Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chronic obstructive pulmonary disease

Abstract

Chronic obstructive pulmonary disease (COPD) is a common disease with high global morbidity and mortality. COPD is characterized by poorly reversible airway obstruction, which is confirmed by spirometry, and includes obstruction of the small airways (chronic obstructive bronchiolitis) and emphysema, which lead to air trapping and shortness of breath in response to physical exertion. The most common risk factor for the development of COPD is cigarette smoking, but other environmental factors, such as exposure to indoor air pollutants — especially in developing countries — might influence COPD risk. Not all smokers develop COPD and the reasons for disease susceptibility in these individuals have not been fully elucidated. Although the mechanisms underlying COPD remain poorly understood, the disease is associated with chronic inflammation that is usually corticosteroid resistant. In addition, COPD involves accelerated ageing of the lungs and an abnormal repair mechanism that might be driven by oxidative stress. Acute exacerbations, which are mainly triggered by viral or bacterial infections, are important as they are linked to a poor prognosis. The mainstay of the management of stable disease is the use of inhaled long-acting bronchodilators, whereas corticosteroids are beneficial primarily in patients who have coexisting features of asthma, such as eosinophilic inflammation and more reversibility of airway obstruction. Apart from smoking cessation, no treatments reduce disease progression. More research is needed to better understand disease mechanisms and to develop new treatments that reduce disease activity and progression.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Airway obstruction in COPD.
Figure 2: Disease progression in COPD.
Figure 3: Poverty is a risk factor for COPD.
Figure 4: Defective phagocytosis in COPD.
Figure 5: Accelerated ageing in COPD.
Figure 6: Increased oxidative stress in COPD.
Figure 7: Air trapping in COPD.
Figure 8: Mechanisms and effects of COPD exacerbations.
Figure 9: Clinical and radiological characteristics of the classic phenotypes of patients with COPD.
Figure 10: Algorithm for the diagnosis, staging and management programme for COPD.
Figure 11: Effects of bronchodilators in COPD.
Figure 12: Downward spiral of health-related quality of life in COPD.
Figure 13: Potential targets for novel COPD therapy.

References

  1. 1

    Vestbo, J. et al. Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease, GOLD executive summary. Am. J. Respir. Crit. Care Med. 187, 347–365 (2013). This strategy document is often regarded as the COPD standard and is the basis for most national guidelines.

    Article  CAS  PubMed  Google Scholar 

  2. 2

    Lange, P. et al. Lung-function trajectories leading to chronic obstructive pulmonary disease. N. Engl. J. Med. 373, 111–122 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. 3

    Lozano, R. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic for the Global Burden of Disease Study 2010. Lancet 380, 2095–2128 (2013).

    Article  Google Scholar 

  4. 4

    Burney, P. G., Patel, J., Newson, R., Minelli, C. & Naghavi, M. Global and regional trends in COPD mortality, 1990–2010. Eur. Respir. J. 45, 1239–1247 (2015). This paper demonstrates that the cross-sectional association found between mortality from chronic lung disease and gross national income is also reflected in an association between the change in mortality from chronic lung disease and the change in gross national income. The association is less prone to confounding by other large differences between regions.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Gershon, A. S., Warner, L., Cascagnette, P., Victor, J. C. & To, T. Lifetime risk of developing chronic obstructive pulmonary disease: a longitudinal population study. Lancet 378, 991–996 (2011).

    Article  PubMed  Google Scholar 

  6. 6

    Yawn, B. et al. Prevalence of COPD among symptomatic patients in a primary care setting. Curr. Med. Res. Opin. 25, 2671–2677 (2009).

    Article  PubMed  Google Scholar 

  7. 7

    Buist, A. S. et al. International variation in the prevalence of COPD (the BOLD study): a population-based prevalence study. Lancet 370, 741–750 (2007).

    Article  PubMed  Google Scholar 

  8. 8

    Menezes, A. M. et al. Tuberculosis and airflow obstruction: evidence from the PLATINO study in Latin America. Eur. Respir. J. 30, 1180–1185 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. 9

    Hooper, R. et al. Risk factors for COPD spirometrically defined from the lower limit of normal in the BOLD project. Eur. Respir. J. 39, 1343–1353 (2012).

    Article  PubMed  Google Scholar 

  10. 10

    Blanc, P. D. et al. Further exploration of the links between occupational exposure and chronic obstructive pulmonary disease. J. Occup. Environ. Med. 51, 804–810 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Chinn, S., Florey, C. D., Baldwin, I. G. & Gorgol, M. The relation of mortality in England and Wales1969–1973 to measurements of air pollution. J. Epidemiol. Commun. Health 35, 174–179 (1981).

    Article  CAS  Google Scholar 

  12. 12

    Salvi, S. & Barnes, P. Chronic obstructive pulmonary disease in non-smokers. Lancet 374, 733–743 (2009).

    Article  PubMed  Google Scholar 

  13. 13

    Burnett, R. T. et al. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate patter exposure. Environ. Health Persp. 122, 397–403 (2014).

    Article  Google Scholar 

  14. 14

    Romieu, I. et al. Improved biomass stove intervention in rural Mexico: impact on the respiratory health of women. Am. J. Respir. Crit. Care Med. 180, 649–656 (2009).

    Article  PubMed  Google Scholar 

  15. 15

    Zhou, Y. et al. Lung function and incidence of chronic obstructive pulmonary disease after improved cooking fuels and kitchen ventilation: a 9-year prospective cohort study. PLoS Med. 11, e1001621 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Smith, M. et al. Prevalence and correlates of airflow obstruction in 317,000 never-smokers in China. Eur. Respir. J. 44, 66–77 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Burney, P. et al. Chronic obstructive pulmonary disease mortality and prevalence: the associations with smoking and poverty — a BOLD analysis. Thorax 69, 465–473 (2014). This paper shows that the prevalence of airflow obstruction is strongly associated with the prevalence of smoking, as judged by the mean pack years smoked, and that the prevalence of a low FVC is strongly associated with poverty. The prevalence of a low FVC is most closely associated with mortality rates.

    Article  PubMed  Google Scholar 

  18. 18

    Office of Population Censuses and Surveys. Occupational Mortality: The Registrar General's Decennial Supplement for Great Britain, 1979–80, 1982–1983 (Her Majesty's Stationery Office, 1986).

  19. 19

    Marks, G. & Burney, P. in The Health of Adult Britain 1841–1991 Vol. 2 (eds Charlton, J. & Murphy, M. ) 93–113 (Her Majesty's Stationery Office, 1997).

    Google Scholar 

  20. 20

    Barker, D. J. & Osmond, C. Childhood respiratory infection and adult chronic bronchitis in England and Wales. BMJ (Clin. Res. Ed.) 293, 1271–1275 (1986). This is an early paper from Barker and Osmond showing that mortality rates from chronic airway disease later in adult life is associated with mortality in the same areas from bronchitis and pneumonia among children half a century earlier. This association was not true for lung cancer rates, and Barker and Osmond suggest that this is evidence that the environment encountered during early life has an important impact on subsequent lung health.

    Article  CAS  Google Scholar 

  21. 21

    Gnatiuc, L. et al. Gaps in using bronchodilators, inhaled corticosteroids and influenza vaccine among 23 high- and low-income sites. Int. J. Tuberc. Lung Dis. 19, 21–30 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Ingebrigtsen, T. et al. Genetic influences on chronic obstructive pulmonary disease — a twin study. Respir. Med. 104, 1890–1895 (2010).

    Article  PubMed  Google Scholar 

  23. 23

    McCloskey, S. C. et al. Siblings of patients with severe chronic obstructive pulmonary disease have a significant risk of airflow obstruction. Am. J. Respir. Crit. Care Med. 164, 1419–1424 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. 24

    Silverman, E. K. et al. Genetic epidemiology of severe, early-onset chronic obstructive pulmonary disease: risk to relatives for airflow obstruction and chronic bronchitis. Am. J. Respir. Crit. Care Med. 157, 1770–1778 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Zhou, J. J. et al. Heritability of chronic obstructive pulmonary disease and related phenotypes in smokers. Am. J. Respir. Crit. Care Med. 188, 941–947 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Silverman, E. K. & Sandhaus, R. A. Clinical practice. Alpha1-antitrypsin deficiency. N. Engl. J. Med. 360, 2749–2757 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Sorheim, I. C. et al. α1-Antitrypsin protease inhibitor MZ heterozygosity is associated with airflow obstruction in two large cohorts. Chest 138, 1125–1132 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    Molloy, K. et al. Clarification of the risk of chronic obstructive pulmonary disease in α1-antitrypsin deficiency PiMZ heterozygotes. Am. J. Respir. Crit. Care Med. 189, 419–427 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Rodriguez-Revenga, L. et al. A novel elastin gene mutation resulting in an autosomal dominant form of cutis laxa. Arch. Dermatol. 140, 1135–1139 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. 30

    Kelleher, C. M. et al. A functional mutation in the terminal exon of elastin in severe, early-onset chronic obstructive pulmonary disease. Am. J. Respir. Cell. Mol. Biol. 33, 355–362 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Wain, L. V. et al. Whole exome re-sequencing implicates CCDC38 and cilia structure and function in resistance to smoking related airflow obstruction. PLoS Genet. 10, e1004314 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Castaldi, P. J. et al. The COPD genetic association compendium: a comprehensive online database of COPD genetic associations. Hum. Mol. Genet. 19, 526–534 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Smolonska, J., Wijmenga, C., Postma, D. S. & Boezen, H. M. Meta-analyses on suspected chronic obstructive pulmonary disease genes: a summary of 20 years' research. Am. J. Respir. Crit. Care Med. 180, 618–631 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Cho, M. H. et al. Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. Lancet Respir. Med. 2, 214–225 (2014). This collaborative genome-wide association study identifies four genetic loci for moderate-to-severe COPD and two additional loci for severe COPD. Although highly significant, these genetic loci are of modest effect size.

    CAS  PubMed  Google Scholar 

  35. 35

    Hancock, D. B. et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat. Genet. 42, 45–52 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. 36

    Repapi, E. et al. Genome-wide association study identifies five loci associated with lung function. Nat. Genet. 42, 36–44 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Soler Artigas, M. et al. Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. Nat. Genet. 43, 1082–1090 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Castaldi, P. J. et al. Genome-wide association identifies regulatory loci associated with distinct local histogram emphysema patterns. Am. J. Respir. Crit. Care Med. 190, 399–409 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Siedlinski, M. et al. Genome-wide association study of smoking behaviours in patients with COPD. Thorax 66, 894–902 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40

    Thorgeirsson, T. E. et al. Sequence variants at CHRNB3CHRNA6 and CYP2A6 affect smoking behavior. Nat. Genet. 42, 448–453 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Amos, C. I. et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat. Genet. 40, 616–622 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Thorgeirsson, T. E. et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452, 638–642 (2008).

    CAS  Article  Google Scholar 

  43. 43

    DeMeo, D. L. et al. Integration of genomic and genetic approaches implicates IREB2 as a COPD susceptibility gene. Am. J. Hum. Genet. 85, 493–502 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Siedlinski, M. et al. Dissecting direct and indirect genetic effects on chronic obstructive pulmonary disease (COPD) susceptibility. Hum. Genet. 132, 431–441 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Zhou, X. et al. Identification of a chronic obstructive pulmonary disease genetic determinant that regulates HHIP. Hum. Mol. Genet. 21, 1325–1335 (2012). With a COPD genome-wide association study region, chromatin interaction studies followed by functional analyses identified a likely functional genetic variant. This is one of the first examples of functional variant identification with a complex disease genome-wide association study locus.

    Article  CAS  PubMed  Google Scholar 

  46. 46

    Lao, T. et al. Haploinsufficiency of Hedgehog interacting protein causes increased emphysema induced by cigarette smoke through network rewiring. Genome Med. 7, 12 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Castaldi, P. J. et al. Genetic control of gene expression at novel and established chronic obstructive pulmonary disease loci. Hum. Mol. Genet. 24, 1200–1210 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Qiu, W. et al. Variable DNA methylation is associated with chronic obstructive pulmonary disease and lung function. Am. J. Respir. Crit. Care Med. 185, 373–381 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Hogg, J. C. & Timens, W. The pathology of chronic obstructive pulmonary disease. Annu. Rev. Pathol. 4, 435–459 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    McDonough, J. E. et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N. Engl. J. Med. 365, 1567–1575 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Galban, C. J. et al. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat. Med. 18, 1711–1715 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Peinado, V. I., Pizarro, S. & Barbera, J. A. Pulmonary vascular involvement in COPD. Chest 134, 808–814 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Seeger, W. et al. Pulmonary hypertension in chronic lung diseases. J. Am. Coll. Cardiol. 62, D109–D116 (2013).

    Article  PubMed  Google Scholar 

  54. 54

    Barnes, P. J. Cellular and molecular mechanisms of chronic obstructive pulmonary disease. Clin. Chest Med. 35, 71–86 (2014).

    Article  PubMed  Google Scholar 

  55. 55

    Brusselle, G. G., Joos, G. F. & Bracke, K. R. New insights into the immunology of chronic obstructive pulmonary disease. Lancet 378, 1015–1026 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. 56

    Barnes, P. J. Immunology of asthma and chronic obstructive pulmonary disease. Nat. Immunol. Rev. 8, 183–192 (2008).

    Article  CAS  Google Scholar 

  57. 57

    McAleer, J. P. & Kolls, J. K. Directing traffic: IL-17 and IL-22 coordinate pulmonary immune defense. Immunol. Rev. 260, 129–144 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Barrecheguren, M., Esquinas, C. & Miravitlles, M. The asthma–chronic obstructive pulmonary disease overlap syndrome (ACOS): opportunities and challenges. Curr. Opin. Pulm. Med. 21, 74–79 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Barnes, P. J. Cytokine networks in asthma and chronic obstructive pulmonary disease. J. Clin. Invest. 118, 3546–3556 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Di Stefano, A. et al. Increased expression of NF-κB in bronchial biopsies from smokers and patients with COPD. Eur. Respir. J. 20, 556–563 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. 61

    Renda, T. et al. Increased activation of p38 MAPK in COPD. Eur. Respir. J. 31, 62–69 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. 62

    Ito, K. et al. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N. Engl. J. Med. 352, 1967–1976 (2005). This study demonstrates that COPD lungs have decreased expression and activity of the nuclear enzyme HD2, which is required for corticosteroids to switch off inflammatory genes. This result explains the amplified inflammation and corticosteroid resistance in patients with COPD.

    Article  CAS  PubMed  Google Scholar 

  63. 63

    Taylor, A. E. et al. Defective macrophage phagocytosis of bacteria in COPD. Eur. Respir. J. 35, 1039–1047 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. 64

    Donnelly, L. E. & Barnes, P. J. Defective phagocytosis in airways disease. Chest 141, 1055–1062 (2012).

    Article  PubMed  Google Scholar 

  65. 65

    Singh, R. et al. Inflammatory thresholds and the species-specific effects of colonising bacteria in stable chronic obstructive pulmonary disease. Respir. Res. 15, 114 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Mukaro, V. R. & Hodge, S. Airway clearance of apoptotic cells in COPD. Curr. Drug Targets 12, 460–468 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. 67

    Kirkham, P. A. et al. Oxidative stress-induced antibodies to carbonyl-modified protein correlate with severity of COPD. Am. J. Respir. Crit. Care Med. 184, 796–802 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Barnes, P. J. Chronic obstructive pulmonary disease: effects beyond the lungs.PLoS Med. 7, e1000220 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  69. 69

    Agusti, A. et al. Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. PLoS ONE 7, e37483 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Ito, K. & Barnes, P. J. COPD as a disease of accelerated lung aging. Chest 135, 173–180 (2009).

    Article  PubMed  Google Scholar 

  71. 71

    Mercado, N., Ito, K. & Barnes, P. J. Accelerated ageing in chronic obstructive pulmonary disease: new concepts. Thorax 70, 482–489 (2015). A review of the accelerated ageing process in COPD and the molecular mechanisms involved; this article also identifies novel targets for future therapies.

    Article  PubMed  Google Scholar 

  72. 72

    Paschalaki, K. E. et al. Dysfunction of endothelial progenitor cells from smokers and COPD patients due to increased DNA damage and senescence. Stem Cells 31, 2813–2826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Barnes, P. J. Mechanisms of development of multimorbidity in the elderly. Eur. Respir. J. 45, 790–806 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. 74

    Madeo, F., Zimmermann, A., Maiuri, M. C. & Kroemer, G. Essential role for autophagy in life span extension. J. Clin. Invest. 125, 85–93 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  75. 75

    Mizumura, K., Cloonan, S. M., Haspel, J. A. & Choi, A. M. The emerging importance of autophagy in pulmonary diseases. Chest 142, 1289–1299 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Kirkham, P. A. & Barnes, P. J. Oxidative stress in COPD. Chest 144, 266–273 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. 77

    Caramori, G. et al. Unbalanced oxidant-induced DNA damage and repair in COPD: a link towards lung cancer. Thorax 66, 521–527 (2011).

    Article  PubMed  Google Scholar 

  78. 78

    Barnes, P. J. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 131, 636–645 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. 79

    Nakamaru, Y. et al. A protein deacetylase SIRT1 is a negative regulator of metalloproteinase-9. FASEB J. 23, 2810–2819 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. 80

    Malhotra, D. et al. Expression of concern: decline in NRF2 regulated antioxidants in COPD lungs due to loss of its positive regulator DJ-1. Am. J. Respir. Crit. Care Med. 178, 592–604 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Mercado, N. et al. Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress. Biochem. Biophys. Res. Commun. 406, 292–298 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Hara, H. et al. Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. Am. J. Physiol. Lung Cell. Mol. Physiol. 305, L737–L746 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. 83

    Mizumura, K. et al. Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J. Clin. Invest. 124, 3987–4003 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Guenette, J. A., Webb, K. A. & O'Donnell, D. E. Does dynamic hyperinflation contribute to dyspnoea during exercise in patients with COPD? Eur. Respir. J. 40, 322–329 (2012).

    Article  PubMed  Google Scholar 

  85. 85

    Wedzicha, J. A. & Seemungal, T. A. COPD exacerbations: defining their cause and prevention. Lancet 370, 786–796 (2007). This paper provides an excellent insight into the nature of exacerbations of COPD, their importance, clinical consequences and prevention of their occurrence.

    Article  PubMed  Google Scholar 

  86. 86

    Seemungal, T. et al. Respiratory viruses, symptoms, and inflammatory markers in acute exacerbations and stable chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 164, 1618–1623 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. 87

    George, S. N. et al. Human rhinovirus infection during naturally occurring COPD exacerbations. Eur. Respir. J. 44, 87–96 (2014).

    Article  PubMed  Google Scholar 

  88. 88

    Peacock, J. L. et al. Outdoor air pollution and respiratory health in patients with COPD. Thorax 66, 591–596 (2011).

    Article  PubMed  Google Scholar 

  89. 89

    Seemungal, T. A. et al. Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 157, 1418–1422 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. 90

    Hurst, J. R. et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N. Engl. J. Med. 363, 1128–1138 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. 91

    Wedzicha, J. A., Brill, S. E., Allinson, J. P. & Donaldson, G. C. Mechanisms and impact of the frequent exacerbator phenotype in chronic obstructive pulmonary disease. BMC Med. 11, 181 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92

    Celli, B. R. & MacNee, W. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur. Respir. J. 23, 932–946 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. 93

    Barr, R. G. et al. Physician and patient perceptions in COPD: the COPD Resource Network Needs Assessment Survey. Am. J. Med. 118, 1415 (2005).

    Article  PubMed  Google Scholar 

  94. 94

    Cote, C. G. & Chapman, K. R. Diagnosis and treatment considerations for women with COPD. Int. J. Clin. Pract. 63, 486–493 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. 95

    Lundback, B. et al. Not 15 but 50% of smokers develop COPD? — Report from the Obstructive Lung Disease in Northern Sweden studies. Respir. Med. 97, 115–122 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. 96

    Sood, A. et al. Wood smoke exposure and gene promoter methylation are associated with increased risk for COPD in smokers. Am. J. Respir. Crit. Care Med. 182, 1098–1104 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Celli, B. R., Halbert, R. J., Nordyke, R. J. & Schau, B. Airway obstruction in never smokers: results from the Third National Health and Nutrition Examination Survey. Am. J. Med. 118, 1364–1372 (2005).

    Article  PubMed  Google Scholar 

  98. 98

    Stern, D. A., Morgan, W. J., Wright, A. L., Guerra, S. & Martinez, F. D. Poor airway function in early infancy and lung function by age 22 years: a non-selective longitudinal cohort study. Lancet 370, 758–764 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  99. 99

    Sanchez-Salcedo, P. et al. Disease progression in young patients with COPD: rethinking the Fletcher and Peto model. Eur. Respir. J. 44, 324–331 (2014).

    Article  PubMed  Google Scholar 

  100. 100

    Erb-Downward, J. R. et al. Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS ONE 6, e16384 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Burgel, P. R. et al. Clinical COPD phenotypes: a novel approach using principal component and cluster analyses. Eur. Respir. J. 36, 531–539 (2012).

    Article  Google Scholar 

  102. 102

    Garcia-Aymerich, J. et al. Identification and prospective validation of clinically relevant chronic obstructive pulmonary disease (COPD) subtypes. Thorax 66, 430–437 (2011).

    Article  PubMed  Google Scholar 

  103. 103

    Rennard, S. et al. Identification of five chronic obstructive pulmonary disease subgroups with different prognoses in the ECLIPSE cohort using cluster analysis. Ann. Am. Thorac. Soc. 12, 303–312 (2014).

    Article  Google Scholar 

  104. 104

    Miller, M. R. et al. Standardisation of spirometry. Eur. Respir. J. 26, 319–338 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. 105

    Swanney, M. P. et al. Using the lower limit of normal for the FEV1/FVC ratio reduces the misclassification of airway obstruction. Thorax 63, 1046–1051 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. 106

    Hankinson, J. L., Odencrantz, J. R. & Fedan, K. B. Spirometric reference values from a sample of the general U. S. population. Am. J. Respir. Crit. Care Med. 159, 179–187 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. 107

    Celli, B. R. et al. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N. Engl. J. Med. 350, 1005–1012 (2004). This work provides the first objective evidence of the importance of non-pulmonary involvement in patients with COPD. In addition, it prospectively validates the measurement of a multidimensional index to prognosticate outcome in patients with COPD.

    Article  CAS  PubMed  Google Scholar 

  108. 108

    Watz, H. et al. An official European Respiratory Society statement on physical activity in COPD. Eur. Respir. J. 44, 1521–1537 (2014).

    Article  PubMed  Google Scholar 

  109. 109

    Nici, L., ZuWallack, R. & American Thoracic Society Subcommittee on Integrated Care of the COPD Patient. An official American Thoracic Society workshop report: the Integrated Care of the COPD Patient. Proc. Am. Thorac. Soc. 9, 9–18 (2012).

    Article  PubMed  Google Scholar 

  110. 110

    Maltais, F. et al. An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 189, e15–e62 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  111. 111

    Puhan, M. A. et al. Expansion of the prognostic assessment of patients with chronic obstructive pulmonary disease: the updated BODE index and the ADO index. Lancet 374, 704–711 (2009).

    Article  PubMed  Google Scholar 

  112. 112

    Jones, R. C. et al. Derivation and validation of a composite index of severity in chronic obstructive pulmonary disease: the DOSE index. Am. J. Respir. Crit. Care Med. 180, 1189–1195 (2009).

    Article  PubMed  Google Scholar 

  113. 113

    Marin, J. M. et al. Multicomponent indices to predict survival in COPD: the COCOMICS study. Eur. Respir. J. 42, 323–332 (2013).

    Article  PubMed  Google Scholar 

  114. 114

    Divo, M. et al. Comorbidities and risk of mortality in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 186, 155–161 (2012).

    Article  PubMed  Google Scholar 

  115. 115

    Gietema, H. A. et al. Quantifying the extent of emphysema: factors associated with radiologists' estimations and quantitative indices of emphysema severity using the ECLIPSE cohort. Acad. Radiol. 18, 661–671 (2011).

    Article  PubMed  Google Scholar 

  116. 116

    de Torres, J. P. et al. Lung cancer in patients with chronic obstructive pulmonary disease — incidence and predicting factors. Am. J. Respir. Crit. Care Med. 184, 913–919 (2011).

    Article  PubMed  Google Scholar 

  117. 117

    Vestbo, J. et al. Changes in forced expiratory volume in 1 second over time in COPD. N. Engl. J. Med. 365, 1184–1192 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. 118

    Barnes, P. J. et al. Pulmonary biomarkers in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 174, 6–14 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. 119

    Kelly, E., Owen, C. A., Pinto-Plata, V. & Celli, B. R. The role of systemic inflammatory biomarkers to predict mortality in chronic obstructive pulmonary disease. Expert Rev. Respir. Med. 7, 57–64 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. 120

    Coxson, H. O. et al. The presence and progression of emphysema in COPD as determined by CT scanning and biomarker expression: a prospective analysis from the ECLIPSE study. Lancet Respir. Med. 1, 129–136 (2013).

    Article  PubMed  Google Scholar 

  121. 121

    Pinto-Plata, V. et al. Profiling serum biomarkers in patients with COPD: associations with clinical parameters. Thorax 62, 595–601 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  122. 122

    Qaseem, A. et al. Diagnosis and management of stable chronic obstructive pulmonary disease: a clinical practice guideline update from the American College of Physicians, American College of Chest Physicians, American Thoracic Society, and European Respiratory Society. Ann. Intern. Med. 155, 179–191 (2011). This document reviews the evidence for the diagnosis and management of patients with stable COPD. It was signed by all of the major medical societies interested in clinical practice.

    Article  PubMed  Google Scholar 

  123. 123

    Wright, A. A. & Katz, I. T. Tobacco tightrope — balancing disease prevention and economic development in China. N. Engl. J. Med. 356, 1493–1496 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. 124

    Ng, M. et al. Smoking prevalence and cigarette consumption in 187 countries, 1980–2012. JAMA 311, 183–192 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. 125

    Pisinger, C. & Dossing, M. A systematic review of health effects of electronic cigarettes. Prev. Med. 69, 248–260 (2014).

    Article  PubMed  Google Scholar 

  126. 126

    Accinelli, R. A. et al. Adherence to reduced-polluting biomass fuel stoves improves respiratory and sleep symptoms in children. BMC Pediatr. 14, 12 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  127. 127

    Vestbo, J. et al. Adherence to inhaled therapy, mortality and hospital admission in COPD. Thorax 64, 939–943 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. 128

    Wedzicha, J. A. & Vestbo, J. Can patients with COPD self-manage? Lancet 380, 624–625 (2012).

    Article  PubMed  Google Scholar 

  129. 129

    Ure, J. et al. Piloting tele-monitoring in COPD: a mixed methods exploration of issues in design and implementation. Prim. Care Respir. J. 21, 57–64 (2012).

    Article  PubMed  Google Scholar 

  130. 130

    Dransfield, M. T. et al. Once-daily inhaled fluticasone furoate and vilanterol versus vilanterol only for prevention of exacerbations of COPD: two replicate double-blind, parallel-group, randomised controlled trials. Lancet Respir. Med. 1, 210–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. 131

    O'Reilly, J., Jones, M. M., Parnham, J., Lovibond, K. & Rudolf, M. Management of stable chronic obstructive pulmonary disease in primary and secondary care: summary of updated NICE guidance. BMJ 340, c3134 (2010).

    Article  PubMed  Google Scholar 

  132. 132

    Casaburi, R. & ZuWallack, R. Pulmonary rehabilitation for management of chronic obstructive pulmonary disease. N. Engl. J. Med. 360, 1329–1335 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. 133

    Bolton, C. E. et al. British Thoracic Society guideline on pulmonary rehabilitation in adults. Thorax 68 (Suppl. 2), ii1–ii30 (2013).

    Article  PubMed  Google Scholar 

  134. 134

    Spruit, M. A. et al. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am. J. Respir. Crit. Care Med. 188, e13–e64 (2013).

    Article  PubMed  Google Scholar 

  135. 135

    Parker, C. M., Voduc, N., Aaron, S. D., Webb, K. A. & O'Donnell, D. E. Physiological changes during symptom recovery from moderate exacerbations of COPD. Eur. Respir. J. 26, 420–428 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. 136

    Calverley, P. M. et al. Cardiovascular events in patients with COPD: TORCH study results. Thorax 65, 719–725 (2010).

    Article  PubMed  Google Scholar 

  137. 137

    Tashkin, D. P. et al. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N. Engl. J. Med. 359, 1543–1554 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. 138

    Wise, R. A. et al. Tiotropium Respimat inhaler and the risk of death in COPD. N. Engl. J. Med. 369, 1491–1501 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. 139

    Singh, D. New combination bronchodilators for COPD: current evidence and future perspectives. Br. J. Clin. Pharmacol. 79, 695–708 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Calverley, P. M. et al. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N. Engl. J. Med. 356, 775–789 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. 141

    Gompelmann, D., Eberhardt, R. & Herth, F. J. Novel endoscopic approaches to treating chronic obstructive pulmonary disease and emphysema. Semin. Respir. Crit. Care Med. 36, 609–615 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. 142

    Seemungal, T., Harper-Owen, R., Bhowmik, A., Jeffries, D. J. & Wedzicha, J. A. Detection of rhinoviruses in induced sputum at exacerbations of chronic obstructive pulmonary disease. Eur. Respir. J. 16, 677–683 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. 143

    Wilkinson, T. M., Donaldson, G. C., Hurst, J. R., Seemungal, T. A. & Wedzicha, J. A. Early therapy improves outcomes of exacerbations of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 169, 1298–1303 (2004).

    Article  PubMed  Google Scholar 

  144. 144

    Donaldson, G. C., Seemungal, T. A., Bhowmik, A. & Wedzicha, J. A. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax 57, 847–852 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. 145

    Kanner, R. E., Anthonisen, N. R. & Connett, J. E. Lower respiratory illnesses promote FEV1 decline in current smokers but not ex-smokers with mild chronic obstructive pulmonary disease: results from the lung health study. Am. J. Respir. Crit. Care Med. 164, 358–364 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. 146

    Donaldson, G. C., Hurst, J. R., Smith, C. J., Hubbard, R. B. & Wedzicha, J. A. Increased risk of myocardial infarction and stroke following exacerbation of COPD. Chest 137, 1091–1097 (2010).

    Article  PubMed  Google Scholar 

  147. 147

    McAllister, D. A. et al. Diagnosis of myocardial infarction following hospitalisation for exacerbation of COPD. Eur. Respir. J. 39, 1097–1103 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. 148

    Anthonisen, N. R. et al. Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease. Ann. Intern. Med. 106, 196–204 (1987).

    Article  CAS  PubMed  Google Scholar 

  149. 149

    Leuppi, J. D. et al. Short-term versus conventional glucocorticoid therapy in acute exacerbations of chronic obstructive pulmonary disease: the REDUCE randomized clinical trial. JAMA 309, 2223–2231 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. 150

    Bafadhel, M. et al. Blood eosinophils to direct corticosteroid treatment of exacerbations of chronic obstructive pulmonary disease: a randomized placebo-controlled trial. Am. J. Respir. Crit. Care Med. 186, 48–55 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. 151

    Nichol, K. L., Nordin, J. D., Nelson, D. B., Mullooly, J. P. & Hak, E. Effectiveness of influenza vaccine in the community-dwelling elderly. N. Engl. J. Med. 357, 1373–1381 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. 152

    Kew, K. M., Mavergames, C. & Walters, J. A. Long-acting beta2-agonists for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 10, CD010177 (2013).

    Google Scholar 

  153. 153

    Karner, C., Chong, J. & Poole, P. Tiotropium versus placebo for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 7, CD009285 (2014).

    Google Scholar 

  154. 154

    Pascoe, S., Locantore, N., Dransfield, M. T., Barnes, N. C. & Pavord, I. D. Blood eosinophil counts, exacerbations, and response to the addition of inhaled fluticasone furoate to vilanterol in patients with chronic obstructive pulmonary disease: a secondary analysis of data from two parallel randomised controlled trials. Lancet Respir. Med. 3, 435–442 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. 155

    Siddiqui, S. H. et al. Blood eosinophils: a biomarker of response to extrafine beclomethasone/formoterol in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 192, 523–525 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  156. 156

    Festic, E. & Scanlon, P. D. Incident pneumonia and mortality in patients with chronic obstructive pulmonary disease. A double effect of inhaled corticosteroids? Am. J. Respir. Crit. Care Med. 191, 141–148 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. 157

    Vogelmeier, C. et al. Tiotropium versus salmeterol for the prevention of exacerbations of COPD. N. Engl. J. Med. 364, 1093–1103 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. 158

    Wedzicha, J. A. et al. The prevention of chronic obstructive pulmonary disease exacerbations by salmeterol/fluticasone propionate or tiotropium bromide. Am. J. Respir. Crit. Care Med. 177, 19–26 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. 159

    Wedzicha, J. A. et al. Analysis of chronic obstructive pulmonary disease exacerbations with the dual bronchodilator QVA149 compared with glycopyrronium and tiotropium (SPARK): a randomised, double-blind, parallel-group study. Lancet Respir. Med. 1, 199–209 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. 160

    Calverley, P. M. et al. Roflumilast in symptomatic chronic obstructive pulmonary disease: two randomised clinical trials. Lancet 374, 685–694 (2009).

    Article  CAS  PubMed  Google Scholar 

  161. 161

    Martinez, F. J. et al. Effect of roflumilast on exacerbations in patients with severe chronic obstructive pulmonary disease uncontrolled by combination therapy (REACT): a multicentre randomised controlled trial. Lancet 385, 857–866 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. 162

    Seemungal, T. A. et al. Long-term erythromycin therapy is associated with decreased chronic obstructive pulmonary disease exacerbations. Am. J. Respir. Crit. Care Med. 178, 1139–1147 (2008).

    Article  CAS  PubMed  Google Scholar 

  163. 163

    Albert, R. K. et al. Azithromycin for prevention of exacerbations of COPD. N. Engl. J. Med. 365, 689–698 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. 164

    Serisier, D. J. Risks of population antimicrobial resistance associated with chronic macrolide use for inflammatory airway diseases. Lancet Respir. Med. 1, 262–274 (2013).

    Article  PubMed  Google Scholar 

  165. 165

    Zheng, J. P. et al. Effect of carbocisteine on acute exacerbation of chronic obstructive pulmonary disease (PEACE study): a randomised placebo-controlled study. Lancet 371, 2013–2018 (2008).

    Article  CAS  PubMed  Google Scholar 

  166. 166

    Zheng, J. P. et al. Twice daily N-acetylcysteine 600 mg for exacerbations of chronic obstructive pulmonary disease (PANTHEON): a randomised, double-blind placebo-controlled trial. Lancet Respir. Med. 2, 187–194 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. 167

    Eaton, T. et al. Does early pulmonary rehabilitation reduce acute health-care utilization in COPD patients admitted with an exacerbation? A randomized controlled study. Respirology 14, 230–238 (2009).

    Article  PubMed  Google Scholar 

  168. 168

    Greening, N. J. et al. An early rehabilitation intervention to enhance recovery during hospital admission for an exacerbation of chronic respiratory disease: randomised controlled trial. BMJ 349, g4315 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  169. 169

    Curtis, J. R. & Patrick, D. L. The assessment of health status among patients with COPD. Eur. Respir. J. Suppl. 41, 36s–45s (2003).

    Article  CAS  PubMed  Google Scholar 

  170. 170

    Jones, P. W. et al. Health-related quality of life in patients by COPD severity within primary care in Europe. Respir. Med. 105, 57–66 (2011).

    Article  CAS  PubMed  Google Scholar 

  171. 171

    Monteagudo, M. et al. Factors associated with changes in quality of life of COPD patients: a prospective study in primary care. Respir. Med. 107, 1589–1597 (2013).

    Article  PubMed  Google Scholar 

  172. 172

    Franssen, F. M., Spruit, M. A. & Wouters, E. F. Determinants of polypharmacy and compliance with GOLD guidelines in patients with chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 6, 493–501 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  173. 173

    Yorgancioglu, A., Havlucu, Y., Celik, P., Dinc, G. & Saka, A. Relation between quality of life and morbidity and mortality in COPD patients: two-year follow-up study. COPD 7, 248–253 (2010).

    Article  PubMed  Google Scholar 

  174. 174

    Domingo-Salvany, A. et al. Health-related quality of life and mortality in male patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 166, 680–685 (2002).

    Article  PubMed  Google Scholar 

  175. 175

    Jones, P. W. Health status measurement in chronic obstructive pulmonary disease. Thorax 56, 880–887 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. 176

    Vanfleteren, L. E. et al. Clusters of comorbidities based on validated objective measurements and systemic inflammation in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 187, 728–735 (2013).

    Article  PubMed  Google Scholar 

  177. 177

    Putcha, N., Puhan, M. A., Hansel, N. N., Drummond, M. B. & Boyd, C. M. Impact of co-morbidities on self-rated health in self-reported COPD: an analysis of NHANES 2001–2008. COPD 10, 324–332 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  178. 178

    Mullerova, H., Agusti, A., Erqou, S. & Mapel, D. W. Cardiovascular comorbidity in COPD: systematic literature review. Chest 144, 1163–1178 (2013).

    Article  PubMed  Google Scholar 

  179. 179

    Macchia, A. et al. Unrecognised ventricular dysfunction in COPD. Eur. Respir. J. 39, 51–58 (2012).

    Article  CAS  PubMed  Google Scholar 

  180. 180

    Maurer, J. et al. Anxiety and depression in COPD: current understanding, unanswered questions, and research needs. Chest 134, 43S–56S (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  181. 181

    Atlantis, E., Fahey, P., Cochrane, B. & Smith, S. Bidirectional associations between clinically relevant depression or anxiety and chronic obstructive pulmonary disease (COPD): a systematic review and meta-analysis. Chest 144, 766–777 (2013).

    Article  PubMed  Google Scholar 

  182. 182

    Smith, M. C. & Wrobel, J. P. Epidemiology and clinical impact of major comorbidities in patients with COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 9, 871–888 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  183. 183

    Hurst, J. R., Elborn, J. S. & De Soyza, A. COPD–bronchiectasis overlap syndrome. Eur. Respir. J. 45, 310–313 (2015).

    Article  PubMed  Google Scholar 

  184. 184

    Carolan, B. J. & Sutherland, E. R. Clinical phenotypes of chronic obstructive pulmonary disease and asthma: recent advances. J. Allergy Clin. Immunol. 131, 627–634 (2013).

    Article  PubMed  Google Scholar 

  185. 185

    Barnes, P. J. Therapeutic approaches to asthma–chronic obstructive pulmonary disease overlap syndromes. J. Allergy Clin. Immunol. 136, 531–545 (2015).

    Article  PubMed  Google Scholar 

  186. 186

    Lock-Johansson, S., Vestbo, J. & Sorensen, G. Surfactant protein D, club cell protein 16, pulmonary and activation-regulated chemokine, C-reactive protein, and fibrinogen biomarker variation in chronic obstructive lung disease. Respir. Res. 15, 147 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. 187

    Yang, I. V. & Schwartz, D. A. Epigenetic control of gene expression in the lung. Am. J. Respir. Crit. Care Med. 183, 1295–1301 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. 188

    Barnes, P. J. New anti-inflammatory treatments for chronic obstructive pulmonary disease. Nat. Rev. Drug Discov. 12, 543–559 (2013). A review of the challenge to new drug development in COPD and a discussion of some of the targets for future therapy.

    Article  CAS  PubMed  Google Scholar 

  189. 189

    Rennard, S. I. et al. The safety and efficacy of infliximab in moderate-to-severe chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 175, 926–934 (2007).

    Article  CAS  Google Scholar 

  190. 190

    Lomas, D. A. et al. An oral inhibitor of p38 MAP kinase reduces plasma fibrinogen in patients with chronic obstructive pulmonary disease. J. Clin. Pharmacol. 52, 416–424 (2011).

    Article  CAS  PubMed  Google Scholar 

  191. 191

    Kerstjens, H. A., Bjermer, L., Eriksson, L., Dahlstrom, K. & Vestbo, J. Tolerability and efficacy of inhaled AZD4818, a CCR1 antagonist, in moderate to severe COPD patients. Respir. Med. 104, 1297–1303 (2010).

    Article  PubMed  Google Scholar 

  192. 192

    Barnes, P. J. & Adcock, I. M. Glucocorticoid resistance in inflammatory diseases. Lancet 342, 1905–1917 (2009).

    Article  CAS  Google Scholar 

  193. 193

    Hansel, T. T. & Barnes, P. J. New drugs for exacerbations of chronic obstructive pulmonary disease. Lancet 374, 744–755 (2009).

    Article  CAS  PubMed  Google Scholar 

  194. 194

    Faner, R., Cruz, T., Lopez-Giraldo, A. & Agusti, A. Network medicine, multimorbidity and the lung in the elderly. Eur. Respir. J. 44, 775–788 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J. Allinson from Imperial College, London, UK, for the design of Figure 8.

Author information

Affiliations

Authors

Contributions

Introduction (P.J.B.); Epidemiology (P.G.J.B.); Mechanisms/pathophysiology (E.K.S. and P.J.B.); Diagnosis, screening and prevention (B.R.C.); Management (J.A.W. and J.V.); Quality of life (E.F.M.W.); Outlook (P.J.B.); Overview of Primer (P.J.B.).

Corresponding author

Correspondence to Peter J. Barnes.

Ethics declarations

Competing interests

P.J.B. has served on scientific advisory boards of AstraZeneca, Boehringer Ingelheim, Chiesi, Daiichi Sankyo, GlaxoSmithKline, Glenmark, Johnson & Johnson, Merck, Novartis, Takeda, Pfizer, Prosonix, RespiVert, Sun Pharmaceuticals, Teva and UCB, and has received research funding from Aquinox Pharmaceuticals, AstraZeneca, Boehringer Ingelheim, Chiesi, Daiichi Sankyo, GlaxoSmithKline, Novartis, Takeda, Pfizer and Sun Pharmaceuticals. He is also a cofounder of RespiVert (now part of Johnson & Johnson), which has discovered novel inhaled anti-inflammatory treatments for asthma and COPD. P.G.J.B. has received grants from the Medical Research Council, the Wellcome Trust, Public Health England and the British Lung Foundation, and serves on an advisory board for Novartis. B.R.C. has received grants to the Pulmonary and Critical Care Division of the Brigham and Women's Hospital to complete research studies in COPD from AstraZeneca. He has also received compensation for advisory board participation and/or consultancy from GlaxoSmithKline, Boehringer Ingelheim, Almirall, AstraZeneca, MedImmune, Takeda and Novartis. He does not have shares or interest in any company, nor does any member of his family. He has not received or had any relationship with the tobacco industry and has not participated in promotional talks. E.K.S. has received, in the past 3 years, honoraria and consulting fees from Merck and grant support and consulting fees from GlaxoSmithKline. J.V. has received funding for advising and presenting from AstraZeneca, Boehringer Ingelheim, Chiesi, GlaxoSmithKline, Novartis, Takeda and Teva, and has received research funding from GlaxoSmithKline. J.A.W. has received research grant funding from Novartis, Takeda, Johnson & Johnson, Vifor Pharma and GlaxoSmithKline. She has received honoraria for lectures and/or advisory boards before January 2015 from GlaxoSmithKline, Novartis, Boehringer Ingelheim, AstraZeneca, Almirall, Pfizer, Chiesi and RespiVert. E.F.M.W. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barnes, P., Burney, P., Silverman, E. et al. Chronic obstructive pulmonary disease. Nat Rev Dis Primers 1, 15076 (2015). https://doi.org/10.1038/nrdp.2015.76

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing