Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Huntington disease

Abstract

Huntington disease is devastating to patients and their families — with autosomal dominant inheritance, onset typically in the prime of adult life, progressive course, and a combination of motor, cognitive and behavioural features. The disease is caused by an expanded CAG trinucleotide repeat (of variable length) in HTT, the gene that encodes the protein huntingtin. In mutation carriers, huntingtin is produced with abnormally long polyglutamine sequences that confer toxic gains of function and predispose the protein to fragmentation, resulting in neuronal dysfunction and death. In this Primer, we review the epidemiology of Huntington disease, noting that prevalence is higher than previously thought, geographically variable and increasing. We describe the relationship between CAG repeat length and clinical phenotype, as well as the concept of genetic modifiers of the disease. We discuss normal huntingtin protein function, evidence for differential toxicity of mutant huntingtin variants, theories of huntingtin aggregation and the many different mechanisms of Huntington disease pathogenesis. We describe the genetic and clinical diagnosis of the condition, its clinical assessment and the multidisciplinary management of symptoms, given the absence of effective disease-modifying therapies. We review past and present clinical trials and therapeutic strategies under investigation, including impending trials of targeted huntingtin-lowering drugs and the progress in development of biomarkers that will support the next generation of trials. For an illustrated summary of this Primer, visit: http://go.nature.com/hPMENh

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Natural history of clinical Huntington disease.
Figure 2: Ethnic differences in the prevalence of Huntington disease correlate with average CAG repeat length in each population.
Figure 3: Huntingtin structure and transformations.
Figure 4: Pathogenetic cellular mechanisms in Huntington disease.
Figure 5: Atrophy in prodromal Huntington disease shown using 7T MRI.
Figure 6: The impact of various life events and disease milestones on different domains of quality of life in a hypothetical person with Huntington disease.
Figure 7: White matter atrophy across the spectrum of Huntington disease.
Figure 8: Current priority preclinical therapeutic targets under investigation for Huntington disease.

References

  1. 1

    Huntington, G. On chorea. Med. Surg. Rep. 26, 320–321 (1872).

    Google Scholar 

  2. 2

    Fisher, E. R. & Hayden, M. R. Multisource ascertainment of Huntington disease in Canada: prevalence and population at risk. Mov. Disord. 29, 105–114 (2014). This study is the most recent and comprehensive ascertainment of patients with Huntington disease across a large, defined service area. It shows the combined use of genetic test results and clinical records to estimate the minimum and maximum prevalence of Huntington disease in a predominantly Caucasian population.

    Article  PubMed  Google Scholar 

  3. 3

    Morrison, P. J., Harding-Lester, S. & Bradley, A. Uptake of Huntington disease predictive testing in a complete population. Clin. Genet. 80, 281–286 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. 4

    Evans, S. J. W. et al. Prevalence of adult Huntington's disease in the UK based on diagnoses recorded in general practice records. J. Neurol. Neurosurg. Psychiatry 84, 1156–1160 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    The Huntington's Disease Collaborative Research Group A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell 72, 971–983 (1993). This paper describes the identification and fundamental characteristics of the HTT genetic defect: a polymorphic CAG trinucleotide repeat in the coding sequence of huntingtin that is expanded beyond its normal size and that is unstable through intergenerational transmission.

    Article  Google Scholar 

  6. 6

    Ross, C. A. et al. Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat. Rev. Neurol. 10, 204–216 (2014). This review summarizes the current status of biomarker research in Huntington disease and places this process in the context of novel therapeutics in development and an improved understanding of the natural history of Huntington disease.

    Article  CAS  PubMed  Google Scholar 

  7. 7

    Kay, C., Fisher, E. R. & Hayden, M. R. in Huntington's Disease 4th edn Ch.7 (eds Bates, G. P., Tabrizi, S. J. & Jones, L. ) (Oxford Univ. Press, 2014).

    Google Scholar 

  8. 8

    Morrison, P. J. Prevalence estimates of Huntington disease in Caucasian populations are gross underestimates. Mov. Disord. 27, 1707–1709 (2012).

    Article  PubMed  Google Scholar 

  9. 9

    Almqvist, E. W., Elterman, D. S., MacLeod, P. M. & Hayden, M. R. High incidence rate and absent family histories in one quarter of patients newly diagnosed with Huntington disease in British Columbia. Clin. Genet. 60, 198–205 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. 10

    Ramos-Arroyo, M. A., Moreno, S. & Valiente, A. Incidence and mutation rates of Huntington's disease in Spain: experience of 9 years of direct genetic testing. J. Neurol. Neurosurg. Psychiatry 76, 337–342 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Koutsis, G., Karadima, G., Kladi, A. & Panas, M. Late-onset Huntington's disease: diagnostic and prognostic considerations. Parkinsonism Relat. Disord. 20, 726–730 (2014).

    Article  PubMed  Google Scholar 

  12. 12

    Pringsheim, T. et al. The incidence and prevalence of Huntington's disease: a systematic review and meta-analysis. Mov. Disord. 27, 1083–1091 (2012).

    Article  PubMed  Google Scholar 

  13. 13

    Hayden, M. R., MacGregor, J. M. & Beighton, P. H. The prevalence of Huntington's chorea in South Africa. South Afr. Med. J. 58, 193–196 (1980).

    CAS  Google Scholar 

  14. 14

    Wexler, N. S. et al. Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington's disease age of onset. Proc. Natl Acad. Sci. USA 101, 3498–3503 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Squitieri, F. et al. DNA haplotype analysis of Huntington disease reveals clues to the origins and mechanisms of CAG expansion and reasons for geographic variations of prevalence. Hum. Mol. Genet. 3, 2103–2114 (1994). This paper was the first to link specific haplotypes of the CAG expansion to high normal CAG repeat lengths in populations in which Huntington disease is more frequent, illuminating a genetic basis for variable prevalence of the disease.

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Warby, S. C. et al. CAG expansion in the Huntington disease gene is associated with a specific and targetable predisposing haplogroup. Am. J. Hum. Genet. 84, 351–366 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Costa, M. C. et al. The CAG repeat at the Huntington disease gene in the Portuguese population: insights into its dynamics and to the origin of the mutation. J. Hum. Genet. 51, 189–195 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. 18

    Semaka, A. et al. CAG size-specific risk estimates for intermediate allele repeat instability in Huntington disease. J. Med. Genet. 50, 696–703 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Semaka, A. et al. High frequency of intermediate alleles on Huntington disease-associated haplotypes in British Columbia's general population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 162, 864–871 (2013).

    Article  CAS  Google Scholar 

  20. 20

    Warby, S. C. et al. HTT haplotypes contribute to differences in Huntington disease prevalence between Europe and East Asia. Eur. J. Hum. Genet. 19, 561–566 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Baine, F. K. et al. Huntington disease in the South African population occurs on diverse and ethnically distinct genetic haplotypes. Eur. J. Hum. Genet. 21, 1120–1127 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Wheeler, V. C. et al. Factors associated with HD CAG repeat instability in Huntington disease. J. Med. Genet. 44, 695–701 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Gusella, J. F. & Macdonald, M. Genetic criteria for Huntington's disease pathogenesis. Brain Res. Bull. 72, 78–82 (2007). This review summarizes the evidence that the disease process can be modified by other genetic factors prior to actual disease onset, suggesting a strategy to identify potential targets for therapeutic intervention from mutation carriers.

    Article  CAS  PubMed  Google Scholar 

  24. 24

    Gusella, J. F., MacDonald, M. E. & Lee, J. M. Genetic modifiers of Huntington's disease. Mov. Disord. 29, 1359–1365 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Andrew, S. E. et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nat. Genet. 4, 398–403 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. 26

    Duyao, M. et al. Trinucleotide repeat length instability and age of onset in Huntington's disease. Nat. Genet. 4, 387–392 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Lee, J. M. et al. CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology 78, 690–695 (2012). This paper establishes that the HTT mutation leads to motor onset in a completely dominant manner such that the length of the expanded CAG repeat both represents the trigger of Huntington disease pathogenesis and determines its rate, with no contribution of the normal-length CAG repeat in ‘heterozygotes’ or of a second expanded allele in ‘homozygotes’.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Snell, R. G. et al. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nat. Genet. 4, 393–397 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. 29

    Rosenblatt, A. et al. Age, CAG repeat length, and clinical progression in Huntington disease. Mov. Disord. 27, 272–276 (2012).

    Article  PubMed  Google Scholar 

  30. 30

    Aylward, E. et al. Association between age and striatal volume stratified by CAG repeat length in prodromal Huntington disease. PLoS Curr. 3, RRN1235 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31

    Seong, I. S. et al. HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Hum. Mol. Genet. 14, 2871–2880 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Reis, S. A. et al. Striatal neurons expressing full-length mutant huntingtin exhibit decreased N-cadherin and altered neuritogenesis. Hum. Mol. Genet. 20, 2344–2355 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    HD iPSC Consortium. Induced pluripotent stem cells from patients with Huntington's disease show CAG-repeat-expansion-associated phenotypes. Cell Stem Cell 11, 264–278 (2012).

    Article  CAS  Google Scholar 

  34. 34

    Paulsen, J. S. et al. Detection of Huntington's disease decades before diagnosis: the Predict-HD study. J. Neurol. Neurosurg. Psychiatry 79, 874–880 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Zuccato, C. & Cattaneo, E. in Huntington's Disease (eds Bates, G. P., Tabrizi, S. J. & Jones, L. ) 243–273 (Oxford Univ. Press, 2014). This recent review chapter summarizes current knowledge about the molecular evolution, post-translational modification, distribution and normal functions of the huntingtin protein.

    Google Scholar 

  36. 36

    Andrade, M. A. & Bork, P. HEAT repeats in the Huntington's disease protein [letter]. Nat. Genet. 11, 115–116 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Wetzel, R. & Mishra, R. in Huntington's Disease (eds Bates, G. P., Tabrizi, S. J. & Jones, L. ) 274–322 (Oxford Univ. Press, 2014). This recent review chapter summarizes current knowledge about the structure of the huntingtin protein and its important exon 1 fragment, and how expanded polyQ versions of huntingtin fragments form aberrant molecular species that might be responsible for triggering Huntington disease.

    Google Scholar 

  38. 38

    Aiken, C. T. et al. Phosphorylation of threonine 3: implications for huntingtin aggregation and neurotoxicity. J. Biol. Chem. 284, 29427–29436 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Atwal, R. S. et al. Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity. Hum. Mol. Genet. 16, 2600–2615 (2007).

    Article  CAS  Google Scholar 

  40. 40

    Tam, S. et al. The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation. Nat. Struct. Mol. Biol. 16, 1279–1285 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Cornett, J. et al. Polyglutamine expansion of huntingtin impairs its nuclear export. Nat. Genet. 37, 198–204 (2005).

    Article  CAS  Google Scholar 

  42. 42

    Rockabrand, E. et al. The first 17 amino acids of huntingtin modulate its sub-cellular localization, aggregation and effects on calcium homeostasis. Hum. Mol. Genet. 16, 61–77 (2007).

    Article  CAS  Google Scholar 

  43. 43

    Steffan, J. S. et al. SUMO modification of huntingtin and Huntington's disease pathology. Science 304, 100–104 (2004).

    Article  CAS  Google Scholar 

  44. 44

    Jayaraman, M. et al. Slow amyloid nucleation via α-helix-rich oligomeric intermediates in short polyglutamine-containing huntingtin fragments. J. Mol. Biol. 415, 881–999 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. 45

    Thakur, A. K. et al. Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nat. Struct. Mol. Biol. 16, 380–389 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Michalek, M., Salnikov, E. S., Werten, S. & Bechinger, B. Membrane interactions of the amphipathic amino terminus of huntingtin. Biochemistry 52, 847–858 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. 47

    Wetzel, R. Physical chemistry of polyglutamine: intriguing tales of a monotonous sequence. J. Mol. Biol. 421, 466–490 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Faber, P. W. et al. Huntingtin interacts with a family of WW domain proteins. Hum. Mol. Genet. 7, 1463–1474 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Caron, N. S., Desmond, C. R., Xia, J. & Truant, R. Polyglutamine domain flexibility mediates the proximity between flanking sequences in huntingtin. Proc. Natl Acad. Sci. USA 110, 14610–14615 (2013).

    Article  PubMed  Google Scholar 

  50. 50

    Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805–810 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Davies, S. W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548 (1997).

    Article  CAS  Google Scholar 

  52. 52

    DiFIGlia, M. et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Sahl, S. J., Weiss, L. E., Duim, W. C., Frydman, J. & Moerner, W. E. Cellular inclusion bodies of mutant huntingtin exon 1 obscure small fibrillar aggregate species. Sci. Rep. 2, 895 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Poirier, M. A. et al. Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrilization. J. Biol. Chem. 277, 41032–41037 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. 55

    Landles, C. et al. Proteolysis of mutant huntingtin produces an exon 1 fragment that accumulates as an aggregated protein in neuronal nuclei in Huntington disease. J. Biol. Chem. 285, 8808–8823 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Marcellin, D. et al. Fragments of HdhQ150 mutant huntingtin form a soluble oligomer pool that declines with aggregate deposition upon aging. PLoS ONE 7, e44457 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Scherzinger, E. et al. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington disease pathology. Proc. Natl Acad. Sci. USA 96, 4604–4609 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. 58

    Chen, S., Berthelier, V., Yang, W. & Wetzel, R. Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. J. Mol. Biol. 311, 173–182 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Morley, J. F., Brignull, H. R., Weyers, J. J. & Morimoto, R. I. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 99, 10417–10422 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. 60

    Ossato, G. et al. A two-step path to inclusion formation of huntingtin peptides revealed by number and brightness analysis. Biophys. J. 98, 3078–3085 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Chen, S., Ferrone, F. A. & Wetzel, R. Huntington's disease age-of-onset linked to polyglutamine aggregation nucleation. Proc. Natl Acad. Sci. USA 99, 11884–11889 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. 62

    Lunkes, A. et al. Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions. Mol. Cell 10, 259–269 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. 63

    Landwehrmeyer, G. B. et al. Huntington's disease gene: regional and cellular expression in brain of normal and affected individuals. Ann. Neurol. 37, 218–230 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. 64

    Sathasivam, K. et al. Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc. Natl Acad. Sci. USA 110, 2366–2370 (2013).

    Article  PubMed  Google Scholar 

  65. 65

    Hughes, A. & Jones, L. in Huntington's Disease (eds Bates, G. P., Tabrizi, S. J. & Jones, L. ) 323–369 (Oxford Univ. Press, 2014).

    Google Scholar 

  66. 66

    Trottier, Y. et al. Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature 378, 403–406 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. 67

    Klein, F. A. C. et al. Linear and extended: a common polyglutamine conformation recognized by the three antibodies MW1, 1C2 and 3B5H10. Hum. Mol. Genet. 22, 4215–4223 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. 68

    Levine, M. S., Wang, E. A., Chen, J. Y., Cepeda, C. & Andre, V. M. in Huntington's Disease (eds Bates, G. P., Tabrizi, S. J. & Jones, L. ) 218–242 (Oxford Univ. Press, 2014).

    Google Scholar 

  69. 69

    Kennedy, L. et al. Dramatic tissue-specific mutation length increases are an early molecular event in Huntington disease pathogenesis. Hum. Mol. Genet. 12, 3359–3367 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. 70

    Gonitel, R. et al. DNA instability in postmitotic neurons. Proc. Natl Acad. Sci. USA 105, 3467–3472 (2008).

    Article  PubMed  Google Scholar 

  71. 71

    Manley, K., Shirley, T. L., Flaherty, L. & Messer, A. Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nat. Genet. 23, 471–473 (1999). This was the first paper to show that ablation of the mismatch repair system prevents somatic instability in mouse models of Huntington disease, which prompted many further studies.

    Article  CAS  PubMed  Google Scholar 

  72. 72

    Tome, S. et al. MSH3 polymorphisms and protein levels affect CAG repeat instability in Huntington's disease mice. PLoS Genet. 9, e1003280 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Pinto, R. M. et al. Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches. PLoS Genet. 9, e1003930 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Kovalenko, M. et al. Msh2 acts in medium-spiny striatal neurons as an enhancer of CAG instability and mutant huntingtin phenotypes in Huntington's disease knock-in mice. PLoS ONE 7, e44273 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Wheeler, V. C. et al. Mismatch repair gene Msh2 modifies the timing of early disease in Hdh(Q111) striatum. Hum. Mol. Genet. 12, 273–281 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. 76

    Swami, M. et al. Somatic expansion of the Huntington's disease CAG repeat in the brain is associated with an earlier age of disease onset. Hum. Mol. Genet. 18, 3039–3047 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Kim, M. et al. Mutant huntingtin expression in clonal striatal cells: dissociation of inclusion formation and neuronal survival by caspase inhibition. J. Neurosci. 19, 964–973 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. 78

    Moffitt, H., McPhail, G. D., Woodman, B., Hobbs, C. & Bates, G. P. Formation of polyglutamine inclusions in a wide range of non-CNS tissues in the HdhQ150 knock-in mouse model of Huntington's disease. PLoS ONE 4, e8025 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Frost, B. & Diamond, M. I. Prion-like mechanisms in neurodegenerative diseases. Nat. Rev. Neurosci. 11, 155–159 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. 80

    Yang, W., Dunlap, J. R., Andrews, R. B. & Wetzel, R. Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum. Mol. Genet. 11, 2905–2917 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. 81

    Ren, P. H. et al. Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat. Cell Biol. 11, 219–225 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Cicchetti, F. et al. Mutant huntingtin is present in neuronal grafts in Huntington disease patients. Ann. Neurol. 76, 31–42 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. 83

    Pecho-Vrieseling, E. et al. Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons. Nat. Neurosci. 17, 1064–1072 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. 84

    Kazantsev, A., Preisinger, E., Dranovsky, A., Goldgaber, D. & Housman, D. Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc. Natl Acad. Sci. USA 96, 11404–11409 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. 85

    Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Adapting proteostasis for disease intervention. Science 319, 916–919 (2008).

    Article  CAS  Google Scholar 

  86. 86

    Labbadia, J. & Morimoto, R. I. Huntington's disease: underlying molecular mechanisms and emerging concepts. Trends Biochem. Sci. 38, 378–385 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Vidal, R., Caballero, B., Couve, A. & Hetz, C. Converging pathways in the occurrence of endoplasmic reticulum (ER) stress in Huntington's disease. Curr. Mol. Med. 11, 1–12 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. 88

    Ortega, Z. & Lucas, J. J. Ubiquitin-proteasome system involvement in Huntington's disease. Front. Mol. Neurosci. 7, 77 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Martin, D. D. O., Ladha, S., Ehrnhoefer, D. E. & Hayden, M. R. Autophagy in Huntington disease and huntingtin in autophagy. Trends Neurosci. 38, 26–35 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. 90

    Labbadia, J. et al. Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease. J. Clin. Invest. 121, 3306–3319 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Seredenina, T. & Luthi-Carter, R. What have we learned from gene expression profiles in Huntington's disease? Neurobiol. Dis. 45, 83–98 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. 92

    Reddy, P. H. & Shirendeb, U. P. Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington's disease. Biochim. Biophys. Acta 1822, 101–110 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. 93

    Johri, A., Chandra, A. & Beal, M. F. PGC-1α, mitochondrial dysfunction, and Huntington's disease. Free Radic. Biol. Med. 62, 37–46 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Nithianantharajah, J. & Hannan, A. J. Dysregulation of synaptic proteins, dendritic spine abnormalities and pathological plasticity of synapses as experience-dependent mediators of cognitive and psychiatric symptoms in Huntington's disease. Neuroscience 251, 66–74 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. 95

    Ellrichmann, G., Reick, C., Saft, C. & Linker, R. A. The role of the immune system in Huntington's disease. Clin. Dev. Immunol. 2013, 541259 (2013).

  96. 96

    Wang, N. et al. Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in a mouse model of Huntington disease. Nat. Med. 20, 536–541 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Huntington Study Group Unified Huntington's Disease Rating Scale: reliability and consistency. Huntington Study Group. Mov. Disord. 11, 136–142 (1996).

    Article  Google Scholar 

  98. 98

    Reilmann, R., Leavitt, B. R. & Ross, C. A. Diagnostic criteria for Huntington's disease based on natural history. Mov. Disord. 29, 1335–1341 (2014).

    Article  PubMed  Google Scholar 

  99. 99

    Cardoso, F. Differential diagnosis of Huntington disease: what the clinician should know. Neurodegener. Dis. Manag. 4, 67–72 (2014).

    Article  PubMed  Google Scholar 

  100. 100

    Williamson, S., Kirkpatrick, M., Greene, S. & Goudie, D. A novel mutation of NKX2-1 affecting 2 generations with hypothyroidism and choreoathetosis: part of the spectrum of brain-thyroid-lung syndrome. J. Child Neurol. 29, 666–669 (2014).

    Article  PubMed  Google Scholar 

  101. 101

    Hensman Moss, D. J. et al. C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies. Neurology 82, 292–299 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Craufurd, D. et al. Diagnostic genetic testing for Huntington's disease. Pract. Neurol. 15, 80–84 (2015).

    Article  PubMed  Google Scholar 

  103. 103

    International Huntington Association (IHA) and the World Federation of Neurology (WFN) Research Group on Huntington's Chorea Guidelines for the molecular genetics predictive test in Huntington's disease. Neurology 44, 1533–1536 (1994).

    Article  Google Scholar 

  104. 104

    MacLeod, R. et al. Experiences of predictive testing in young people at risk of Huntington's disease, familial cardiomyopathy or hereditary breast and ovarian cancer. Eur. J. Hum. Genet. 22, 396–401 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. 105

    Hawkins, A. K., Creighton, S., Ho, A., McManus, B. & Hayden, M. R. Providing predictive testing for Huntington disease via telehealth: results of a pilot study in British Columbia, Canada. Clin. Genet. 84, 60–64 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. 106

    De Die-Smulders, C. E. M., de Wert, G. M. W. R., Liebaers, I., Tibben, A. & Evers-Kiebooms, G. Reproductive options for prospective parents in families with Huntington's disease: clinical, psychological and ethical reflections. Hum. Reprod. Update 19, 304–315 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. 107

    Schulman, J. D. & Stern, H. J. Low utilization of prenatal and preimplantation genetic diagnosis in Huntington disease — risk discounting in preventive genetics. Clin. Genet. http://dx.doi.org/10.1111/cge.12523 (2014).

  108. 108

    Van Rij, M. C. et al. The uptake and outcome of prenatal and pre-implantation genetic diagnosis for Huntington's disease in the Netherlands (1998–2008). Clin. Genet. 85, 87–95 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. 109

    Semaka, A. & Hayden, M. R. Evidence-based genetic counselling implications for Huntington disease intermediate allele predictive test results. Clin. Genet. 85, 303–311 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. 110

    Langbehn, D. R., Hayden, M. R. & Paulsen, J. S. CAG-repeat length and the age of onset in Huntington disease (HD): a review and validation study of statistical approaches. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 153B, 397–408 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Rosenblatt, A. et al. The association of CAG repeat length with clinical progression in Huntington disease. Neurology 66, 1016–1020 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. 112

    Tabrizi, S. J. et al. Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington's disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurol. 12, 637–649 (2013). This paper showed the additional power of a range of biomarkers, beyond that of age and CAG, for predicting conversion to manifest disease and subsequent clinical progression.

    Article  PubMed  Google Scholar 

  113. 113

    Penney, J. B., Vonsattel, J. P., MacDonald, M. E., Gusella, J. F. & Myers, R. H. CAG repeat number governs the development rate of pathology in Huntington's disease. Ann. Neurol. 41, 689–692 (1997).

    Article  PubMed  Google Scholar 

  114. 114

    Warner, J. H. & Hayden, M. A new model for age-at-onset in Huntington's disease. Found. Huntington' Dis. Ther. Conference (2012).

  115. 115

    Dorsey, E. R. et al. Natural history of Huntington disease. JAMA Neurol. 70, 1520–1530 (2013).

    Article  PubMed  Google Scholar 

  116. 116

    Paulsen, J. S. et al. Clinical and biomarker changes in premanifest Huntington disease show trial feasibility: a decade of the PREDICT-HD study. Front. Aging Neurosci. 6, 78 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  117. 117

    Rosenblatt, A. et al. Predictors of neuropathological severity in 100 patients with Huntington's disease. Ann. Neurol. 54, 488–493 (2003).

    Article  PubMed  Google Scholar 

  118. 118

    Hogarth, P. et al. Interrater agreement in the assessment of motor manifestations of Huntington's disease. Mov. Disord. 20, 293–297 (2005).

    Article  PubMed  Google Scholar 

  119. 119

    Reilmann, R. et al. Grasping premanifest Huntington's disease — shaping new endpoints for new trials. Mov. Disord. 25, 2858–2862 (2010).

    Article  PubMed  Google Scholar 

  120. 120

    Reilmann, R. et al. Q-motor – Quantitative motor assessments: Potential novel endpoints for clinical trials in pre-manifest and symptomatic Huntington's disease – 36 months longitudinal results from the multicenter TRACK-HD study. Basal Ganglia 3, 67–68 (2013).

    Article  Google Scholar 

  121. 121

    Stout, J. C. et al. Neurocognitive signs in prodromal Huntington disease. Neuropsychology 25, 1–14 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  122. 122

    Peavy, G. M. et al. Cognitive and functional decline in Huntington's disease: dementia criteria revisited. Mov. Disord. 25, 1163–1169 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  123. 123

    Aretouli, E. & Brandt, J. Episodic memory in dementia: Characteristics of new learning that differentiate Alzheimer's, Huntington's, and Parkinson's diseases. Arch. Clin. Neuropsychol. 25, 396–409 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  124. 124

    Folstein, S. E., Jensen, B., Leigh, R. J. & Folstein, M. F. The measurement of abnormal movement: methods developed for Huntington's disease. Neurobehav. Toxicol. Teratol. 5, 605–609 (1983).

    CAS  PubMed  Google Scholar 

  125. 125

    Stout, J. C. et al. Evaluation of longitudinal 12 and 24 month cognitive outcomes in premanifest and early Huntington's disease. J. Neurol. Neurosurg. Psychiatry 83, 687–694 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  126. 126

    Duff, K. et al. “Frontal” behaviors before the diagnosis of Huntington's disease and their relationship to markers of disease progression: evidence of early lack of awareness. J. Neuropsychiatry Clin. Neurosci. 22, 196–207 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  127. 127

    Papoutsi, M., Labuschagne, I., Tabrizi, S. J. & Stout, J. C. The cognitive burden in Huntington's disease: pathology, phenotype, and mechanisms of compensation. Mov. Disord. 29, 673–683 (2014).

    Article  PubMed  Google Scholar 

  128. 128

    Tabrizi, S. J. et al. Biological and clinical changes in premanifest and early stage Huntington's disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurol. 10, 31–42 (2011).

    Article  PubMed  Google Scholar 

  129. 129

    Tabrizi, S. J. et al. Potential endpoints for clinical trials in premanifest and early Huntington's disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol. 11, 42–53 (2012). This paper defined a battery of potential outcome measures with utility for clinical trials in early Huntington disease.

    Article  PubMed  Google Scholar 

  130. 130

    Thompson, J. C. et al. Longitudinal evaluation of neuropsychiatric symptoms in Huntington's disease. J. Neuropsychiatry Clin. Neurosci. 24, 53–60 (2012).

    Article  PubMed  Google Scholar 

  131. 131

    Killoran, A. & Biglan, K. M. Current therapeutic options for Huntington's disease: Good clinical practice versus evidence-based approaches? Mov. Disord. 29, 1404–1413 (2014).

    Article  PubMed  Google Scholar 

  132. 132

    Van Duijn, E. et al. Neuropsychiatric symptoms in a European Huntington's disease cohort (REGISTRY). J. Neurol. Neurosurg. Psychiatry 85, 1411–1418 (2014).

    Article  PubMed  Google Scholar 

  133. 133

    Nance, M. A. Comprehensive care in Huntington's disease: a physician's perspective. Brain Res. Bull. 72, 175–178 (2007).

    Article  PubMed  Google Scholar 

  134. 134

    Simpson, S. A. & Rae, D. A standard of care for Huntington's disease: who, what and why. Neurodegener. Dis. Manag. 2, 1–5 (2012).

    Article  Google Scholar 

  135. 135

    Klager, J., Duckett, A., Sandler, S. & Moskowitz, C. Huntington's disease: a caring approach to the end of life. Care Manag. J. 9, 75–81 (2008).

    Article  PubMed  Google Scholar 

  136. 136

    Huntington Study Group. Tetrabenazine as antichorea therapy in Huntington disease: a randomized controlled trial. Neurology 66, 366–372 (2006).

    Article  CAS  Google Scholar 

  137. 137

    Jankovic, J. & Roos, R. A. C. Chorea associated with Huntington's disease: to treat or not to treat? Mov. Disord. 29, 1414–1418 (2014).

    Article  PubMed  Google Scholar 

  138. 138

    Gonzalez, V. et al. Deep brain stimulation for Huntington's disease: long-term results of a prospective open-label study. J. Neurosurg. 121, 114–122 (2014).

    Article  PubMed  Google Scholar 

  139. 139

    Study evaluating the safety, tolerability and brain function of 2 doses of PF-02545920 in subjects with early Huntington's disease [online], https://www.clinicaltrials.gov/ct2/show/NCT01806896 (2014).

  140. 140

    First time use of SD-809 in Huntington disease (first-HD) [online], https://clinicaltrials.gov/ct2/show/NCT01795859 (2013).

  141. 141

    Mestre, T. A. & Ferreira, J. J. An evidence-based approach in the treatment of Huntington's disease. Parkinsonism Relat. Disord. 18, 316–320 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. 142

    Bonelli, R. M. & Hofmann, P. A systematic review of the treatment studies in Huntington's disease since 1990. Expert Opin. Pharmacother. 8, 141–153 (2007). This is a systematic review of clinical pharamcological trials in Huntington disease through the mid-2000s.

    Article  CAS  PubMed  Google Scholar 

  143. 143

    Burgunder, J.-M. et al. An international survey-based algorithm for the pharmacologic treatment of chorea in Huntington's disease. PLoS Curr. 3, RRN1260 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  144. 144

    Groves, M. et al. An international survey-based algorithm for the pharmacologic treatment of irritability in Huntington's disease. PLoS Curr. 3, RRN1259 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  145. 145

    Anderson, K. et al. An international survey-based algorithm for the pharmacologic treatment of obsessive-compulsive behaviors in Huntington's disease. PLoS Curr. 3 RRN1261 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  146. 146

    Ribaï, P. et al. Psychiatric and cognitive difficulties as indicators of juvenile huntington disease onset in 29 patients. Arch. Neurol. 64, 813–819 (2007).

    Article  PubMed  Google Scholar 

  147. 147

    Quarrell, O. W. J. et al. Managing juvenile Huntington's disease. Neurodegener. Dis. Manag. 3, 267–276 (2013). This is a summary of the current approaches to the management of juvenile-onset Huntington disease, emphasizing areas in which the management differs from that of adult-onset disease.

    Article  Google Scholar 

  148. 148

    Dellefield, M. E. & Ferrini, R. Promoting Excellence in End-of-Life Care: lessons learned from a cohort of nursing home residents with advanced Huntington disease. J. Neurosci. Nurs. 43, 186–192 (2011).

    Article  PubMed  Google Scholar 

  149. 149

    Nance, M. A. & Sanders, G. Characteristics of individuals with Huntington disease in long-term care. Mov. Disord. 11, 542–548 (1996).

    Article  CAS  PubMed  Google Scholar 

  150. 150

    Moskowitz, C. B. & Marder, K. Palliative care for people with late-stage Huntington's disease. Neurol. Clin. 19, 849–865 (2001).

    Article  CAS  PubMed  Google Scholar 

  151. 151

    Bonelli, R. M. & Wenning, G. K. Pharmacological management of Huntington's disease: an evidence-based review. Curr. Pharm. Des. 12, 2701–2720 (2006). This comprehensive review critically examines the evidence for a wide range of pharmaceutical agents for Huntington disease and finds little evidence for any treatment recommendation.

    Article  CAS  PubMed  Google Scholar 

  152. 152

    Braun, M. M., Farag-El-Massah, S., Xu, K. & Coté, T. R. Emergence of orphan drugs in the United States: a quantitative assessment of the first 25 years. Nat. Rev. Drug Discov. 9, 519–522 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. 153

    Woodcock, J. The future of orphan drug development. Clin. Pharmacol. Ther. 92, 146–148 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. 154

    Huntington Study Group HART Investigators. A randomized, double-blind, placebo-controlled trial of pridopidine in Huntington's disease. Mov. Disord. 28, 1407–1415 (2013).

    Article  CAS  Google Scholar 

  155. 155

    De Yebenes, J. G. et al. Pridopidine for the treatment of motor function in patients with Huntington's disease (MermaiHD): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet. Neurol. 10, 1049–1057 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. 156

    Huntington Study Group Reach2HD Investigators. Safety, tolerability, and efficacy of PBT2 in Huntington's disease: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 14, 39–47 (2015).

    Article  CAS  Google Scholar 

  157. 157

    Leuti, A. et al. Phosphodiesterase 10A (PDE10A) localization in the R6/2 mouse model of Huntington's disease. Neurobiol. Dis. 52, 104–116 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. 158

    Raptor Pharmaceuticals. Raptor announces clinical results with rp103 in Huntington's disease Phase 2/3 trial [online], http://ir.raptorpharma.com/releasedetail.cfm?releaseid=826962 (2014).

  159. 159

    Coenzyme Q10 in Huntington disease. Huntingdon Study Group [online], http://www.huntington-study-group.org/CurrentHSGClinicalTrials/2CARE/tabid/95/Default.aspx (2014).

  160. 160

    Announcement of CREST-E early study group. Huntingdon Study Group [online], http://www.huntington-study-group.org/CurrentHSGClinicalTrials/CRESTE/tabid/105/Default.aspx (2014).

  161. 161

    Van der Meer, L. B., van Duijn, E., Wolterbeek, R. & Tibben, A. Adverse childhood experiences of persons at risk for Huntington's disease or BRCA1/2 hereditary breast/ovarian cancer. Clin. Genet. 81, 18–23 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. 162

    Driessnack, M., Williams, J. K., Barnette, J. J., Sparbel, K. J. & Paulsen, J. S. Development of the HD-Teen Inventory. Clin. Nurs. Res. 21, 213–223 (2012).

    Article  PubMed  Google Scholar 

  163. 163

    Quaid, K. A. et al. Living at risk: concealing risk and preserving hope in Huntington disease. J. Genet. Couns. 17, 117–128 (2008). This paper includes pieces of patient experiences, which emphasizes the importance of qualitative experience in our understanding of quality of life in Huntington disease.

    Article  PubMed  Google Scholar 

  164. 164

    Hocaoglu, M. B., Gaffan, E. A. & Ho, A. K. The Huntington's disease health-related quality of life questionnaire (HDQoL): a disease-specific measure of health-related quality of life. Clin. Genet. 81, 117–122 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. 165

    Hocaoglu, M. B., Gaffan, E. A. & Ho, A. K. Health-related quality of life in Huntington's disease patients: a comparison of proxy assessment and patient self-rating using the disease-specific Huntington's disease health-related quality of life questionnaire (HDQoL). J. Neurol. 259, 1793–1800 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  166. 166

    Clay, E. et al. Validation of the first quality-of-life measurement for patients with Huntington's disease: the Huntington Quality of Life Instrument. Int. Clin. Psychopharmacol. 27, 208–214 (2012).

    Article  PubMed  Google Scholar 

  167. 167

    Carlozzi, N. E. et al. HD-PRO-TRIADTM validation: a patient-reported instrument for the symptom triad of Huntington's disease. Tremor Other Hyperkinet. Mov. 4, 223 (2014).

    Google Scholar 

  168. 168

    Read, J. et al. Quality of life in Huntington's disease: a comparative study investigating the impact for those with pre-manifest and early manifest disease, and their partners. J. Huntingtons. Dis. 2, 159–175 (2013).

    PubMed  Google Scholar 

  169. 169

    Ho, A. K., Gilbert, A. S., Mason, S. L., Goodman, A. O. & Barker, R. A. Health-related quality of life in Huntington's disease: Which factors matter most? Mov. Disord. 24, 574–578 (2009).

    Article  PubMed  Google Scholar 

  170. 170

    Carlozzi, N. E. & Tulsky, D. S. Identification of health-related quality of life (HRQOL) issues relevant to individuals with Huntington disease. J. Health Psychol. 18, 212–225 (2013). This is an initial report from one of the groups working to develop a Huntington disease-specific tool for measuring quality of life.

    Article  PubMed  Google Scholar 

  171. 171

    Wheelock, V. L. et al. Predictors of nursing home placement in Huntington disease. Neurology 60, 998–1001 (2003).

    Article  CAS  PubMed  Google Scholar 

  172. 172

    Rosenblatt, A., Kumar, B. V., Margolis, R. L., Welsh, C. S. & Ross, C. A. Factors contributing to institutionalization in patients with Huntington's disease. Mov. Disord. 26, 1711–1716 (2011).

    Article  PubMed  Google Scholar 

  173. 173

    Booij, S. J., Tibben, A., Engberts, D. P., Marinus, J. & Roos, R. A. C. Thinking about the end of life: a common issue for patients with Huntington's disease. J. Neurol. 261, 2184–2191 (2014).

    Article  PubMed  Google Scholar 

  174. 174

    Zwilling, D. et al. Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 145, 863–874 (2011). JM6, a drug acting peripherally to produce inhibition of KMO in the central nervous system, extended survival in a Huntington disease model mouse. In addition to supporting KMO inhibition as a target, this study raises the prospect of developing therapies that do not cross the blood–brain barrier but that can produce benefits in the central nervous system nonetheless.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. 175

    Stout, J. C. et al. HD-CAB: a cognitive assessment battery for clinical trials in Huntington's disease 1,2,3. Mov. Disord. 29, 1281–1288 (2014). This paper examines a large number of quantitative cognitive tests and develops a concise battery of cognitive assessments that are specifically designed for use as a clinical trial end point in Huntington disease therapeutic trials.

    Article  PubMed  Google Scholar 

  176. 176

    Weir, D. W., Sturrock, A. & Leavitt, B. R. Development of biomarkers for Huntington's disease. Lancet Neurol. 10, 573–590 (2011).

    Article  CAS  PubMed  Google Scholar 

  177. 177

    Weiss, A. et al. Mutant huntingtin fragmentation in immune cells tracks Huntington's disease progression. J. Clin. Invest. 122, 3731–3736 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. 178

    Fang, Q. et al. Brain-specific proteins decline in the cerebrospinal fluid of humans with Huntington disease. Mol. Cell. Proteom. 8, 451–466 (2009).

    Article  CAS  Google Scholar 

  179. 179

    Wild, E., Björkqvist, M. & Tabrizi, S. J. Immune markers for Huntington's disease? Expert Rev. Neurother. 8, 1779–1781 (2008).

    Article  PubMed  Google Scholar 

  180. 180

    Dalrymple, A. et al. Proteomic profiling of plasma in Huntington's disease reveals neuroinflammatory activation and biomarker candidates. J. Proteome Res. 6, 2833–2840 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. 181

    Björkqvist, M. et al. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease. J. Exp. Med. 205, 1869–1877 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. 182

    Borowsky, B. et al. 8OHdG is not a biomarker for Huntington disease state or progression. Neurology 80, 1934–1941 (2013). This paper resolves an outstanding issue in the field and shows unequivocally that 8OHdG is not a clinically useful biomarker in Huntington disease. It also establishes an important series of recommendations that should be considered for future biomarker validation studies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. 183

    Nguyen, L., Bradshaw, J. L., Stout, J. C., Croft, R. J. & Georgiou-Karistianis, N. Electrophysiological measures as potential biomarkers in Huntington's disease: review and future directions. Brain Res. Rev. 64, 177–194 (2010).

    Article  PubMed  Google Scholar 

  184. 184

    Beste, C., Saft, C., Andrich, J., Gold, R. & Falkenstein, M. Stimulus-response compatibility in Huntington's disease: a cognitive-neurophysiological analysis. J. Neurophysiol. 99, 1213–1223 (2008).

    Article  PubMed  Google Scholar 

  185. 185

    Beste, C. et al. Alterations in voluntary movement execution in Huntington's disease are related to the dominant motor system: evidence from event-related potentials. Exp. Neurol. 216, 148–157 (2009).

    Article  PubMed  Google Scholar 

  186. 186

    Beniczky, S. et al. Somatosensory evoked potentials correlate with genetics in Huntington's disease. Neuroreport 13, 2295–2298 (2002).

    Article  PubMed  Google Scholar 

  187. 187

    Weiss, A. et al. Single-step detection of mutant huntingtin in animal and human tissues: a bioassay for Huntington's disease. Anal. Biochem. 395, 8–15 (2009).

    Article  CAS  PubMed  Google Scholar 

  188. 188

    Moscovitch-Lopatin, M. et al. Optimization of an HTRF assay for the detection of soluble mutant Huntingtin in Human Buffy Coats: A Potential Biomarker in Blood for Huntington disease. PLoS Curr. 2 RRN1205 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  189. 189

    Tabrizi, S. J. et al. Biological and clinical manifestations of Huntington's disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet. Neurol. 8, 791–801 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  190. 190

    Hersch, S. M. et al. Creatine in Huntington disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2'dG. Neurology 66, 250–252 (2006).

    Article  CAS  PubMed  Google Scholar 

  191. 191

    Squitieri, F. et al. Riluzole protects Huntington disease patients from brain glucose hypometabolism and grey matter volume loss and increases production of neurotrophins. Eur. J. Nucl. Med. Mol. Imag. 36, 1113–1120 (2009).

    Article  CAS  Google Scholar 

  192. 192

    Sturrock, A. et al. Magnetic resonance spectroscopy biomarkers in premanifest and early Huntington disease. Neurology 75, 1702–1710 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. 193

    Eidelberg, D. & Surmeier, D. J. Brain networks in Huntington disease. J. Clin. Invest. 121, 484–492 (2011). This is a detailed review of techniques for identifying disease-related alterations in metabolic activity and their potential use in clinical trials.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. 194

    Tang, C. C. et al. Metabolic network as a progression biomarker of premanifest Huntington's disease. J. Clin. Invest. 123, 4076–4088 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. 195

    Esmaeilzadeh, M., Kullingsjö, J., Ullman, H., Varrone, A. & Tedroff, J. Regional cerebral glucose metabolism after pridopidine (ACR16) treatment in patients with Huntington disease. Clin. Neuropharmacol. 34, 95–100 (2011).

    Article  CAS  PubMed  Google Scholar 

  196. 196

    Tai, Y. F. et al. Microglial activation in presymptomatic Huntington's disease gene carriers. Brain 130, 1759–1766 (2007).

    Article  PubMed  Google Scholar 

  197. 197

    Poudel, G. R. et al. White matter connectivity reflects clinical and cognitive status in Huntington's disease. Neurobiol. Dis. 65, 180–187 (2014).

    Article  PubMed  Google Scholar 

  198. 198

    Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

    Article  CAS  Google Scholar 

  199. 199

    Pavese, N. et al. Cortical dopamine dysfunction in symptomatic and premanifest Huntington's disease gene carriers. Neurobiol. Dis. 37, 356–361 (2010).

    Article  CAS  PubMed  Google Scholar 

  200. 200

    Sampaio, C., Borowsky, B. & Reilmann, R. Clinical trials in Huntington's disease: interventions in early clinical development and newer methodological approaches. Mov. Disord. 29, 1419–1428 (2014).

    Article  PubMed  Google Scholar 

  201. 201

    Reilmann, R., Bohlen, S., Kirsten, F., Ringelstein, E. B. & Lange, H. W. Assessment of involuntary choreatic movements in Huntington's disease — toward objective and quantitative measures. Mov. Disord. 26, 2267–2273 (2011). This study provides evidence for the use of in-clinic quantitative motor assessments that are now increasingly used as an objective measure in Huntington disease clinical trials.

    Article  PubMed  Google Scholar 

  202. 202

    Kozauer, N. & Katz, R. Regulatory innovation and drug development for early-stage Alzheimer's disease. N. Engl. J. Med. 368, 1169–1171 (2013).

    Article  CAS  PubMed  Google Scholar 

  203. 203

    Rosas, H. D. et al. PRECREST: a Phase II prevention and biomarker trial of creatine in at-risk Huntington disease. Neurology 82, 850–857 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. 204

    Chandra, A., Johri, A. & Beal, M. F. Prospects for neuroprotective therapies in prodromal Huntington's disease. Mov. Disord. 29, 285–293 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. 205

    Gusella, J. F. et al. A polymorphic DNA marker genetically linked to Huntington's disease. Nature 306, 234–238 (1983).

    Article  CAS  PubMed  Google Scholar 

  206. 206

    Olding-Smee, L. Biomedical philanthropy: The money tree. Nature 447, 251–251 (2007).

    Article  CAS  Google Scholar 

  207. 207

    Harper, S. Q. et al. RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model. Proc. Natl Acad. Sci. USA 102, 5820–5825 (2005).

    Article  CAS  PubMed  Google Scholar 

  208. 208

    Carroll, J. B. et al. Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene / allele-specific silencing of mutant huntingtin. Mol. Ther. 19, 2178–2185 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. 209

    Stanek, L. M. et al. Silencing mutant huntingtin by AAV-mediated RNAi ameliorates disease manifestations in the YAC128 mouse model of Huntington's disease. Hum. Gene Ther. 25 461–474 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. 210

    Kordasiewicz, H. B. et al. Sustained therapeutic reversal of Huntington's disease by transient repression of huntingtin synthesis. Neuron 74, 1031–1044 (2012). This is an important demonstration that huntingtin lowering, achieved through an antisense oligonucleotide drug of the kind entering clinical trials in the near future, produces reversal of Huntington disease manifestations in model rodents that outlasts the presence of the compound, supporting the notion of a ‘huntingtin holiday’ — a brief or minor repression of HTT synthesis that enables significant recovery through cellular repair mechanisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. 211

    Miller, T. M. et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol 12, 435–442 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. 212

    Isis Pharmaceuticals reports data from ISIS-SMN Rx Phase 2 studies in infants and children with spinal muscular atrophy. ISIS Pharmaceuticals [online], http://ir.isispharm.com/phoenix.zhtml?c=222170&p=irol-newsArticle&ID=1976144 (2014).

  213. 213

    Tabrizi, S. J. Huntingtin lowering as a treatment for Huntington's disease. European Huntington's Disease Network Plenary Meeting (2014).

  214. 214

    Dragatsis, I., Levine, M. S. & Zeitlin, S. Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat. Genet. 26, 300–306 (2000).

    Article  CAS  PubMed  Google Scholar 

  215. 215

    Garriga-Canut, M. et al. Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proc. Natl Acad. Sci. 109, E3136–E3145 (2012).

    Article  PubMed  Google Scholar 

  216. 216

    Zeitler, S. B. et al. Allele-specific repression of mutant Huntingtin expression by engineered zinc finger transcriptional repressors as a potential therapy for Huntington's disease. Society for Neuroscience Annual Meeting [online], http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=036f4722-3981-4c95-a391-6d5e2d3a2433&cKey=612cd78d-04f2-42de-9d00-49f3591b9536&mKey=8d2a5bec-4825-4cd6-9439-b42bb151d1cf (2013).

  217. 217

    Gu, X. et al. Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice. Neuron 64, 828–840 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. 218

    Atwal, R. S. et al. Kinase inhibitors modulate huntingtin cell localization and toxicity. Nat. Chem. Biol. 7, 453–460 (2011).

    Article  CAS  Google Scholar 

  219. 219

    Zala, D. et al. Phosphorylation of mutant huntingtin at S421 restores anterograde and retrograde transport in neurons. Hum. Mol. Genet. 17, 3837–3846 (2008).

    Article  CAS  PubMed  Google Scholar 

  220. 220

    Di Pardo, A. et al. Ganglioside GM1 induces phosphorylation of mutant huntingtin and restores normal motor behavior in Huntington disease mice. Proc. Natl Acad. Sci. 109, 3528–3533 (2012).

    Article  PubMed  Google Scholar 

  221. 221

    Labbadia, J. et al. Suppression of protein aggregation by chaperone modification of high molecular weight complexes. Brain 135, 1180–1196 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  222. 222

    Sontag, E. M. et al. Exogenous delivery of chaperonin subunit fragment ApiCCT1 modulates mutant Huntingtin cellular phenotypes. Proc. Natl Acad. Sci. USA 110, 3077–3082 (2013).

    Article  PubMed  Google Scholar 

  223. 223

    Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585–595 (2004).

    Article  CAS  PubMed  Google Scholar 

  224. 224

    Renna, M., Jimenez-Sanchez, M., Sarkar, S. & Rubinsztein, D. C. Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. J. Biol. Chem. 285, 11061–11067 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. 225

    Smith, M. R. et al. A potent and selective Sirtuin 1 inhibitor alleviates pathology in multiple animal and cell models of Huntington's disease. Hum. Mol. Genet. 23, 2995–3007 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. 226

    Reilmann, R. et al. Safety and tolerability of selisistat for the treatment of Huntington's disease: results from a randomized, double-blind, placebo-controlled Phase II trial (S47.004). Neurology 82, S47.004 (2014).

    Google Scholar 

  227. 227

    Mielcarek, M. et al. HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration. PLoS Biol. 11, e1001717 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. 228

    Moumné, L., Campbell, K., Howland, D., Ouyang, Y. & Bates, G. P. Genetic knock-down of HDAC3 does not modify disease-related phenotypes in a mouse model of Huntington's disease. PLoS ONE 7, e31080 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. 229

    Bobrowska, A., Paganetti, P., Matthias, P. & Bates, G. P. Hdac6 knock-out increases tubulin acetylation but does not modify disease progression in the R6/2 mouse model of Huntington's disease. PLoS ONE 6, e20696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. 230

    Benn, C. L. et al. Genetic knock-down of HDAC7 does not ameliorate disease pathogenesis in the R6/2 mouse model of Huntington's disease. PLoS ONE 4, e5747 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. 231

    Hockly, E. et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc. Natl Acad. Sci. USA 100, 2041–2046 (2003).

    Article  CAS  PubMed  Google Scholar 

  232. 232

    Threlfell, S., Sammut, S., Menniti, F. S., Schmidt, C. J. & West, A. R. Inhibition of phosphodiesterase 10a increases the responsiveness of striatal projection neurons to cortical stimulation. J. Pharmacol. Exp. Ther. 328, 785–795 (2009).

    Article  CAS  PubMed  Google Scholar 

  233. 233

    Threlfell, S. & West, A. R. Modulation of striatal neuron activity by cyclic nucleotide signalling and phosphodiesterase inhibition. Basal Ganglia 3, 137–146 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  234. 234

    Giampà, C. et al. Inhibition of the striatal specific phosphodiesterase PDE10A ameliorates striatal and cortical pathology in R6/2 mouse model of Huntington disease. PLoS ONE 5, e13417 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. 235

    Safety and efficacy of OMS643762 in subjects with Huntington's disease. [online], https://clinicaltrials.gov/ct2/show/NCT02074410 (2014).

  236. 236

    Kells, A. P. et al. AAV-mediated gene delivery of BDNF or GDNF is neuroprotective in a model of Huntington disease. Mol. Ther. 9, 682–688 (2004).

    Article  CAS  PubMed  Google Scholar 

  237. 237

    Pineda, J. R. et al. Neuroprotection by GDNF-secreting stem cells in a Huntington's disease model: optical neuroimage tracking of brain-grafted cells. Gene Ther. 14, 118–128 (2006).

    Article  CAS  PubMed  Google Scholar 

  238. 238

    Marks Jr., W. J. et al. Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial. Lancet Neurol. 9, 1164–1172 (2010).

    Article  CAS  PubMed  Google Scholar 

  239. 239

    Jiang, M. et al. Small-molecule TrkB receptor agonists improve motor function and extend survival in a mouse model of Huntington's disease. Hum. Mol. Genet. 22, 2462–2470 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. 240

    Simmons, D. A. et al. A small molecule TrkB ligand reduces motor impairment and neuropathology in R6/2 and BACHD mouse models of Huntington's disease. J. Neurosci. 33, 18712–18727 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. 241

    Todd, D. et al. A monoclonal antibody TrkB receptor agonist as a potential therapeutic for Huntington's disease. PLoS ONE 9, e87923 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. 242

    Vecsei, L., Szalardy, L., Fulop, F. & Toldi, J. Kynurenines in the CNS: recent advances and new questions. Nat. Rev. Drug Discov. 12, 64–82 (2013).

    Article  CAS  PubMed  Google Scholar 

  243. 243

    Giorgini, F., Guidetti, P., Nguyen, Q., Bennett, S. C. & Muchowski, P. J. A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat. Genet. 37, 526–531 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. 244

    Campesan, S. et al. The kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington's disease. Curr. Biol. 21, 961–966 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. 245

    Mrzljak, L. Development of kynurenine monooxygenase (K. M. O.) inhibitor C. H.D. I.-340246 for the treatment of Huntington's disease: a progress update. CHDI Foundation 7th Annual HD Therapeutics Conference (2013).

  246. 246

    Träger, U. et al. HTT-lowering reverses Huntington's disease immune dysfunction caused by NFκB pathway dysregulation. Brain 137, 819–833 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  247. 247

    A clinical study in subjects with Huntington's disease to assess the efficacy and safety of three oral doses of laquinimod. [online], https://clinicaltrials.gov/ct2/show/NCT02215616 (2014).

  248. 248

    Gianfriddo, M., Melani, A., Turchi, D., Giovannini, M. G. & Pedata, F. Adenosine and glutamate extracellular concentrations and mitogen-activated protein kinases in the striatum of Huntington transgenic mice. Selective antagonism of adenosine A2A receptors reduces transmitter outflow. Neurobiol. Dis. 17, 77–88 (2004).

    Article  CAS  PubMed  Google Scholar 

  249. 249

    Liu, Y. F. Expression of polyglutamine-expanded huntingtin activates the SEK1–JNK pathway and induces apoptosis in a hippocampal neuronal cell line. J. Biol. Chem. 273, 28873–28877 (1998).

    Article  CAS  PubMed  Google Scholar 

  250. 250

    Apostol, B. L. et al. Mutant huntingtin alters MAPK signaling pathways in PC12 and striatal cells: ERK1/2 protects against mutant huntingtin-associated toxicity. Hum. Mol. Genet. 15, 273–285 (2006).

    Article  CAS  PubMed  Google Scholar 

  251. 251

    Ferrante, R. J. et al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice. J. Neurosci. 23, 9418–9427 (2003).

    Article  CAS  PubMed  Google Scholar 

  252. 252

    Taylor, D. M. et al. MAP kinase phosphatase 1 (MKP-1/DUSP1) is neuroprotective in Huntington's disease via additive effects of JNK and p38 inhibition. J. Neurosci. 33, 2313–2325 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. 253

    Apostol, B. L. et al. CEP-1347 reduces mutant huntingtin-associated neurotoxicity and restores BDNF levels in R6/2 mice. Mol. Cell. Neurosci. 39, 8–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  254. 254

    Mrzljak, L. & Munoz-Sanjuan, I. Therapeutic strategies for Huntington's disease. Curr. Top. Behav. Neurosci.http://dx.doi.org/10.1007/7854_2013_250 (2013).

  255. 255

    Wild, E. J. & Tabrizi, S. J. Targets for future clinical trials in Huntington's disease: what's in the pipeline? Mov. Disord. 29, 1434–1445 (2014).

    Article  CAS  PubMed  Google Scholar 

  256. 256

    Omeros provides update on PDE10 inhibitor program. PRNewswire [online], http://www.prnewswire.com/news-releases/omeros-provides-update-on-pde10-inhibitor-program-322137646.html (2014)

  257. 257

    Hobbs, N. Z. et al. Evaluation of multi-modal, multi-site neuroimaging measures in Huntington's disease: baseline results from the PADDINGTON study. NeuroImage. Clin. 2, 204–211 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  258. 258

    Constantinescu, R., Zetterberg, H., Holmberg, B. & Rosengren, L. Levels of brain related proteins in cerebrospinal fluid: an aid in the differential diagnosis of parkinsonian disorders. Parkinsonism Relat. Disord. 15, 205–212 (2009).

    Article  PubMed  Google Scholar 

  259. 259

    Leoni, V. et al. Plasma 24S-hydroxycholesterol and caudate MRI in pre-manifest and early Huntington's disease. Brain 131, 2851–2859 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank R. Korn for his assistance in preparing and editing the Current clinical trials section. They thank J. Behagg for his assistance in preparing the manuscript.

Author information

Affiliations

Authors

Contributions

Authorship is ordered alphabetically with the exception of S.J.T., who is the corresponding author. Introduction (S.J.T., E.J.W.); Epidemiology (M.R.H., C.K.), Mechaniams/pathophysiology (J.F.G., R.W., G.P.B.); Diagnosis, screening and prevention (C.A.R.); Management (M.N., R.D.); Quality of life (M.N.); Outlook (B.L., S.J.T., R.I.S., E.J.W., M.N., R.D.); overview of the Primer (S.J.T.).

Corresponding author

Correspondence to Sarah J. Tabrizi.

Ethics declarations

Competing interests

S.J.T. has served on advisory boards or had consultancies with GlaxoSmithKline, Ixico Technologies, Isis Pharmaceuticals, Novartis, Roche, Sanofi-Aventis, Siena Biotech Takeda Pharmaceuticals International and TEVA Pharmaceuticals. All honoraria paid for these consultancies and advisory boards go to University College London, UK, S.J.T.'s employer. R.D. has received compensation for consulting activities from Clintrex, Lundbeck, mc10, Shire and the US National Institute of Neurological Disorders and Stroke; research support from Auspex Pharmaceuticals, Biogen, Davis Phinney Foundation, Great Lakes Neurotechnologies, Huntington Study Group, Lundbeck, The Michael J. Fox Foundation, US National Science Foundation, Patient-Centered Outcomes Research Institute, Prana Biotechnology and Sage Bionetworks; and has stock options in Grand Rounds. R.D. is an uncompensated advisor to SBR Health and Vidyo. M.R.H. is president of Global R&D and Chief Scientific Officer at Teva. B.R.L. is the Co-Chair of the Huntington Study Group; has acted as a consultant for Novartis, Pfizer, Siena Biotech, Teva and Isis; and has received relevant research grant support from CHDI, Teva, the Canadian Institutes of Health Research and the Michael Smith Foundation. M.N. has served on paid advisory boards for Lundbeck Inc. and Auspex Pharmaceuticals, and receives research grant funding from Teva Pharmaceuticals and NeuroSearch. C.A.R. currently acts as a consultant for Raptor Pharma; has consulted for Isis, Pfizer, Delbiopharm and Lundbeck; and receives research funding from Johnson & Johnson/Janssen Pharma. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bates, G., Dorsey, R., Gusella, J. et al. Huntington disease. Nat Rev Dis Primers 1, 15005 (2015). https://doi.org/10.1038/nrdp.2015.5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing