conducted between 2005 and 2008, showed that a high proportion of people with diabetes in the United States did not have screening.

    Article  PubMed  PubMed Central  Google Scholar 

  188. 188

    Huang, O. S. et al. Glycemic and blood pressure control in an Asian malay population with diabetes and diabetic retinopathy. Arch. Ophthalmol. 128, 1185–1190 (2010).

    Article  Google Scholar 

  189. 189

    Paz, S. H. et al. Noncompliance with vision care guidelines in Latinos with type 2 diabetes mellitus: the Los Angeles Latino Eye Study. Ophthalmology 113, 1372–1377 (2006).

    Article  Google Scholar 

  190. 190

    Aiello, L. P. et al. Assessing the effect of personalized diabetes risk assessments during ophthalmologic visits on glycemic control: a randomized clinical trial. JAMA Ophthalmol. 133, 888–896 (2015).

    Article  CAS  Google Scholar 

  191. 191

    Wang, S., Tikellis, G., Wong, N., Wong, T. Y. & Wang, J. J. Lack of knowledge of glycosylated hemoglobin in patients with diabetic retinopathy. Diabetes Res. Clin. Pract. 81, e15–e17 (2008).

    CAS  Article  Google Scholar 

  192. 192

    Diabetes Control and Complications Trial Research Group. Progression of retinopathy with intensive versus conventional treatment in the Diabetes Control and Complications Trial. Ophthalmology 102, 647–661 (1995).

    Article  Google Scholar 

  193. 193

    Best, R. M. & Chakravarthy, U. Diabetic retinopathy in pregnancy. Br. J. Ophthalmol. 81, 249–251 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  194. 194

    Klein, B. E., Moss, S. E. & Klein, R. Effect of pregnancy on progression of diabetic retinopathy. Diabetes Care 13, 34–40 (1990).

    CAS  Article  Google Scholar 

  195. 195

    Aiello, L. P., Cahill, M. T. & Wong, J. S. Systemic considerations in the management of diabetic retinopathy. Am. J. Ophthalmol. 132, 760–776 (2001).

    CAS  Article  Google Scholar 

  196. 196

    Heier, J. S. et al. Comparison of aflibercept, bevacizumab, and ranibizumab for treatment of diabetic macular edema: extrapolation of data to clinical practice. JAMA Ophthalmol. 134, 95–99 (2015).

    Article  Google Scholar 

  197. 197

    Hollands, H. et al. Reliability of the time trade-off technique of utility assessment in patients with retinal disease. Can. J. Ophthalmol. 36, 202–209 (2001).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This paper was supported by a National Medical Research Council Grant (STaR Award 2013).

Author information

Affiliations

Authors

Contributions

Introduction (T.Y.W.); Epidemiology (T.Y.W.); Mechanisms/pathophysiology (R.S.); Diagnosis, screening and prevention (M.L.); Management (C.M.G.C.); Quality of life (S.S.); Outlook (S.S.); overview of Primer (T.Y.W.).

Corresponding author

Correspondence to Tien Y. Wong.

Ethics declarations

Competing interests

T.Y.W. is on advisory boards for Abbott, Allergan, Bayer, Novartis, Pfizer and Solvay, and has received travel, honoraria and research support from these companies. He has no stocks, equity, contract of employment or named positions on company boards. C.M.G.C. is on advisory boards for Allergan, Bayer and Novartis, and has received travel, honoraria and research support from these companies. She has no stocks, equity, contract of employment or named positions on company boards. M.L. is on advisory boards for Allergan, Bayer and Novartis, and has received travel, honoraria and research support from these companies. He has no stocks, equity, contract of employment or named positions on company boards. S.S. has served on advisory boards for Allergan, Alcon, Novartis, Pfizer, Bayer and eSight. He has received travel, honoraria or research support from these companies. He has no stocks, equity, contract of employment or named positions on company boards. R.S. is on advisory boards of Allergan, Novo Nordisk and Eli Lilly and Company. In addition, he has received travel and research support from Abbott, Sanofi-Aventis and Astra Zeneca. He has no stocks, equity, contract of employment or named positions on company boards.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wong, T., Cheung, C., Larsen, M. et al. Diabetic retinopathy. Nat Rev Dis Primers 2, 16012 (2016). https://doi.org/10.1038/nrdp.2016.12

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing