Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Severe combined immunodeficiencies and related disorders

Abstract

Severe combined immunodeficiencies (SCIDs) comprise a group of rare, monogenic diseases that are characterized by an early onset and a profound block in the development of T lymphocytes. Given that adaptive immunity is abrogated, patients with SCID are prone to recurrent infections caused by both non-opportunistic and opportunistic pathogens, leading to early death unless immunity can be restored. Several molecular defects causing SCIDs have been identified, along with many other defects causing profound, albeit incomplete, T cell immunodeficiencies; the latter are referred to as atypical SCIDs or combined immunodeficiencies. The pathophysiology of many of these conditions has now been characterized. Early, accurate and precise diagnosis combined with the ongoing implementation of newborn screening have enabled major advances in the care of infants with SCID, including better outcomes of allogeneic haematopoietic stem cell transplantation. Gene therapy is also becoming an effective option. Further advances and a progressive extension of the indications for gene therapy can be expected in the future. The assessment of long-term outcomes of patients with SCID is now a major challenge, with a view to evaluating the quality and sustainability of immune restoration, the risks of sequelae and the ability to relieve the non-haematopoietic syndromic manifestations that accompany some of these conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lymphocyte differentiation and primary immunodeficiencies.
Figure 2: Proportions of SCID genotypes diagnosed with or without newborn screening.
Figure 3: A schematic view of blocks in lymphocyte differentiation causing SCIDs.
Figure 4: V(D)J rearrangements.
Figure 5: Defects of T cell signalling associated with primary immunodeficiency.
Figure 6: Overview of gene therapy for SCIDs.

Similar content being viewed by others

References

  1. Buckley, R. H. Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Annu. Rev. Immunol. 22, 625–655 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Fischer, A. et al. Severe combined immunodeficiency. A model disease for molecular immunology and therapy. Immunol. Rev. 203, 98–109 (2005). Thorough descriptions of SCID conditions.

    Article  CAS  PubMed  Google Scholar 

  3. Conley, M. E., Beckwith, J. B., Mancer, J. F. & Tenckhoff, L. The spectrum of the DiGeorge syndrome. J. Pediatr. 94, 883–890 (1979).

    Article  CAS  PubMed  Google Scholar 

  4. Glanzmann, E. & Riniker, P. [Essential lymphocytophthisis; new clinical aspect of infant pathology]. Ann. Paediatr. 175, 1–32 (1950).

    CAS  PubMed  Google Scholar 

  5. Kwan, A. et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA 312, 729–738 (2014). A description of the effectiveness of newborn screening for SCID.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gatti, R. A., Meuwissen, H. J., Allen, H. D., Hong, R. & Good, R. A. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 2, 1366–1369 (1968). The first report of successful HSCT for a child with SCID.

    Article  CAS  PubMed  Google Scholar 

  7. Cavazzana-Calvo, M. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669–672 (2000). The first report of successful gene therapy for patients with SCID.

    Article  CAS  PubMed  Google Scholar 

  8. Buckley, R. H. et al. Human severe combined immunodeficiency: genetic, phenotypic, and functional diversity in one hundred eight infants. J. Pediatr. 130, 378–387 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Stephan, J. L. et al. Severe combined immunodeficiency: a retrospective single-center study of clinical presentation and outcome in 117 patients. J. Pediatr. 123, 564–572 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Marciano, B. E. et al. BCG vaccination in patients with severe combined immunodeficiency: complications, risks, and vaccination policies. J. Allergy Clin. Immunol. 133, 1134–1141 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shearer, W. T. Recommendations for live viral and bacterial vaccines in immunodeficiency patients and their close contacts. J. Allergy Clin. Immunol. 133, 961–966 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Buckley, R. H. et al. Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N. Engl. J. Med. 340, 508–516 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Brown, L. et al. Neonatal diagnosis of severe combined immunodeficiency leads to significantly improved survival outcome: the case for newborn screening. Blood 117, 3243–3246 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Chan, A., Scalchunes, C., Boyle, M. & Puck, J. M. Early versus delayed diagnosis of severe combined immunodeficiency: a family perspective survey. Clin. Immunol. 138, 3–8 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Kwan, A. & Puck, J. M. History and current status of newborn screening for severe combined immunodeficiency. Semin. Perinatol. 39, 194–205 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kwan, A. et al. Successful newborn screening for SCID in the Navajo nation. Clin. Immunol. 158, 29–34 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Antoine, C. et al. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968–1999. Lancet 361, 553–560 (2003).

    Article  PubMed  Google Scholar 

  18. Muller, S. M. et al. Transplacentally acquired maternal T lymphocytes in severe combined immunodeficiency: a study of 121 patients. Blood 98, 1847–1851 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. De Vall, O. & Seyneheve, V. Reticular dysgenesis. Lancet 2, 1123–1125 (1959).

    Article  Google Scholar 

  20. Pannicke, U. et al. Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2. Nat. Genet. 41, 101–105 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Lagresle-Peyrou, C. et al. Human adenylate kinase 2 deficiency causes a profound hematopoietic defect associated with sensorineural deafness. Nat. Genet. 41, 106–111 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Nyhan, W. L. Disorders of purine and pyrimidine metabolism. Mol. Genet. Metab. 86, 25–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Gaspar, H. B. et al. How I treat ADA deficiency. Blood 114, 3524–3532 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Papinazath, T. et al. Effects of purine nucleoside phosphorylase deficiency on thymocyte development. J. Allergy Clin. Immunol. 128, 854–863.e1 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Kovanen, P. E. & Leonard, W. J. Cytokines and immunodeficiency diseases: critical roles of the γc-dependent cytokines interleukins 2, 4, 7, 9, 15, and 21, and their signaling pathways. Immunol. Rev. 202, 67–83 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Macchi, P. et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377, 65–68 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Puel, A., Ziegler, S. F., Buckley, R. H. & Leonard, W. J. Defective IL7R expression in T,B+NK+ severe combined immunodeficiency. Nat. Genet. 20, 394–397 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Tangye, S. G. Advances in IL-21 biology — enhancing our understanding of human disease. Curr. Opin. Immunol. 34, 107–115 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Haddad, E. et al. Long-term chimerism and B-cell function after bone marrow transplantation in patients with severe combined immunodeficiency with B cells: a single-center study of 22 patients. Blood 94, 2923–2930 (1999).

    CAS  PubMed  Google Scholar 

  30. Buckley, R. H. et al. Post-transplantation B cell function in different molecular types of SCID. J. Clin. Immunol. 33, 96–110 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Notarangelo, L. D. Combined immunodeficiencies with nonfunctional T lymphocytes. Adv. Immunol. 121, 121–190 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Schuetz, C. et al. SCID patients with ARTEMIS versus RAG deficiencies following HCT: increased risk of late toxicity in ARTEMIS-deficient SCID. Blood 123, 281–289 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dadi, H. K., Simon, A. J. & Roifman, C. M. Effect of CD3δ deficiency on maturation of α/β and γ/γ T-cell lineages in severe combined immunodeficiency. N. Engl. J. Med. 349, 1821–1828 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Soudais, C., de Villartay, J. P., Le Deist, F., Fischer, A. & Lisowska-Grospierre, B. Independent mutations of the human CD3-ϵ gene resulting in a T cell receptor/CD3 complex immunodeficiency. Nat. Genet. 3, 77–81 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Rieux-Laucat, F. et al. Inherited and somatic CD3ζ mutations in a patient with T-cell deficiency. N. Engl. J. Med. 354, 1913–1921 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Kung, C. et al. Mutations in the tyrosine phosphatase CD45 gene in a child with severe combined immunodeficiency disease. Nat. Med. 6, 343–345 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Villa, A. et al. Partial V(D)J recombination activity leads to Omenn syndrome. Cell 93, 885–896 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Marrella, V., Maina, V. & Villa, A. Omenn syndrome does not live by V(D)J recombination alone. Curr. Opin. Allergy Clin. Immunol. 11, 525–531 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Schuetz, C. et al. An immunodeficiency disease with RAG mutations and granulomas. N. Engl. J. Med. 358, 2030–2038 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Buchbinder, D. et al. Identification of patients with RAG mutations previously diagnosed with common variable immunodeficiency disorders. J. Clin. Immunol. 35, 119–124 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Lee, Y. N. et al. A systematic analysis of recombination activity and genotype–phenotype correlation in human recombination-activating gene 1 deficiency. J. Allergy Clin. Immunol. 133, 1099–1108 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. IJspeert, H. et al. Similar recombination-activating gene (RAG) mutations result in similar immunobiological effects but in different clinical phenotypes. J. Allergy Clin. Immunol. 133, 1124–1133 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cavadini, P. et al. AIRE deficiency in thymus of 2 patients with Omenn syndrome. J. Clin. Invest. 115, 728–732 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. De Ravin, S. S. et al. Hypomorphic Rag mutations can cause destructive midline granulomatous disease. Blood 116, 1263–1271 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Anderson, M. S. et al. Projection of an immunological self shadow within the thymus by the AIRE protein. Science 298, 1395–1401 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. de Villartay, J. P. et al. A novel immunodeficiency associated with hypomorphic RAG1 mutations and CMV infection. J. Clin. Invest. 115, 3291–3299 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ehl, S. et al. A variant of SCID with specific immune responses and predominance of γδ T cells. J. Clin. Invest. 115, 3140–3148 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Notarangelo, L. D., Roifman, C. M. & Giliani, S. Cartilage-hair hypoplasia: molecular basis and heterogeneity of the immunological phenotype. Curr. Opin. Allergy Clin. Immunol. 8, 534–539 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Hirschhorn, R. et al. Spontaneous in vivo reversion to normal of an inherited mutation in a patient with adenosine deaminase deficiency. Nat. Genet. 13, 290–295 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Stephan, V. et al. Atypical X-linked severe combined immunodeficiency due to possible spontaneous reversion of the genetic defect in T cells. N. Engl. J. Med. 335, 1563–1567 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. van der Burg, M. et al. A DNA-PKcs mutation in a radiosensitive TB SCID patient inhibits Artemis activation and nonhomologous end-joining. J. Clin. Invest. 119, 91–98 (2009).

    CAS  PubMed  Google Scholar 

  52. van der Burg, M. et al. A new type of radiosensitive TBNK+ severe combined immunodeficiency caused by a LIG4 mutation. J. Clin. Invest. 116, 137–145 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Bousso, P. et al. Diversity, functionality, and stability of the T cell repertoire derived in vivo from a single human T cell precursor. Proc. Natl Acad. Sci. USA 97, 274–278 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wada, T. et al. Oligoclonal expansion of T lymphocytes with multiple second-site mutations leads to Omenn syndrome in a patient with RAG1-deficient severe combined immunodeficiency. Blood 106, 2099–2101 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Shiow, L. R. et al. The actin regulator coronin 1A is mutant in a thymic egress-deficient mouse strain and in a patient with severe combined immunodeficiency. Nat. Immunol. 9, 1307–1315 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Moshous, D. et al. Whole-exome sequencing identifies coronin-1A deficiency in 3 siblings with immunodeficiency and EBV-associated B-cell lymphoproliferation. J. Allergy Clin. Immunol. 131, 1594–1603 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Mace, E. M. & Orange, J. S. Lytic immune synapse function requires filamentous actin deconstruction by coronin 1A. Proc. Natl Acad. Sci. USA 111, 6708–6713 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stray-Pedersen, A. et al. Compound heterozygous CORO1A mutations in siblings with a mucocutaneous-immunodeficiency syndrome of epidermodysplasia verruciformis-HPV, molluscum contagiosum and granulomatous tuberculoid leprosy. J. Clin. Immunol. 34, 871–890 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Arnaiz-Villena, A. et al. Brief report: primary immunodeficiency caused by mutations in the gene encoding the CD3-γ subunit of the T-lymphocyte receptor. N. Engl. J. Med. 327, 529–533 (1992).

    Article  CAS  PubMed  Google Scholar 

  60. Tokgoz, H. et al. Variable presentation of primary immune deficiency: two cases with CD3γ deficiency presenting with only autoimmunity. Pediatr. Allergy Immunol. 24, 257–262 (2013).

    Article  PubMed  Google Scholar 

  61. Hauck, F. et al. Primary T-cell immunodeficiency with immunodysregulation caused by autosomal recessive LCK deficiency. J. Allergy Clin. Immunol. 130, 1144–1152.e11 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Arpaia, E., Shahar, M., Dadi, H., Cohen, A. & Roifman, C. M. Defective T cell receptor signaling and CD8+ thymic selection in humans lacking Zap-70 kinase. Cell 76, 947–958 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Elder, M. E. et al. Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase. Science 264, 1596–1599 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Turul, T. et al. Clinical heterogeneity can hamper the diagnosis of patients with ZAP70 deficiency. Eur. J. Pediatr. 168, 87–93 (2009).

    Article  PubMed  Google Scholar 

  65. Siggs, O. M. et al. Opposing functions of the T cell receptor kinase ZAP-70 in immunity and tolerance differentially titrate in response to nucleotide substitutions. Immunity 27, 912–926 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ueda, Y. et al. Mst1 regulates integrin-dependent thymocyte trafficking and antigen recognition in the thymus. Nat. Commun. 3, 1098 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Mou, F. et al. The Mst1 and Mst2 kinases control activation of rho family GTPases and thymic egress of mature thymocytes. J. Exp. Med. 209, 741–759 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Abdollahpour, H. et al. The phenotype of human STK4 deficiency. Blood 119, 3450–3457 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nehme, N. T. et al. MST1 mutations in autosomal recessive primary immunodeficiency characterized by defective naive T-cell survival. Blood 119, 3458–3468 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Chae, H. D., Siefring, J. E., Hildeman, D. A., Gu, Y. & Williams, D. A. RhoH regulates subcellular localization of ZAP-70 and Lck in T cell receptor signaling. PLoS ONE 5, e13970 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Crequer, A. et al. Human RHOH deficiency causes T cell defects and susceptibility to EV-HPV infections. J. Clin. Invest. 122, 3239–3247 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Huck, K. et al. Girls homozygous for an IL-2-inducible T cell kinase mutation that leads to protein deficiency develop fatal EBV-associated lymphoproliferation. J. Clin. Invest. 119, 1350–1358 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ghosh, S., Bienemann, K., Boztug, K. & Borkhardt, A. Interleukin-2-inducible T-cell kinase (ITK) deficiency — clinical and molecular aspects. J. Clin. Immunol. 34, 892–899 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang, Q. et al. Combined immunodeficiency associated with DOCK8 mutations. N. Engl. J. Med. 361, 2046–2055 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Engelhardt, K. R. et al. The extended clinical phenotype of 64 patients with dedicator of cytokinesis 8 deficiency. J. Allergy Clin. Immunol. 136, 402–412 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dobbs, K. et al. Inherited DOCK2 deficiency in patients with early-onset invasive infections. N. Engl. J. Med. 372, 2409–2422 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Feske, S. et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179–185 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Picard, C. et al. STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N. Engl. J. Med. 360, 1971–1980 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li, F. Y. et al. Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature 475, 471–476 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Stepensky, P. et al. Deficiency of caspase recruitment domain family, member 11 (CARD11), causes profound combined immunodeficiency in human subjects. J. Allergy Clin. Immunol. 131, 477–485.e1 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Jabara, H. H. et al. A homozygous mucosa-associated lymphoid tissue 1 (MALT1) mutation in a family with combined immunodeficiency. J. Allergy Clin. Immunol. 132, 151–158 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Torres, J. M. et al. Inherited BCL10 deficiency impairs hematopoietic and nonhematopoietic immunity. J. Clin. Invest. 124, 5239–5248 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Pannicke, U. et al. Deficiency of innate and acquired immunity caused by an IKBKB mutation. N. Engl. J. Med. 369, 2504–2514 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Mousallem, T. et al. A nonsense mutation in IKBKB causes combined immunodeficiency. Blood 124, 2046–2050 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Doffinger, R. et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-κB signaling. Nat. Genet. 27, 277–285 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Dupuis-Girod, S. et al. Osteopetrosis, lymphedema, anhidrotic ectodermal dysplasia, and immunodeficiency in a boy and incontinentia pigmenti in his mother. Pediatrics 109, e97 (2002).

    Article  PubMed  Google Scholar 

  87. Courtois, G. et al. A hypermorphic IκBα mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J. Clin. Invest. 112, 1108–1115 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Martin, E. et al. CTP synthase 1 deficiency in humans reveals its central role in lymphocyte proliferation. Nature 510, 288–292 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. van Montfrans, J. M. et al. CD27 deficiency is associated with combined immunodeficiency and persistent symptomatic EBV viremia. J. Allergy Clin. Immunol. 129, 787–793.e6 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Digweed, M. & Sperling, K. Nijmegen breakage syndrome: clinical manifestation of defective response to DNA double-strand breaks. DNA Repair (Amst.) 3, 1207–1217 (2004).

    Article  CAS  Google Scholar 

  91. Hanna, S. & Etzioni, A. MHC class I and II deficiencies. J. Allergy Clin. Immunol. 134, 269–275 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Holohan, B., Wright, W. E. & Shay, J. W. Cell biology of disease: telomeropathies: an emerging spectrum disorder. J. Cell Biol. 205, 289–299 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Touzot, F. et al. Heterogeneous telomere defects in patients with severe forms of dyskeratosis congenita. J. Allergy Clin. Immunol. 129, 473–482.e3 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Le Guen, T. et al. Human RTEL1 deficiency causes Hoyeraal–Hreidarsson syndrome with short telomeres and genome instability. Hum. Mol. Genet. 22, 3239–3249 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Townsley, D. M., Dumitriu, B. & Young, N. S. Bone marrow failure and the telomeropathies. Blood 124, 2775–2783 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hitzig, W. H. & Willi, H. [Hereditary lymphoplasmocytic dysgenesis (“alymphocytosis with agammaglobulinemia”)]. Schweiz. Med. Wochenschr. 91, 1625–1633 (in German) (1961).

    CAS  PubMed  Google Scholar 

  97. Bruton, O. C. Agammaglobulinemia. Pediatrics 9, 722–728 (1952).

    CAS  PubMed  Google Scholar 

  98. Al-Herz, W. et al. Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front. Immunol. 5, 162 (2014).

    PubMed  PubMed Central  Google Scholar 

  99. Dvorak, C. C. et al. The natural history of children with severe combined immunodeficiency: baseline features of the first fifty patients of the primary immune deficiency treatment consortium prospective study 6901. J. Clin. Immunol. 33, 1156–1164 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shearer, W. T. et al. Lymphocyte subsets in healthy children from birth through 18 years of age: the Pediatric AIDS Clinical Trials Group P1009 study. J. Allergy Clin. Immunol. 112, 973–980 (2003).

    Article  PubMed  Google Scholar 

  101. Shearer, W. T. et al. Establishing diagnostic criteria for severe combined immunodeficiency disease (SCID), leaky SCID, and Omenn syndrome: the Primary Immune Deficiency Treatment Consortium experience. J. Allergy Clin. Immunol. 133, 1092–1098 (2014).

    Article  PubMed  Google Scholar 

  102. Rivers, L. & Gaspar, H. B. Severe combined immunodeficiency: recent developments and guidance on clinical management. Arch. Dis. Child 100, 667–672 (2015).

    Article  PubMed  Google Scholar 

  103. Wilson, J. M. & Jungner, Y. G. [Principles and practice of mass screening for disease]. Bol. Oficina Sanit. Panam. 65, 281–393 (in Spanish) (1968).

    CAS  PubMed  Google Scholar 

  104. Puck, J. M. Laboratory technology for population-based screening for severe combined immunodeficiency in neonates: the winner is T-cell receptor excision circles. J. Allergy Clin. Immunol. 129, 607–616 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Chan, K. & Puck, J. M. Development of population-based newborn screening for severe combined immunodeficiency. J. Allergy Clin. Immunol. 115, 391–398 (2005).

    Article  PubMed  Google Scholar 

  106. Morinishi, Y. et al. Identification of severe combined immunodeficiency by T-cell receptor excision circles quantification using neonatal guthrie cards. J. Pediatr. 155, 829–833 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Pai, S. Y. et al. Transplantation outcomes for severe combined immunodeficiency, 2000–2009. N. Engl. J. Med. 371, 434–446 (2014). An assessment of a 10-year experience of HSCT for SCIDs in the United States.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gerstel-Thompson, J. L. et al. High-throughput multiplexed T-cell-receptor excision circle quantitative PCR assay with internal controls for detection of severe combined immunodeficiency in population-based newborn screening. Clin. Chem. 56, 1466–1474 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Verbsky, J. W. et al. Newborn screening for severe combined immunodeficiency; the Wisconsin experience (2008–2011). J. Clin. Immunol. 32, 82–88 (2012).

    Article  PubMed  Google Scholar 

  110. Kwan, A. et al. Newborn screening for severe combined immunodeficiency and T-cell lymphopenia in California: results of the first 2 years. J. Allergy Clin. Immunol. 132, 140–150 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Vogel, B. H. et al. Newborn screening for SCID in New York State: experience from the first two years. J. Clin. Immunol. 34, 289–303 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Douek, D. C. et al. Changes in thymic function with age and during the treatment of HIV infection. Nature 396, 690–695 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Clinical and Laboratory Standards Institute. Newborn Blood Spot Screening For Severe Combined Immunodeficiency by Measurement of T-Cell Receptor Excision Circles: Approved Guidelines (Clinical and Laboratory Standards Institute, 2013).

  114. Gennery, A. R. et al. Transplantation of hematopoietic stem cells and long-term survival for primary immunodeficiencies in Europe: entering a new century, do we do better? J. Allergy Clin. Immunol. 126, 602–610.e11 (2010). An assessment of HSCT for patients with SCID in Europe.

    Article  PubMed  Google Scholar 

  115. Myers, L. A., Patel, D. D., Puck, J. M. & Buckley, R. H. Hematopoietic stem cell transplantation for severe combined immunodeficiency in the neonatal period leads to superior thymic output and improved survival. Blood 99, 872–878 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Fernandes, J. F. et al. Transplantation in patients with SCID: mismatched related stem cells or unrelated cord blood? Blood 119, 2949–2955 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Sarzotti-Kelsoe, M. et al. Thymic output, T-cell diversity, and T-cell function in long-term human SCID chimeras. Blood 114, 1445–1453 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hassan, A. et al. Outcome of hematopoietic stem cell transplantation for adenosine deaminase-deficient severe combined immunodeficiency. Blood 120, 3615–3624 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Buckley, R. H. Transplantation of hematopoietic stem cells in human severe combined immunodeficiency: longterm outcomes. Immunol. Res. 49, 25–43 (2011). A long-term assessment of treated patients with SCID.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Airoldi, I. et al. γδ T-cell reconstitution after HLA-haploidentical hematopoietic transplantation depleted of TCR-αβ+/CD19+ lymphocytes. Blood 125, 2349–2358 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Touzot, F. et al. CD45RA depletion in HLA-mismatched allogeneic hematopoietic stem cell transplantation for primary combined immunodeficiency: a preliminary study. J. Allergy Clin. Immunol. 135, 1303–1309.e3 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Mann, R., Mulligan, R. C. & Baltimore, D. Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33, 153–159 (1983).

    Article  CAS  PubMed  Google Scholar 

  123. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  PubMed  Google Scholar 

  124. Aiuti, A. et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N. Engl. J. Med. 360, 447–458 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Hacein-Bey-Abina, S. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Gaspar, H. B. et al. Long-term persistence of a polyclonal T cell repertoire after gene therapy for X-linked severe combined immunodeficiency. Sci. Transl. Med. 3, 97ra79 (2011).

    PubMed  Google Scholar 

  127. Hacein-Bey-Abina, S. et al. Efficacy of gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 363, 355–364 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Howe, S. J. et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J. Clin. Invest. 118, 3143–3150 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hacein-Bey-Abina, S. et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Invest. 118, 3132–3142 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Candotti, F. et al. Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans. Blood 120, 3635–3646 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gaspar, H. B. et al. Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction. Sci. Transl. Med. 3, 97ra80 (2011).

    PubMed  Google Scholar 

  132. Hacein-Bey-Abina, S. et al. A modified γ-retrovirus vector for X-linked severe combined immunodeficiency. N. Engl. J. Med. 371, 1407–1417 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gaspar, H. B. et al. Immunological and metabolic correction after lentiviral vector mediated haematopoietic stem cell gene therapy for ADA deficiency. Mol. Ther. 22, S106 (2014).

    Google Scholar 

  134. Touzot, F. et al. Faster T-cell development following gene therapy compared to haplo-identical hematopoietic stem cell transplantation in the treatment of SCID-X1. Blood 125, 3563–3569 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Genovese, P. et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nature 510, 235–240 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mazzolari, E. et al. Long-term immune reconstitution and clinical outcome after stem cell transplantation for severe T-cell immunodeficiency. J. Allergy Clin. Immunol. 120, 892–899 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Neven, B. et al. Long-term outcome after hematopoietic stem cell transplantation of a single-center cohort of 90 patients with severe combined immunodeficiency. Blood 113, 4114–4124 (2009). A long-term assessment of treated patients with SCID.

    Article  CAS  PubMed  Google Scholar 

  138. Railey, M. D., Lokhnygina, Y. & Buckley, R. H. Long-term clinical outcome of patients with severe combined immunodeficiency who received related donor bone marrow transplants without pretransplant chemotherapy or post-transplant GVHD prophylaxis. J. Pediatr. 155, 834–840.e1 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Laffort, C. et al. Severe cutaneous papillomavirus disease after haemopoietic stem-cell transplantation in patients with severe combined immune deficiency caused by common γc cytokine receptor subunit or JAK-3 deficiency. Lancet 363, 2051–2054 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Gaspar, H. B., Harwood, C., Leigh, I. & Thrasher, A. J. Severe cutaneous papillomavirus disease after haematopoietic stem-cell transplantation in patients with severe combined immunodeficiency. Br. J. Haematol. 127, 232–233 (2004).

    Article  PubMed  Google Scholar 

  141. Lagresle-Peyrou, C. et al. Occurrence of myelodysplastic syndrome in 2 patients with reticular dysgenesis. J. Allergy Clin. Immunol. 128,230–232.e2 (2011).

    Article  PubMed  Google Scholar 

  142. Logan, A. C., Weissman, I. L. & Shizuru, J. A. The road to purified hematopoietic stem cell transplants is paved with antibodies. Curr. Opin. Immunol. 24, 640–648 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Rogers, M. H., Lwin, R., Fairbanks, L., Gerritsen, B. & Gaspar, H. B. Cognitive and behavioral abnormalities in adenosine deaminase deficient severe combined immunodeficiency. J. Pediatr. 139, 44–50 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Reimann, C. et al. Human T-lymphoid progenitors generated in a feeder-cell-free Delta-like-4 culture system promote T-cell reconstitution in NOD/SCID/γc−/− mice. Stem Cells 30, 1771–1780 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Riddell, J. et al. Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors. Cell 157, 549–564 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sturgeon, C. M., Ditadi, A., Awong, G., Kennedy, M. & Keller, G. Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells. Nat. Biotech. 32, 554–561 (2014).

    Article  CAS  Google Scholar 

  147. Markert, M. L. et al. Review of 54 patients with complete DiGeorge anomaly enrolled in protocols for thymus transplantation: outcome of 44 consecutive transplants. Blood 109, 4539–4547 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Mallott, J. et al. Newborn screening for SCID identifies patients with ataxia telangiectasia. J. Clin. Immunol. 33, 540–549 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Bigorgne, A. E. et al. TTC7A mutations disrupt intestinal epithelial apicobasal polarity. J. Clin. Invest. 124, 328–337 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Lu, W. et al. Dual proteolytic pathways govern glycolysis and immune competence. Cell 159, 1578–1590 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Stray-Pedersen, A. et al. PGM3 mutations cause a congenital disorder of glycosylation with severe immunodeficiency and skeletal dysplasia. Am. J. Hum. Genet. 95, 96–107 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lemoine, R. et al. Immune deficiency-related enteropathy-lymphocytopenia-alopecia syndrome results from tetratricopeptide repeat domain 7A deficiency. J. Allergy Clin. Immunol. 134, 1354–1364.e6 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. Mikkers, H., Pike-Overzet, K. & Staal, F. J. Induced pluripotent stem cells and severe combined immunodeficiency: merely disease modeling or potentially a novel cure? Pediatr. Res. 71, 427–432 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Schwarz, K. et al. RAG mutations in human B cell-negative SCID. Science 274, 97–99 (1996).

    Article  CAS  PubMed  Google Scholar 

  155. Moshous, D. et al. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein is mutated in human severe combined immune deficiency with increased radiosensitivity (RS-SCID). Cell 105, 177–186 (2001).

    Article  CAS  PubMed  Google Scholar 

  156. Buck, D. et al. Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell 124, 287–299 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. de Villartay, J. P., Fischer, A. & Durandy, A. The mechanisms of immune diversification and their disorders. Nat. Rev. Immunol. 3, 962–972 (2003).

    Article  CAS  PubMed  Google Scholar 

  158. Fischer, A., Hacein- Bey-Abina, S. & Cavazzana-Calvo, M. 20 years of gene therapy for SCID. Nat. Immunol. 11, 457–460 (2010).

    Article  CAS  PubMed  Google Scholar 

  159. de la Fuente, M. A. et al. Reduced thymic output, cell cycle abnormalities, and increased apoptosis of T lymphocytes in patients with cartilage-hair hypoplasia. J. Allergy Clin. Immunol. 128, 139–146 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Boerkoel, C. F. et al. Manifestations and treatment of Schimke immuno-osseous dysplasia: 14 new cases and a review of the literature. Eur. J. Pediatr. 159, 1–7 (2000).

    Article  CAS  PubMed  Google Scholar 

  161. Avitzur, Y. et al. Mutations in tetratricopeptide repeat domain 7A result in a severe form of very early onset inflammatory bowel disease. Gastroenterology 146, 1028–1039 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Woutsas, S. et al. Hypomorphic mutation in TTC7A causes combined immunodeficiency with mild structural intestinal defects. Blood 125, 1674–1676 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (A.F.); Epidemiology (J.M.P.); Mechanisms/pathophysiology (A.F. and L.D.N.); Diagnosis, screening and prevention (J.M.P.); Management (M.C.); Quality of life (B.N.); Outlook (A.F.); Overview of Primer (A.F.).

Corresponding author

Correspondence to Alain Fischer.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, A., Notarangelo, L., Neven, B. et al. Severe combined immunodeficiencies and related disorders. Nat Rev Dis Primers 1, 15061 (2015). https://doi.org/10.1038/nrdp.2015.61

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2015.61

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research