Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

22q11.2 deletion syndrome

Abstract

22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion disorder, estimated to result mainly from de novo non-homologous meiotic recombination events occurring in approximately 1 in every 1,000 fetuses. The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease. The syndrome is now known to have a heterogeneous presentation that includes multiple additional congenital anomalies and later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune disease, variable cognitive delays, behavioural phenotypes and psychiatric illness — all far extending the original description of DiGeorge syndrome. Management requires a multidisciplinary approach involving paediatrics, general medicine, surgery, psychiatry, psychology, interventional therapies (physical, occupational, speech, language and behavioural) and genetic counselling. Although common, lack of recognition of the condition and/or lack of familiarity with genetic testing methods, together with the wide variability of clinical presentation, delays diagnosis. Early diagnosis, preferably prenatally or neonatally, could improve outcomes, thus stressing the importance of universal screening. Equally important, 22q11.2DS has become a model for understanding rare and frequent congenital anomalies, medical conditions, psychiatric and developmental disorders, and may provide a platform to better understand these disorders while affording opportunities for translational strategies across the lifespan for both patients with 22q11.2DS and those with these associated features in the general population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chromosome 22 idiogram.
Figure 2: Low copy repeats and genes within the 22q11.2 deletion.
Figure 3: 22q11.2 non-allelic homologous recombination.
Figure 4: Development of the cardiovascular and pharyngeal structures affected in 22q11.2 deletion syndrome.
Figure 5: Organ and system involvement in 22q11.2 deletion syndrome.
Figure 6: Craniofacial features associated with 22q11.2 deletion syndrome.
Figure 7: Developmental trajectory.
Figure 8: Associated autosomal recessive conditions on 22q11.2.

Similar content being viewed by others

References

  1. DiGeorge, A. Discussion on a new concept of the cellular immunology. J. Pediatr. 67, 907–908 (1965).

    Article  Google Scholar 

  2. Takao, A., Ando, M., Cho, K., Kinouchi, A. & Murakami, Y. in Etiology and Morphogenesis of Congenital Heart Disease (eds Van Praagh, R. & Takao, A. ) 253–269 (Futura Pub. Co., 1980).

    Google Scholar 

  3. Digilio, M. C., Marino, B., Formigari, R. & Giannotti, A. Maternal diabetes causing DiGeorge anomaly and renal agenesis. Am. J. Med. Genet. 55, 513–514 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Sulik, K. K., Johnston, M. C., Daft, P. A., Russell, W. E. & Dehart, D. B. Fetal alcohol syndrome and DiGeorge anomaly: critical ethanol exposure periods for craniofacial malformations as illustrated in an animal model. Am. J. Med. Genet. Suppl. 2, 97–112 (1986).

    Article  CAS  Google Scholar 

  5. Coberly, S., Lammer, E. & Alashari, M. Retinoic acid embryopathy: case report and review of literature. Pediatr. Pathol. Lab. Med. 16, 823–836 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Sanlaville, D. et al. Phenotypic spectrum of CHARGE syndrome in fetuses with CHD7 truncating mutations correlates with expression during human development. J. Med. Genet. 43, 211–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Jyonouchi, S., McDonald-McGinn, D. M., Bale, S., Zackai, E. H. & Sullivan, K. E. CHARGE (coloboma, heart defect, atresia choanae, retarded growth and development, genital hypoplasia, ear anomalies/deafness) syndrome and chromosome 22q11.2 deletion syndrome: a comparison of immunologic and nonimmunologic phenotypic features. Pediatrics 123, e871–e877 (2009).

    Article  PubMed  Google Scholar 

  8. Yagi, H. et al. Role of TBX1 in human del22q11.2 syndrome. Lancet 362, 1366–1373 (2003). Mutations were identified in TBX1 in two unrelated patients who do not have a 22q11.2 deletion but have some of the medical findings. This finding implicates TBX1 as a causative gene for 22q11.2DS.

    Article  CAS  PubMed  Google Scholar 

  9. Zweier, C., Sticht, H., Aydin-Yaylagul, I., Campbell, C. E. & Rauch, A. Human TBX1 missense mutations cause gain of function resulting in the same phenotype as 22q11.2 deletions. Am. J. Hum. Genet. 80, 510–517 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Daw, S. C. et al. A common region of 10p deleted in DiGeorge and velocardiofacial syndromes. Nat. Genet. 13, 458–460 (1996). This paper demonstrates that pathogenetic copy number variations elsewhere in the genome can cause similar phenotypes as in 22q11.2DS.

    Article  CAS  PubMed  Google Scholar 

  11. Grossfeld P. D. et al. The 11q terminal deletion disorder: a prospective study of 110 cases. Am. J. Med. Genet. A 129A 51–61 (2004).

    Article  PubMed  Google Scholar 

  12. de la Chapelle, A., Herva, R., Koivisto, M. & Aula, P. A deletion in chromosome 22 can cause DiGeorge syndrome. Hum. Genet. 57, 253–256 (1981).

    Article  CAS  PubMed  Google Scholar 

  13. Kelley, R. I. et al. The association of the DiGeorge anomalad with partial monosomy of chromosome 22. J. Pediatr. 101, 197–200 (1982). This paper and reference 12 were seminal in elucidating the association of 22q11.2DS with the clinical features of DiGeorge syndrome.

    Article  CAS  PubMed  Google Scholar 

  14. Scambler, P. J. et al. Microdeletions within 22q11 associated with sporadic and familial DiGeorge syndrome. Genomics 10, 201–206 (1991). The development of FISH probes, as described in this seminal paper and in reference 15, changed our understanding of both the prevalence and the breadth of clinical variability for 22q11.2DS.

    Article  CAS  PubMed  Google Scholar 

  15. Driscoll, D. A. et al. Prevalence of 22q11 microdeletions in DiGeorge and velocardiofacial syndromes: implications for genetic counselling and prenatal diagnosis. J. Med. Genet. 30, 813–817 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Burn, J. et al. Conotruncal anomaly face syndrome is associated with a deletion within chromosome 22q11. J. Med. Genet. 30, 822–824 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Matsuoka, R. et al. Confirmation that the conotruncal anomaly face syndrome is associated with a deletion within 22q11.2. Am. J. Med. Genet. 53, 285–289 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. McDonald-McGinn, D. M. et al. Autosomal dominant ‘Opitz’ GBBB syndrome due to a 22q11.2 deletion. Am. J. Med. Genet. 59, 103–113 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Giannotti, A., Digilio, M. C., Marino, B., Mingarelli, R. & Dallapiccola, B. Cayler cardiofacial syndrome and del 22q11: part of the CATCH22 phenotype. Am. J. Med. Genet. 53, 303–304 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. McDonald-McGinn, D. M. et al. The 22q11.2 deletion: screening, diagnostic workup, and outcome of results; report on 181 patients. Genet. Test. 1, 99–108 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. McDonald-McGinn, D. M., Zackai, E. H. & Low, D. What's in a name? The 22q11.2 deletion. Am. J. Med. Genet. 72, 247–249 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Bassett, A. S. et al. Practical guidelines for managing patients with 22q11.2 deletion syndrome. J. Pediatr. 159, 332–339.e331 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  23. McDonald-McGinn, D. M. & Sullivan, K. Chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Medicine 90, 1–18 (2011).

    Article  PubMed  Google Scholar 

  24. Botto, L. D. et al. A population-based study of the 22q11.2 deletion: phenotype, incidence, and contribution to major birth defects in the population. Pediatrics 112, 101–107 (2003).

    Article  PubMed  Google Scholar 

  25. Devriendt, K., Fryns, J. P., Mortier, G., van Thienen, M. N. & Keymolen, K. The annual incidence of DiGeorge/velocardiofacial syndrome. J. Med. Genet. 35, 789–790 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goodship, J., Cross, I., LiLing, J. & Wren, C. A population study of chromosome 22q11 deletions in infancy. Arch. Dis. Child. 79, 348–351 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Oskarsdottir, S., Vujic, M. & Fasth, A. Incidence and prevalence of the 22q11 deletion syndrome: a population-based study in Western Sweden. Arch. Dis. Child. 89, 148–151 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Té zenas Du Montcel, S., Mendizabai, H., Ayme, S., Levy, A. & Philip, N. Prevalence of 22q11 microdeletion. J. Med. Genet. 33, 719 (1996).

    Article  Google Scholar 

  29. McDonald-McGinn, D. M. et al. Phenotype of the 22q11.2 deletion in individuals identified through an affected relative: cast a wide FISHing net! Genet. Med. 3, 23–29 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Costain, G., Chow, E. W., Silversides, C. K. & Bassett, A. S. Sex differences in reproductive fitness contribute to preferential maternal transmission of 22q11.2 deletions. J. Med. Genet. 48, 819–824 (2011).

    Article  PubMed  Google Scholar 

  31. Repetto, G. M. et al. Case fatality rate and associated factors in patients with 22q11 microdeletion syndrome: a retrospective cohort study. BMJ Open 4, e005041 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. McDonald-McGinn, D. M. et al. The perplexing prevalence of familial nested 22q11.2 deletions. ASGH [online], (2014).

  33. Wapner, R. J. et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. N. Engl. J. Med. 367, 2175–2184 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grati, F. R. et al. Prevalence of recurrent pathogenic microdeletions and microduplications in over 9500 pregnancies. Prenat. Diagn. 35, 801–809 (2015).

    Article  PubMed  Google Scholar 

  35. Tomita-Mitchell A. et al. Multiplexed quantitative real-time PCR to detect 22q11.2 deletion in patients with congenital heart disease. Physiol. Genomics 42A 52–60 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chien, Y. H. et al. Incidence of severe combined immunodeficiency through newborn screening in a Chinese population. J. Formos. Med. Assoc. 114, 12–16 (2015).

    Article  PubMed  Google Scholar 

  37. Kaminsky, E. B. et al. An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genet. Med. 13, 777–784 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schwinger, E., Devriendt, K., Rauch, A. & Philip, N. Clinical utility gene card for: DiGeorge syndrome, velocardiofacial syndrome, Shprintzen syndrome, chromosome 22q11.2 deletion syndrome (22q11.2, TBX1). Eur. J. Hum. Genet. http://dx.doi.org/10.1038/ejhg.2010.5 (2010).

  39. McDonald-McGinn, D. M. et al. The Philadelphia story: the 22q11.2 deletion: report on 250 patients. Genet. Couns. 10, 11–24 (1999). This paper and references 20 and 29 were the first to outline the broad scope and breadth of features associated with 22q11.2DS, both in a large cohort of patients as well as in affected family members.

    CAS  PubMed  Google Scholar 

  40. Delio, M. et al. Enhanced maternal origin of the 22q11.2 deletion in velocardiofacial and DiGeorge syndromes. Am. J. Hum. Genet. 92, 439–447 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McDonald-McGinn, D. M. et al. The 22q11.2 deletion in African-American patients: an underdiagnosed population? Am. J. Med. Genet. A 134, 242–246 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liu, A. P. et al. Under-recognition of 22q11.2 deletion in adult Chinese patients with conotruncal anomalies: implications in transitional care. Eur. J. Med. Genet. 57, 306–311 (2014).

    Article  PubMed  Google Scholar 

  43. Goldmuntz, E. et al. Microdeletions of chromosomal region 22q11 in patients with congenital conotruncal cardiac defects. J. Med. Genet. 30, 807–812 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Peyvandi, S. et al. 22q11.2 deletions in patients with conotruncal defects: data from 1,610 consecutive cases. Pediatr. Cardiol. 34, 1687–1694 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zori, R. T. et al. Prevalence of 22q11 region deletions in patients with velopharyngeal insufficiency. Am. J. Med. Genet. 77, 8–11 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Boorman, J. G., Varma, S. & Mackie Ogilvie, C. Velopharyngeal incompetence and chromosome 22q11 deletion. Lancet 357, 774 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Ruiter, E. M., Bongers, E. M., Smeets, D., Kuijpers-Jagtman, A. M. & Hamel, B. C. No justification of routine screening for 22q11 deletions in patients with overt cleft palate. Clin. Genet. 64, 216–219 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Rauch, A. et al. Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. Am. J. Med. Genet. 140, 2063–2074 (2006).

    Article  PubMed  Google Scholar 

  49. Bassett, A. S. et al. Clinically detectable copy number variations in a Canadian catchment population of schizophrenia. J. Psychiatr. Res. 44, 1005–1009 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Horowitz, A., Shifman, S., Rivlin, N., Pisante, A. & Darvasi, A. A survey of the 22q11 microdeletion in a large cohort of schizophrenia patients. Schizophr. Res. 73, 263–267 (2005).

    Article  PubMed  Google Scholar 

  51. Bassett, A. S. et al. Premature death in adults with 22q11.2 deletion syndrome. J. Med. Genet. 46, 324–330 (2009). This paper was the first to systematically study mortality in adults with 22q11.2DS, identifying shortened longevity as an issue.

    Article  CAS  PubMed  Google Scholar 

  52. Edelmann, L., Pandita, R. K. & Morrow, B. E. Low-copy repeats mediate the common 3-Mb deletion in patients with velo-cardio-facial syndrome. Am. J. Hum. Genet. 64, 1076–1086 (1999). The molecular mechanism responsible for chromosome rearrangements leading to the 22q11.2 deletion was identified. The de novo deletion is caused by non-allelic recombination events between flanking LCRs during meiosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shaikh, T. H. et al. Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis. Hum. Mol. Genet. 9, 489–501 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Saitta, S. C. et al. Aberrant interchromosomal exchanges are the predominant cause of the 22q11.2 deletion. Hum. Mol. Genet. 13, 417–428 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Bailey, J. A. et al. Human-specific duplication and mosaic transcripts: the recent paralogous structure of chromosome 22. Am. J. Hum. Genet. 70, 83–100 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Babcock, M. et al. Shuffling of genes within low-copy repeats on 22q11 (LCR22) by Alu-mediated recombination events during evolution. Genome Res. 13, 2519–2532 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Morrow, B. et al. Molecular definition of the 22q11 deletions in velo-cardio-facial syndrome. Am. J. Hum. Genet. 56, 1391–1403 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Rump, P. et al. Central 22q11.2 deletions. Am. J. Med. Genet. A 164A, 2707–2723 (2014). Importantly, this paper reports cases of nested deletions of LCR22B–LCR22D, LCR22C–LCR22D and beyond, demonstrating that genes within the LCR22B–LCR22D regions result in features typically associated with the full LCR22A–LCR22D deletion.

    Article  CAS  PubMed  Google Scholar 

  59. Steinberg, K. M. et al. Single haplotype assembly of the human genome from a hydatidiform mole. Genome Res. 24, 2066–2076 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chaisson, M. J. et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature 517, 608–611 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Ellegood, J. et al. Neuroanatomical phenotypes in a mouse model of the 22q11.2 microdeletion. Mol. Psychiatry 19, 99–107 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Mukai, J. et al. Molecular substrates of altered axonal growth and brain connectivity in a mouse model of schizophrenia. Neuron 86, 680–695 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Earls, L. R. & Zakharenko, S. S. A synaptic function approach to investigating complex psychiatric diseases. Neuroscientist 20, 257–271 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Karpinski, B. A. et al. Dysphagia and disrupted cranial nerve development in a mouse model of DiGeorge (22q11) deletion syndrome. Dis. Model. Mech. 7, 245–257 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Meechan, D. W., Maynard, T. M., Tucker, E. S. & Lamantia, A. S. Three phases of DiGeorge/22q11 deletion syndrome pathogenesis during brain development: patterning, proliferation, and mitochondrial functions of 22q11 genes. Int. J. Dev. Neurosci. 29, 283–294 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Zhang, Z. & Baldini, A. In vivo response to high-resolution variation of Tbx1 mRNA dosage. Hum. Mol. Genet. 17, 150–157 (2008). In this article, mouse models were used to demonstrate that Tbx1 function in individual tissues during embryonic development is sensitive to altered gene dosage.

    Article  CAS  PubMed  Google Scholar 

  67. Meechan, D. W., Maynard, T. M., Gopalakrishna, D., Wu, Y. & LaMantia, A. S. When half is not enough: gene expression and dosage in the 22q11 deletion syndrome. Gene Expr. 13, 299–310 (2007). This review paper discusses the importance of gene dosage and 22q11.2DS.

    Article  CAS  PubMed  Google Scholar 

  68. McDonald-McGinn, D. M. et al. Hemizygous mutations in SNAP29 unmask autosomal recessive conditions and contribute to atypical findings in patients with 22q11.2DS. J. Med. Genet. 50, 80–90 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Amati, F. et al. Dynamic changes in gene expression profiles of 22q11 and related orthologous genes during mouse development. Gene 391, 91–102 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Guris, D. L., Duester, G., Papaioannou, V. E. & Imamoto, A. Dose-dependent interaction of Tbx1 and Crkl and locally aberrant RA signaling in a model of del22q11 syndrome. Dev. Cell 10, 81–92 (2006). This article shows that both Tbx1 and Crkl genetically interact in mouse models during cardiac, thymus and parathyroid gland development.

    Article  CAS  PubMed  Google Scholar 

  71. Earls, L. R. et al. Age-dependent microRNA control of synaptic plasticity in 22q11 deletion syndrome and schizophrenia. J. Neurosci. 32, 14132–14144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Brzustowicz, L. M. & Bassett, A. S. miRNA-mediated risk for schizophrenia in 22q11.2 deletion syndrome. Front. Genet. 3, 291 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhao, D. et al. MicroRNA profiling of neurons generated using induced pluripotent stem cells derived from patients with schizophrenia and schizoaffective disorder, and 22q11.2 del. PLoS ONE 10, e0132387 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bassett, A. S., Marshall, C. R., Lionel, A. C., Chow, E. W. & Scherer, S. W. Copy number variations and risk for schizophrenia in 22q11.2 deletion syndrome. Hum. Mol. Genet. 17, 4045–4053 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Swillen, A. et al. The behavioural phenotype in velo-cardio-facial syndrome (VCFS): from infancy to adolescence. Genet. Couns. 10, 79–88 (1999).

    CAS  PubMed  Google Scholar 

  76. Arnold, J. S. et al. Inactivation of Tbx1 in the pharyngeal endoderm results in 22q11DS malformations. Development 133, 977–987 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Pane, L. S. et al. Tbx1 is a negative modulator of Mef2c. Hum. Mol. Genet. 21, 2485–2496 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Diogo, R. et al. A new heart for a new head in vertebrate cardiopharyngeal evolution. Nature 520, 466–473 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Meechan, D. W. et al. Modeling a model: mouse genetics, 22q11.2 deletion syndrome, and disorders of cortical circuit development. Prog. Neurobiol. 130, 1–28 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sivagnanasundaram, S. et al. Differential gene expression in the hippocampus of the Df1/+ mice: a model for 22q11.2 deletion syndrome and schizophrenia. Brain Res. 1139, 48–59 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Xu, B., Hsu, P. K., Stark, K. L., Karayiorgou, M. & Gogos, J. A. Derepression of a neuronal inhibitor due to miRNA dysregulation in a schizophrenia-related microdeletion. Cell 152, 262–275 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xu, B., Karayiorgou, M. & Gogos, J. A. MicroRNAs in psychiatric and neurodevelopmental disorders. Brain Res. 1338, 78–88 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Zou, D. et al. Patterning of the third pharyngeal pouch into thymus/parathyroid by Six and Eya1. Dev. Biol. 293, 499–512 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Kelly, R. G., Buckingham, M. E. & Moorman, A. F. Heart fields and cardiac morphogenesis. Cold Spring Harb. Perspect. Med. 4, a015750 (2014). The heart fields are crucial to form the aortic arch and conotruncal region of the heart, which are affected in 22q11.2DS. This paper explains the importance of the second heart field.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Milgrom-Hoffman, M., Michailovici, I., Ferrara, N., Zelzer, E. & Tzahor, E. Endothelial cells regulate neural crest and second heart field morphogenesis. Biol. Open 3, 679–688 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Keyte, A. L., Alonzo-Johnsen, M. & Hutson, M. R. Evolutionary and developmental origins of the cardiac neural crest: building a divided outflow tract. Birth Defects Res. C Embryo Today 102, 309–323 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Neeb, Z., Lajiness, J. D., Bolanis, E. & Conway, S. J. Cardiac outflow tract anomalies. Wiley Interdiscip. Rev. Dev. Biol. 2, 499–530 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lewin, M. B. et al. A genetic etiology for interruption of the aortic arch type B. Am. J. Cardiol. 80, 493–497 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Guna, A., Butcher, N. J. & Bassett, A. S. Comparative mapping of the 22q11.2 deletion region and the potential of simple model organisms. J. Neurodev. Disord. 7, 18 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Jerome, L. A. & Papaioannou, V. E. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat. Genet. 27, 286–291 (2001). By using mouse model approaches, Tbx1 was found to be required for craniofacial, thymus and parathyroid gland as well as cardiac development. This is a seminal paper in the field.

    Article  CAS  PubMed  Google Scholar 

  91. Merscher, S. et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 104, 619–629 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Lindsay, E. A. et al. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410, 97–101 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Zhang, Z. et al. Tbx1 expression in pharyngeal epithelia is necessary for pharyngeal arch artery development. Development 132, 5307–5315 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Zhang, Z., Huynh, T. & Baldini, A. Mesodermal expression of Tbx1 is necessary and sufficient for pharyngeal arch and cardiac outflow tract development. Development 133, 3587–3595 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Papangeli, I. & Scambler, P. The 22q11 deletion: DiGeorge and velocardiofacial syndromes and the role of TBX1. Wiley Interdiscip. Rev. Dev. Biol. 2, 393–403 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Calmont, A. et al. Tbx1 controls cardiac neural crest cell migration during arch artery development by regulating Gbx2 expression in the pharyngeal ectoderm. Development 136, 3173–3183 (2009). In mice, the gastrulation brain homeobox 2 (Gbx2) gene was found to be crucial in the pharyngeal ectoderm to signal to adjacent neural crest cells, which was required to form the aortic arch and branching vessels.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vitelli, F., Morishima, M., Taddei, I., Lindsay, E. A. & Baldini, A. Tbx1 mutation causes multiple cardiovascular defects and disrupts neural crest and cranial nerve migratory pathways. Hum. Mol. Genet. 11, 915–922 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Caprio, C. & Baldini, A. p53 suppression partially rescues the mutant phenotype in mouse models of DiGeorge syndrome. Proc. Natl Acad. Sci. USA 111, 13385–13390 (2014). Genetic rescue is the gold standard for future therapeutics for 22q11.2DS. This is the first paper demonstrating that genetic rescue can take place by reducing the levels of p53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cioffi, S. et al. Tbx1 regulates brain vascularization. Hum. Mol. Genet. 23, 78–89 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Paylor, R. et al. Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: implications for 22q11 deletion syndrome. Proc. Natl Acad. Sci. USA 103, 7729–7734 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Stark, K. L. et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat. Genet. 40, 751–760 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Chapnik, E., Sasson, V., Blelloch, R. & Hornstein, E. Dgcr8 controls neural crest cells survival in cardiovascular development. Dev. Biol. 362, 50–56 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Petri, R., Malmevik, J., Fasching, L., Akerblom, M. & Jakobsson, J. miRNAs in brain development. Exp. Cell Res. 321, 84–89 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Beveridge, N. J., Gardiner, E., Carroll, A. P., Tooney, P. A. & Cairns, M. J. Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol. Psychiatry 15, 1176–1189 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Merico, D. et al. MicroRNA dysregulation, gene networks, and risk for schizophrenia in 22q11.2 deletion syndrome. Front. Neurol. 5, 238 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Sellier, C. et al. Decreased DGCR8 expression and miRNA dysregulation in individuals with 22q11.2 deletion syndrome. PLoS ONE 9, e103884 (2014).

    Article  CAS  Google Scholar 

  107. Guris, D. L., Fantes, J., Tara, D., Druker, B. J. & Imamoto, A. Mice lacking the homologue of the human 22q11.2 gene CRKL phenocopy neurocristopathies of DiGeorge syndrome. Nat. Genet. 27, 293–298 (2001). This paper shows that, in addition to Tbx1, inactivation of Crkl on 22q11.2 can result in physical malformations observed in 22q11.2DS.

    Article  CAS  PubMed  Google Scholar 

  108. Racedo, S. E. et al. Mouse and human CRKL is dosage sensitive for cardiac outflow tract formation. Am. J. Hum. Genet. 96, 235–244 (2015). The combination of human and mouse genetics has shed new light on the function of CRKL in the formation of the cardiac outflow tract.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zheng, P. et al. Molecular mechanisms of functional natural killer deficiency in patients with partial DiGeorge syndrome. J. Allergy Clin. Immunol. 135, 1293–1302 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bedeschi, M. F. et al. Unmasking of a recessive SCARF2 mutation by a 22q11.12 de novo deletion in a patient with Van den Ende–Gupta syndrome. Mol. Syndromol. 1, 239–245 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Bassett, A. S., Caluseriu, O., Weksberg, R., Young, D. A. & Chow, E. W. Catechol-O-methyl transferase and expression of schizophrenia in 73 adults with 22q11 deletion syndrome. Biol. Psychiatry 61, 1135–1140 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Murphy, K. C., Jones, L. A. & Owen, M. J. High rates of schizophrenia in adults with velo-cardio-facial syndrome. Arch. Gen. Psychiatry 56, 940–945 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Gothelf, D. et al. Risk factors and the evolution of psychosis in 22q11.2 deletion syndrome: a longitudinal 2-site study. J. Am. Acad. Child Adolesc. Psychiatry 52, 1192–1203.e3 (2013).

    Article  PubMed  Google Scholar 

  114. Philip, N. & Bassett, A. S. Cognitive, behavioural and psychiatric phenotype in 22q11.2 deletion syndrome. Behav. Genet. 41, 403–412 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Goodman, B. K., Rutberg, J., Lin, W. W., Pulver, A. E. & Thomas, G. H. Hyperprolinaemia in patients with deletion (22)(q11.2) syndrome. J. Inherit. Metab. Dis. 23, 847–848 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Magnée, M. J., Lamme, V. A., de Sain-van der Velden, M. G., Vorstman, J. A. & Kemner, C. Proline and COMT status affect visual connectivity in children with 22q11.2 deletion syndrome. PLoS ONE 6, e25882 (2011).

    Article  CAS  Google Scholar 

  117. Paronett, E. M., Meechan, D. W., Karpinski, B. A., LaMantia, A.-S. & Maynard, T. M. Ranbp1, deleted in DiGeorge/22q11.2 deletion syndrome, is a microcephaly gene that selectively disrupts layer 2/3 cortical projection neuron generation. Cereb. Cortex 25, 3977–3993 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Raux, G. et al. Involvement of hyperprolinemia in cognitive and psychiatric features of the 22q11 deletion syndrome. Hum. Mol. Genet. 16, 83–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Vorstman, J. A. S. et al. Proline affects brain function in 22q11DS children with the low activity COMT158 allele. Neuropsychopharmacology 34, 739–746 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Newbern, J. et al. Mouse and human phenotypes indicate a critical conserved role for ERK2 signaling in neural crest development. Proc. Natl Acad. Sci. USA 105, 17115–17120 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Dykes, I. M. et al. HIC2 is a novel dosage-dependent regulator of cardiac development located within the distal 22q11 deletion syndrome region. Circ. Res. 115, 23–31 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Toritsuka, M. et al. Deficits in microRNA-mediated Cxcr4/Cxcl12 signaling in neurodevelopmental deficits in a 22q11 deletion syndrome mouse model. Proc. Natl Acad. Sci. USA 110, 17552–17557 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Swaby, J. A. et al. Complex congenital heart disease in unaffected relatives of adults with 22q11.2 deletion syndrome. Am. J. Cardiol. 107, 466–471 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Merico, D. et al. Whole-genome sequencing suggests schizophrenia risk mechanisms in humans with 22q11.2 deletion syndrome. G3 (Bethesda) 5, 2453–2461 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Swillen, A. & McDonald-McGinn, D. Developmental trajectories in 22q11.2 deletion syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 169, 172–181 (2015). This paper provides a current state of the art perspective on developmental trajectories with appropriate interventions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fung, W. L. et al. Practical guidelines for managing adults with 22q11.2 deletion syndrome. Genet. Med. 17, 599–609 (2015). This paper (for adults) and reference 22 (for children) provide a comprehensive overview of all domains to be covered in the multidisciplinary management of patients with 22q11.2DS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Vergaelen, E. et al. 3 generation pedigree with paternal transmission of the 22q11.2 deletion syndrome: intrafamilial phenotypic variability. Eur. J. Med. Genet. 58, 244–248 (2015).

    Article  PubMed  Google Scholar 

  128. McElhinney, D. B., McDonald-McGinn, D., Zackai, E. H. & Goldmuntz, E. Cardiovascular anomalies in patients diagnosed with a chromosome 22q11 deletion beyond 6 months of age. Pediatrics 108, E104 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. John, A. S., McDonald-McGinn, D. M., Zackai, E. H. & Goldmuntz, E. Aortic root dilation in patients with 22q11.2 deletion syndrome. Am. J. Med. Genet. A 149A, 939–942 (2009).

    Article  PubMed  Google Scholar 

  130. Piliero, L. M., Sanford, A. N., McDonald-McGinn, D. M., Zackai, E. H. & Sullivan, K. E. T-cell homeostasis in humans with thymic hypoplasia due to chromosome 22q11.2 deletion syndrome. Blood 103, 1020–11025 (2004). The consequences of thymic hypoplasia were elucidated in this paper. It highlights the dynamic nature of immunodeficiency over time in this syndrome.

    Article  CAS  PubMed  Google Scholar 

  131. Sullivan, K. E. et al. Lack of correlation between impaired T cell production, immunodeficiency, and other phenotypic features in chromosome 22q11.2 deletion syndromes. Clin. Immunol. Immunopathol. 86, 141–146 (1998).

    Article  CAS  PubMed  Google Scholar 

  132. Sullivan, K. E., McDonald-McGinn, D. & Zackai, E. H. CD4+CD25+ T-cell production in healthy humans and in patients with thymic hypoplasia. Clin. Diagn. Lab. Immunol. 9, 1129–1131 (2002).

    PubMed  PubMed Central  Google Scholar 

  133. Sullivan, K. E. et al. Longitudinal analysis of lymphocyte function and numbers in the first year of life in chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Clin. Diagn. Lab. Immunol. 6, 906–911 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Jawad, A. F. et al. A prospective study of influenza vaccination and a comparison of immunologic parameters in children and adults with chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). J. Clin. Immunol. 31, 927–935 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Perez, E. E., Bokszczanin, A., McDonald-McGinn, D., Zackai, E. H. & Sullivan, K. E. Safety of live viral vaccines in patients with chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Pediatrics 112, e325 (2003).

    Article  PubMed  Google Scholar 

  136. Smith, C. A. et al. Increased prevalence of immunoglobulin A deficiency in patients with the chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Clin. Diagn. Lab. Immunol. 5, 415–417 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Staple, L., Andrews, T., McDonald-McGinn, D., Zackai, E. & Sullivan, K. E. Allergies in patients with chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome) and patients with chronic granulomatous disease. Pediatr. Allergy Immunol. 16, 226–230 (2005).

    Article  PubMed  Google Scholar 

  138. Zemble, R. et al. Secondary immunologic consequences in chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Clin. Immunol. 136, 409–418 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sullivan, K. E. et al. Juvenile rheumatoid arthritis-like polyarthritis in chromosome 22q11.2 deletion syndrome (DiGeorge anomalad/velocardiofacial syndrome/conotruncal anomaly face syndrome). Arthritis Rheum. 40, 430–436 (1997).

    Article  CAS  PubMed  Google Scholar 

  140. Lawrence, S., McDonald-McGinn, D. M., Zackai, E. & Sullivan, K. E. Thrombocytopenia in patients with chromosome 22q11.2 deletion syndrome. J. Pediatr. 143, 277–278 (2003).

    Article  PubMed  Google Scholar 

  141. Kratz, C. P. et al. Evans syndrome in a patient with chromosome 22q11.2 deletion syndrome: a case report. Pediatr. Hematol. Oncol. 20, 167–172 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Kawame, H. et al. Graves' disease in patients with 22q11.2 deletion. J. Pediatr. 139, 892–895 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Bale, P. M. & Sotelo-Avila, C. Maldescent of the thymus: 34 necropsy and 10 surgical cases, including 7 thymuses medial to the mandible. Pediatr. Pathol. 13, 181–190 (1993).

    Article  CAS  PubMed  Google Scholar 

  144. Chinen, J., Rosenblatt, H. M., Smith, E. O., Shearer, W. T. & Noroski, L. M. Long-term assessment of T-cell populations in DiGeorge syndrome. J. Allergy Clin. Immunol. 111, 573–579 (2003).

    Article  PubMed  Google Scholar 

  145. Dyce, O. et al. Otolaryngologic manifestations of the 22q11.2 deletion syndrome. Arch. Otolaryngol. Head Neck Surg. 128, 1408–1412 (2002).

    Article  PubMed  Google Scholar 

  146. Hamilton, S., Husein, M. & Dworschak-Stokan, A. Velopharyngeal insufficiency clinic: the first 18 months. J. Otolaryngol. Head Neck Surg. 37, 586–590 (2008).

    PubMed  Google Scholar 

  147. Solot, C. B. et al. Communication issues in 22q11.2 deletion syndrome: children at risk. Genet. Med. 3, 67–71 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. Ruotolo, R. A. et al. Velopharyngeal anatomy in 22q11.2 deletion syndrome: a three-dimensional cephalometric analysis. Cleft Palate Craniofac. J. 43, 446–456 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Widdershoven, J. C. et al. A candidate gene approach to identify modifiers of the palatal phenotype in 22q11.2 deletion syndrome patients. Int. J. Pediatr. Otorhinolaryngol. 77, 123–127 (2013).

    Article  PubMed  Google Scholar 

  150. Stransky, C. et al. Perioperative risk factors in patients with 22q11.2 deletion syndrome requiring surgery for velopharyngeal dysfunction. Cleft Palate Craniofac. J. 52, 183–191 (2015).

    Article  PubMed  Google Scholar 

  151. Forbes, B. J. et al. Ocular findings in the chromosome 22q11.2 deletion syndrome. J. AAPOS 11, 179–182 (2007).

    Article  PubMed  Google Scholar 

  152. Cheung, E. N. et al. Prevalence of hypocalcemia and its associated features in 22q11.2 deletion syndrome. Clin. Endocrinol. 81, 190–196 (2014).

    Article  CAS  Google Scholar 

  153. Bassett, A. S. et al. Clinical features of 78 adults with 22q11 deletion syndrome. Am. J. Med. Genet. A 138, 307–313 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Weinzimer, S. A. Endocrine aspects of the 22q11.2 deletion syndrome. Genet. Med. 3, 19–22 (2001).

    Article  CAS  PubMed  Google Scholar 

  155. Digilio, M. C. et al. Auxological evaluation in patients with DiGeorge/velocardiofacial syndrome (deletion 22q11.2 syndrome). Genet. Med. 3, 30–33 (2001).

    Article  CAS  PubMed  Google Scholar 

  156. Habel, A., McGinn, M.-J. 2nd, Zackai, E. H., Unanue, N. & McDonald-McGinn, D. M. Syndrome-specific growth charts for 22q11.2 deletion syndrome in Caucasian children. Am. J. Med. Genet. A 158A, 2665–2671 (2012).

    Article  CAS  PubMed  Google Scholar 

  157. Van, L. et al. Fetal growth and gestational factors as predictors of schizophrenia in 22q11.2 deletion syndrome. Genet. Med. http://dx.doi.org/10.1038/gim.2015.84 (2015).

  158. Eicher, P. S. et al. Dysphagia in children with a 22q11.2 deletion: unusual pattern found on modified barium swallow. J. Pediatr. 137, 158–164 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. Digilio, M. C., Marino, B., Bagolan, P., Giannotti, A. & Dallapiccola, B. Microdeletion 22q11 and oesophageal atresia. J. Med. Genet. 36, 137–139 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Oskarsdottir, S., Belfrage, M., Sandstedt, E., Viggedal, G. & Uvebrant, P. Disabilities and cognition in children and adolescents with 22q11 deletion syndrome. Dev. Med. Child Neurol. 47, 177–184 (2005).

    Article  CAS  PubMed  Google Scholar 

  161. Wu, H.-Y. et al. Genitourinary malformations in chromosome 22q11.2 deletion. J. Urol. 168, 2564–2565 (2002).

    Article  CAS  PubMed  Google Scholar 

  162. Devriendt, K., Swillen, A., Fryns, J. P., Proesmans, W. & Gewillig, M. Renal and urological tract malformations caused by a 22q11 deletion. J. Med. Genet. 33, 349 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sundaram, U. T. et al. Primary amenorrhea and absent uterus in the 22q11.2 deletion syndrome. Am. J. Med. Genet. A 143A, 2016–2018 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Barnett, C., Langer, J. C., Hinek, A., Bradley, T. J. & Chitayat, D. Looking past the lump: genetic aspects of inguinal hernia in children. J. Pediatr. Surg. 44, 1423–1431 (2009).

    Article  PubMed  Google Scholar 

  165. Binenbaum, G. et al. Sclerocornea associated with the chromosome 22q11.2 deletion syndrome. Am. J. Med. Genet. A 146A, 904–909 (2008).

    Article  PubMed  Google Scholar 

  166. Bingham, P. M., Lynch, D., McDonald-McGinn, D. & Zackai, E. Polymicrogyria in chromosome 22 delection syndrome. Neurology 51, 1500–1502 (1998).

    Article  CAS  PubMed  Google Scholar 

  167. Ming, J. E. et al. Skeletal anomalies and deformities in patients with deletions of 22q11. Am. J. Med. Genet. 72, 210–215 (1997).

    Article  CAS  PubMed  Google Scholar 

  168. Ricchetti, E. T. et al. Radiographic study of the upper cervical spine in the 22q11.2 deletion syndrome. J. Bone Joint Surg. Am. 86, 1751–1760 (2004).

    Article  PubMed  Google Scholar 

  169. McDonald-McGinn, D. M. et al. Malignancy in chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Am. J. Med. Genet. A 140, 906–909 (2006).

    Article  PubMed  Google Scholar 

  170. Butcher, N. et al. Association between early-onset Parkinson disease and 22q11.2 deletion syndrome: identification of a novel genetic form of Parkinson disease and its clinical implications. JAMA Neurol. 70, 1359–1366 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Swillen, A. et al. Early motor development in young children with 22q.11 deletion syndrome and a conotruncal heart defect. Dev. Med. Child Neurol. 47, 797–802 (2005).

    Article  PubMed  Google Scholar 

  172. Solot, C. B. et al. Communication disorders in the 22Q11.2 microdeletion syndrome. J. Commun. Disord. 33, 187–203 (2000).

    Article  CAS  PubMed  Google Scholar 

  173. Swillen, A. et al. Intelligence and psychosocial adjustment in velocardiofacial syndrome: a study of 37 children and adolescents with VCFS. J. Med. Genet. 34, 453–458 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. De Smedt, B. et al. Intellectual abilities in a large sample of children with velo-cardio-facial syndrome: an update. J. Intellect. Disabil. Res. 51, 666–670 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. De Smedt, B., Swillen, A., Verschaffel, L. & Ghesquiere, P. Mathematical learning disabilities in children with 22q11.2 deletion syndrome: a review. Dev. Disabil. Res. Rev. 15, 4–10 (2009).

    Article  PubMed  Google Scholar 

  176. Wang, P. P., Woodin, M. F., Kreps-Falk, R. & Moss, E. M. Research on behavioral phenotypes: velocardiofacial syndrome (deletion 22q11.2). Dev. Med. Child Neurol. 42, 422–427 (2000).

    Article  CAS  PubMed  Google Scholar 

  177. Glaser, B. et al. Language skills in children with velocardiofacial syndrome (deletion 22q11.2). J. Pediatr. 140, 753–758 (2002).

    Article  PubMed  Google Scholar 

  178. Evers, L. J. et al. Psychopathology in adults with 22q11 deletion syndrome and moderate and severe intellectual disability. J. Intellect. Disabil. Res. 58, 915–925 (2014).

    Article  CAS  PubMed  Google Scholar 

  179. Cheung, E. N. et al. Neonatal hypocalcemia, neonatal seizures, and intellectual disability in 22q11.2 deletion syndrome. Genet. Med. 16, 40–44 (2014).

    Article  CAS  PubMed  Google Scholar 

  180. Duijff, S. N. et al. Cognitive development in children with 22q11.2 deletion syndrome. Br. J. Psychiatry 200, 462–468 (2012). This paper presents a longitudinal data study on cognitive development in a large cohort of children.

    Article  PubMed  Google Scholar 

  181. Vorstman, J. A. et al. Cognitive decline preceding the onset of psychosis in patients with 22q11.2 deletion syndrome. JAMA Psychiatry 72, 377–385 (2015). Using data from a large collaborative effort (The International 22q11.2 Brain and Behavior Consortium), this paper shows the association of cognitive decline as an antecedent to the onset of psychosis. Drawing from this same consortium, reference 182, reports on the psychiatric disorders observed in this population.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Schneider, M. et al. Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the International Consortium on Brain and Behavior in 22q11.2 deletion syndrome. Am. J. Psychiatry 171, 627–639 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Fung, W. L. et al. Elevated prevalence of generalized anxiety disorder in adults with 22q11.2 deletion syndrome. Am. J. Psychiatry 167, 998 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Bassett, A. S. & Chow, E. W. 22q11 deletion syndrome: a genetic subtype of schizophrenia. Biol. Psychiatry 46, 882–891 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Amelsvoort, T. V. et al. Cognitive deficits associated with schizophrenia in velo-cardio-facial syndrome. Schizophr. Res. 70, 223–232 (2004).

    Article  PubMed  Google Scholar 

  186. Bassett, A. S. et al. The schizophrenia phenotype in 22q11 deletion syndrome. Am. J. Psychiatry 160, 1580–1586 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Chow, E. W., Watson, M., Young, D. A. & Bassett, A. S. Neurocognitive profile in 22q11 deletion syndrome and schizophrenia. Schizophr. Res. 87, 270–278 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Stoddard, J., Niendam, T., Hendren, R., Carter, C. & Simon, T. J. Attenuated positive symptoms of psychosis in adolescents with chromosome 22q11.2 deletion syndrome. Schizophr. Res. 118, 118–121 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Butcher, N. J. et al. Response to clozapine in a clinically identifiable subtype of schizophrenia. Br. J. Psychiatry 206, 484–491 (2015). This paper is notable as it is the first report on the functional outcome of a large group (>100 subjects) of adults with 22q11.2 DS.

  190. Baker, K. & Vorstman, J. A. S. Is there a core neuropsychiatric phenotype in 22q11.2 deletion syndrome? Curr. Opin. Neurol. 25, 131–137 (2012).

    Article  CAS  PubMed  Google Scholar 

  191. Chan, C., Costain, G., Chow, E. W. C. & Bassett, A. S. Reproductive health issues for adults with a common genomic disorder. J. Genet. Couns. 24, 810–821 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Balci, A. et al. Prospective validation and assessment of cardiovascular and offspring risk models for pregnant women with congenital heart disease. Heart 100, 1373–1381 (2014).

    Article  PubMed  Google Scholar 

  193. Grewal, J., Silversides, C. K. & Colman, J. M. Pregnancy in women with heart disease: risk assessment and management of heart failure. Heart Fail. Clin. 10, 117–129 (2014).

    Article  PubMed  Google Scholar 

  194. Sorensen, K. M. et al. Detecting 22q11.2 deletions by use of multiplex ligation-dependent probe amplification on DNA from neonatal dried blood spot samples. J. Mol. Diagn. 12, 147–151 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Vorstman, J. A. et al. MLPA: a rapid, reliable, and sensitive method for detection and analysis of abnormalities of 22q. Hum. Mut. 27, 814–821 (2006).

    Article  CAS  PubMed  Google Scholar 

  196. Sandrin-Garcia, P. et al. Recurrent 22q11.2 deletion in a sibship suggestive of parental germline mosaicism in velocardiofacial syndrome. Clin. Genet. 61, 380–383 (2002).

    Article  CAS  PubMed  Google Scholar 

  197. Gross, S. J. et al. Clinical experience with single-nucleotide polymorphism-based noninvasive prenatal screening for 22q11.2 deletion syndrome. Ultrasound Obstet. Gynecol. http://dx.doi.org/10.1002/uog.15754 (2015).

  198. Bretelle, F. et al. Prenatal and postnatal diagnosis of 22q11.2 deletion syndrome. Eur. J. Med. Genet. 53, 367–370 (2010).

    Article  PubMed  Google Scholar 

  199. Carotti, A. et al. Cardiac defects and results of cardiac surgery in 22q11.2 deletion syndrome. Dev. Disabil. Res. Rev. 14, 35–42 (2008).

    Article  PubMed  Google Scholar 

  200. Michielon, G. et al. Impact of DEL22q11, trisomy 21, and other genetic syndromes on surgical outcome of conotruncal heart defects. J. Thorac. Cardiovasc. Surg. 138, 565–570.e2 (2009).

    Article  CAS  PubMed  Google Scholar 

  201. Mercer-Rosa, L., Pinto, N., Yang, W., Tanel, R. & Goldmuntz, E. 22q11.2 deletion syndrome is associated with perioperative outcome in tetralogy of Fallot. J. Thorac. Cardiovasc. Surg. 146, 868–873 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. O'Byrne, M. L. et al. 22q11.2 deletion syndrome is associated with increased perioperative events and more complicated postoperative course in infants undergoing infant operative correction of truncus arteriosus communis or interrupted aortic arch. J. Thorac. Cardiovasc. Surg. 148, 1597–1605 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Warnes, C. A. et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. College Cardiol. 52, e143–e263 (2008).

    Article  Google Scholar 

  204. Lin, A. E. et al. Adults with genetic syndromes and cardiovascular abnormalities: clinical history and management. Genet. Med. 10, 469–494 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Butcher, N. et al. Functional outcomes of adults with 22q11.2 deletion syndrome. Genet. Med. 14, 836–843 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Hofstetter, A. M. et al. Live vaccine use and safety in DiGeorge syndrome. Pediatrics 133, e946–e954 (2014).

    Article  PubMed  Google Scholar 

  207. Moylett, E. H., Wasan, A. N., Noroski, L. M. & Shearer, W. T. Live viral vaccines in patients with partial DiGeorge syndrome: clinical experience and cellular immunity. Clin. Immunol. 112, 106–112 (2004). This paper and reference 135 were the first to define the safety of live viral vaccines in this syndrome.

    Article  CAS  PubMed  Google Scholar 

  208. Bjork, A. H., Oskarsdottir, S., Andersson, B. A. & Friman, V. Antibody deficiency in adults with 22q11.2 deletion syndrome. Am. J. Med. Genet. A 158A, 1934–1940 (2012).

    Article  CAS  PubMed  Google Scholar 

  209. Gennery, A. R. et al. Antibody deficiency and autoimmunity in 22q11.2 deletion syndrome. Arch. Dis. Child. 86, 422–425 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Maggadottir, S. M. & Sullivan, K. E. The diverse clinical features of chromosome 22q11.2 deletion syndrome (DiGeorge syndrome). J. Allergy Clin. Immunol. Pract. 1, 589–594 (2013).

    Article  PubMed  Google Scholar 

  211. Basta, M. N. et al. A 35-year experience with syndromic cleft palate repair: operative outcomes and long-term speech function. Ann. Plast. Surg. 73, S130–S135 (2014).

    Article  CAS  PubMed  Google Scholar 

  212. Kennedy, W. P. et al. 22q11.2 deletion syndrome and obstructive sleep apnea. Int. J. Pediatr. Otorhinolaryngol. 78, 1360–1364 (2014).

    Article  PubMed  Google Scholar 

  213. Sobin, C., Monk, S. H., Kiley-Brabeck, K., Khuri, J. & Karayiorgou, M. Neuromotor deficits in children with the 22q11 deletion syndrome. Mov. Disord. 21, 2082–2089 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Van Aken, K., Caeyenberghs, K., Smits-Engelsman, B. & Swillen, A. The motor profile of primary school-age children with a 22q11.2 deletion syndrome (22q11.2DS) and an age- and IQ-matched control group. Child Neuropsychol. 15, 532–542 (2009).

    Article  PubMed  Google Scholar 

  215. Vorstman, J. A. S. et al. The 22q11.2 deletion in children: high rate of autistic disorders and early onset of psychotic symptoms. J. Am. Acad. Child Adolesc. Psychiatry 45, 1104–1113 (2006).

    Article  PubMed  Google Scholar 

  216. Dori, N., Green, T., Weizman, A. & Gothelf, D. The effectiveness and safety of antipsychotic and antidepressant medications in individuals with 22q11.2 deletion syndrome. J. Child Adolesc. Psychopharmacol. http://dx.doi.org/10.1089/cap.2014.0075 (2015).

  217. Gothelf, D. et al. Obsessive–compulsive disorder in patients with velocardiofacial (22q11 deletion) syndrome. Am. J. Med. Genet. B Neuropsychiatr. Genet. 126B, 99–105 (2004).

    Article  PubMed  Google Scholar 

  218. Gothelf, D. et al. Methylphenidate treatment for attention-deficit/hyperactivity disorder in children and adolescents with velocardiofacial syndrome: an open-label study. J. Clin. Psychiatry 64, 1163–1169 (2003).

    Article  CAS  PubMed  Google Scholar 

  219. Karas, D. J., Costain, G., Chow, E. W. & Bassett, A. S. Perceived burden and neuropsychiatric morbidities in adults with 22q11.2 deletion syndrome. J. Intellect. Disabil. Res. 58, 198–210 (2014).

    Article  CAS  PubMed  Google Scholar 

  220. Mercer-Rosa, L. et al. 22q11.2 deletion status and disease burden in children and adolescents with tetralogy of Fallot. Circ. Cardiovasc. Genet. 8, 74–81 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Briegel, W., Schneider, M. & Schwab, K. O. 22q11.2 deletion: handicap-related problems and coping strategies of primary caregivers. Z. Kinder Jugendpsychiatr. Psychother. 37, 535–540 (in German) (2009).

    Article  PubMed  Google Scholar 

  222. Looman, W. S., Thurmes, A. K. & O'Conner-Von, S. K. Quality of life among children with velocardiofacial syndrome. Cleft Palate Craniofac. J. 47, 273–283 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Mahle, W. T. et al. Deletion of chromosome 22q11.2 and outcome in patients with pulmonary atresia and ventricular septal defect. Ann. Thorac. Surg. 76, 567–571 (2003).

    Article  PubMed  Google Scholar 

  224. Woodin, M. et al. Neuropsychological profile of children and adolescents with the 22q11.2 microdeletion. Genet. Med. 3, 34–39 (2001).

    Article  CAS  PubMed  Google Scholar 

  225. Jacobson, C. et al. Core neuropsychological characteristics of children and adolescents with 22q11.2 deletion. J. Intellectual Disabil. Res. 54, 701–713 (2010).

    Article  CAS  Google Scholar 

  226. Driscoll, D. A. Molecular and genetic aspects of DiGeorge/velocardiofacial syndrome. Methods Mol. Med. 126, 43–55 (2006).

    CAS  PubMed  Google Scholar 

  227. Mlynarski, E. E. et al. Copy-number variation of the glucose transporter gene SLC2A3 and congenital heart defects in the 22q11.2 deletion syndrome. Am. J. Hum. Genet. 96, 753–764 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Chung, J. H. et al. Whole-genome sequencing and integrative genomic analysis approach on two 22q11.2 deletion syndrome family trios for genotype to phenotype correlations. Hum. Mut. 36, 797–807 (2015).

    Article  CAS  PubMed  Google Scholar 

  229. Guo, T. et al. Genotype and cardiovascular phenotype correlations with TBXn 1,022 velo-cardio-facial/DiGeorge/22q11.2 deletion syndrome patients. Hum. Mut. 32, 1278–1289 (2011).

    Article  CAS  PubMed  Google Scholar 

  230. Budarf, M. L. et al. Identification of a patient with Bernard–Soulier syndrome and a deletion in the DiGeorge/velo-cardio-facial chromosomal region in 22q11.2. Hum. Mol. Genet. 4, 763–766 (1995). This paper and reference 68 highlight the possibility of unmasking an autosomal recessive condition to explain atypical phenotypes and to identify important genes associated with 22q11.2DS beyond TBX1.

    Article  CAS  PubMed  Google Scholar 

  231. Insel, T. R. Rethinking schizophrenia. Nature 468, 187–193 (2010).

    Article  CAS  PubMed  Google Scholar 

  232. Wapner, R. J. et al. Expanding the scope of noninvasive prenatal testing: detection of fetal microdeletion syndromes. Am. J. Obstet. Gynecol. 212, 332.e1–332.e9 (2015).

    Article  Google Scholar 

  233. Vialard, F. et al. Prenatal BACs-on-BeadsTM: the prospective experience of five prenatal diagnosis laboratories. Prenat. Diagn. 32, 329–335 (2012).

    Article  CAS  PubMed  Google Scholar 

  234. Koontz, D., Baecher, K., Kobrynski, L., Nikolova, S. & Gallagher, M. A pyrosequencing-based assay for the rapid detection of the 22q11.2 deletion in DNA from buccal and dried blood spot samples. J. Mol. Diagn. 16, 533–540 (2014).

    Article  CAS  PubMed  Google Scholar 

  235. Pretto, D., Maar, D., Yrigollen, C. M., Regan, J. & Tassone, F. Screening newborn blood spots for 22q11.2 deletion syndrome using multiplex droplet digital PCR. Clin. Chem. 61, 182–190 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge grants from the National Institute of Mental Health (consortium grants U01MH101723, U01MH101720 and U01MH101719-01 to D.M.M.-M., N.P., A.S., J.A.S.V., B.S.E., J.R.V., B.E.M. and A.S.B., and grant U01MH087636 to D.M.M.-M.); NIH grant P01-HD070454 to D.M.M.-M., B.S.E. and B.E.M.; the Immune Deficiency Foundation, Baxalta and Janssen (to K.S.); Brain and Behavior Research Foundation (formerly NARSAD) 2010 Young Investigator Award (to J.A.S.V.); and the Canadian Institutes of Health Research (CIHR; MOP 97800 and MOP 111238), the Canada Research Chair in Schizophrenia Genetics and Genomic Disorders, and the Dalglish Chair in 22q11.2 Deletion Syndrome (to A.S.B.). The authors thank L. DiCairano, L. Lunny, A. Melchiorre, K. Schlechtweg, M. Torsan and G. Wong for assistance with manuscript formatting.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (D.M.M.-M., K.E.S. and A.S.B.); Epidemiology (D.M.M.-M., K.E.S., B.M. and A.S.B.); Mechanisms/pathophysiology (D.M.M.-M., K.E.S., B.M., J.A.S.V., J.R.V., B.E.M., P.J.S. and A.S.B.); Diagnosis, screening and prevention (D.M.M.-M., K.E.S., B.M., N.P., A.S., J.A.S.V., E.H.Z., B.S.E. and A.S.B.); Management (D.M.M.-M., K.E.S., B.M., N.P., A.S., J.A.S.V., E.H.Z. and A.S.B.); Quality of life (D.M.M.-M., K.E.S., B.M., A.S., J.A.S.V. and A.S.B.); Outlook (D.M.M.-M., K.E.S., B.E.M, P.J.S., J.R.V. and A.S.B.); Overview of the Primer (D.M.M.-M.).

Corresponding author

Correspondence to Donna M. McDonald-McGinn.

Ethics declarations

Competing interests

D.M.M.-M. has presented lectures on 22q11.2 deletion syndrome for Natera. All other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McDonald-McGinn, D., Sullivan, K., Marino, B. et al. 22q11.2 deletion syndrome. Nat Rev Dis Primers 1, 15071 (2015). https://doi.org/10.1038/nrdp.2015.71

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2015.71

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing