Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Melanoma

Abstract

Melanoma is a common cancer in the Western world with an increasing incidence. Sun exposure is still considered to be the major risk factor for melanoma. The prognosis of patients with malignant (advanced-stage) melanoma differs widely between countries, but public campaigns advocating early detection have led to significant reductions in mortality rates. As well as sun exposure, distinct genetic alterations have been identified as associated with melanoma. For example, families with melanoma who have germline mutations in CDKN2A are well known, whereas the vast majority of sporadic melanomas have mutations in the mitogen-activated protein kinase cascade, which is the pathway with the highest oncogenic and therapeutic relevance for this disease. BRAF and NRAS mutations are typically found in cutaneous melanomas, whereas KIT mutations are predominantly observed in mucosal and acral melanomas. GNAQ and GNA11 mutations prevail in uveal melanomas. Additionally, the PI3K–AKT–PTEN pathway and the immune checkpoint pathways are important. The finding that programmed cell death protein 1 ligand 1 (PDL1) and PDL2 are expressed by melanoma cells, T cells, B cells and natural killer cells led to the recent development of programmed cell death protein 1 (PD1)-specific antibodies (for example, nivolumab and pembrolizumab). Alongside other new drugs — namely, BRAF inhibitors (vemurafenib and dabrafenib) and MEK inhibitors (trametinib and cobimetinib) — these agents are very promising and have been shown to significantly improve prognosis for patients with advanced-stage metastatic disease. Early signs are apparent that these new treatment modalities are also improving long-term clinical benefit and the quality of life of patients. This Primer summarizes the current understanding of melanoma, from mechanistic insights to clinical progress. For an illustrated summary of this Primer, visit: http://go.nature.com/vX2N9s

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Incidence and mortality of cutaneous melanoma.
Figure 2: Signalling pathways in melanoma.
Figure 3: Dermoscopy enables visualization of subsurface features present in skin lesions that are not evident to the naked eye.
Figure 4: UV radiation: carcinogenesis, vitamin D, tanning and addiction behaviours.
Figure 5: The future of melanoma research.

References

  1. 1

    Schadendorf, D. & Hauschild, A. Melanoma in 2013: Melanoma—the run of success continues. Nature Rev. Clin. Oncol. 11, 75–76 (2014).

    Article  CAS  Google Scholar 

  2. 2

    Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Si, L., Wang, X. & Guo, J. Genotyping of mucosal melanoma. Chin. Clin. Oncol. 3, 27 (2014).

    Google Scholar 

  4. 4

    De Angelis, R. et al. Cancer survival in Europe 1999–2007 by country and age: results of EUROCARE—5-a population-based study. Lancet Oncol. 15, 23–34 (2014).

    Article  Google Scholar 

  5. 5

    Pflugfelder, A. et al. Malignant melanoma S3-guideline “diagnosis, therapy and follow-up of melanoma”. J. Dtsch. Dermatol. Ges. 11 (Suppl. 6), 1–116, 1–126 (2013).

    PubMed  Google Scholar 

  6. 6

    Garbe, C. & Bauer, J. in Dermatology 3rd edn (eds Bolognia, J. L., Jorizzo, J. L. & Schaffer, J. V. ) 1885–1914 (Elsevier, 2012).

    Google Scholar 

  7. 7

    Erdmann, F. et al. International trends in the incidence of malignant melanoma 1953-2008—are recent generations at higher or lower risk? Int. J. Cancer 132, 385–400 (2013). A paper describing the incidence rates of melanoma across the world.

    Article  CAS  Google Scholar 

  8. 8

    Geller, A. C. et al. Melanoma epidemic: an analysis of six decades of data from the Connecticut Tumor Registry. J. Clin. Oncol. 31, 4172–4178 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9

    Garbe, C. & Leiter, U. Melanoma epidemiology and trends. Clin. Dermatol. 27, 3–9 (2009).

    Article  Google Scholar 

  10. 10

    MacKie, R. M., Hauschild, A. & Eggermont, A. M. Epidemiology of invasive cutaneous melanoma. Ann. Oncol. 20 (Suppl. 6), vi1–vi7 (2009).

    PubMed  Google Scholar 

  11. 11

    Hausauer, A. K., Swetter, S. M., Cockburn, M. G. & Clarke, C. A. Increases in melanoma among adolescent girls and young women in California: trends by socioeconomic status and UV radiation exposure. Arch. Dermatol. 147, 783–789 (2011).

    Article  Google Scholar 

  12. 12

    Breitbart, E. W. et al. Systematic skin cancer screening in Northern Germany. J. Am. Acad. Dermatol. 66, 201–211 (2012).

    Article  Google Scholar 

  13. 13

    Iannacone, M. R., Youlden, D. R., Baade, P. D., Aitken, J. F. & Green, A. C. Melanoma incidence trends and survival in adolescents and young adults in Queensland, Australia. Int. J. Cancer 136, 603–609 (2014).

    PubMed  PubMed Central  Google Scholar 

  14. 14

    Czarnecki, D. The incidence of melanoma is increasing in the susceptible young Australian population. Acta Derm. Venereol. 94, 539–541 (2014).

    Article  Google Scholar 

  15. 15

    Downing, A., Yu, X. Q., Newton-Bishop, J. & Forman, D. Trends in prognostic factors and survival from cutaneous melanoma in Yorkshire, UK and New South Wales, Australia between 1993 and 2003. Int. J. Cancer 123, 861–866 (2008).

    Article  CAS  Google Scholar 

  16. 16

    Livingstone, E. et al. A first prospective population-based analysis investigating the actual practice of melanoma diagnosis, treatment and follow-up. Eur. J. Cancer 47, 1977–1989 (2011).

    Article  Google Scholar 

  17. 17

    Gandini, S. et al. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur. J. Cancer 41, 45–60 (2005).

    Article  Google Scholar 

  18. 18

    Gandini, S. et al. Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi. Eur. J. Cancer 41, 28–44 (2005). A paper that describes the association of UV exposure, melanocytic naevus count and melanoma development.

    Article  Google Scholar 

  19. 19

    Boniol, M., Autier, P., Boyle, P. & Gandini, S. Cutaneous melanoma attributable to sunbed use: systematic review and meta-analysis. BMJ 345, e4757 (2012). A systematic review and meta-analysis that links usage of sunbeds to the development of cutaneous melanoma.

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    Gandini, S. et al. Melanoma attributable to sunbed use and tan seeking behaviours: an Italian survey. Eur. J. Dermatol. 24, 35–40 (2014).

    PubMed  Google Scholar 

  21. 21

    Burnet, N. G., Jefferies, S. J., Benson, R. J., Hunt, D. P. & Treasure, F. P. Years of life lost (YLL) from cancer is an important measure of population burden—and should be considered when allocating research funds. Br. J. Cancer 92, 241–245 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Joosse, A. et al. Superior outcome of women with stage I/II cutaneous melanoma: pooled analysis of four European Organisation for Research and Treatment of Cancer phase III trials. J. Clin. Oncol. 30, 2240–2247 (2012).

    Article  Google Scholar 

  23. 23

    Joosse, A. et al. Sex is an independent prognostic indicator for survival and relapse/progression-free survival in metastasized stage III to IV melanoma: a pooled analysis of five European organisation for research and treatment of cancer randomized controlled trials. J. Clin. Oncol. 31, 2337–2346 (2013).

    Article  Google Scholar 

  24. 24

    Bastian, B. C. The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia. Annu. Rev. Pathol. 9, 239–271 (2014).

    Article  CAS  Google Scholar 

  25. 25

    FitzGerald, M. G. et al. Prevalence of germ-line mutations in p16, 19ARF, and CDK4 in familial melanoma: analysis of a clinic-based population. Proc. Natl Acad. Sci. USA 93, 8541–8545 (1996).

    Article  CAS  Google Scholar 

  26. 26

    Goldstein, A. M. et al. High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL. Cancer Res. 66, 9818–9828 (2006).

    Article  CAS  Google Scholar 

  27. 27

    Chin, L., Garraway, L. A. & Fisher, D. E. Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev. 20, 2149–2182 (2006).

    Article  CAS  Google Scholar 

  28. 28

    Sheppard, K. E. & McArthur, G. A. The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma. Clin. Cancer Res. 19, 5320–5328 (2013).

    Article  CAS  Google Scholar 

  29. 29

    Zuo, L. et al. Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat. Genet. 12, 97–99 (1996).

    Article  CAS  Google Scholar 

  30. 30

    Wiesner, T. et al. Germline mutations in BAP1 predispose to melanocytic tumors. Nat. Genet. 43, 1018–1021 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Robles-Espinoza, C. D. et al. POT1 loss-of-function variants predispose to familial melanoma. Nat. Genet. 46, 478–481 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Shi, J. et al. Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma. Nat. Genet. 46, 482–486 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Eggermont, A. M. M., Spatz, A. & Robert, C. Cutaneous melanoma. Lancet 383, 816–827 (2014).

    Article  CAS  Google Scholar 

  34. 34

    Hawryluk, E. B. & Tsao, H. Melanoma: clinical features and genomic insights. Cold Spring Harb. Perspect. Med. 4, a015388 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Ward, K. A., Lazovich, D. & Hordinsky, M. K. Germline melanoma susceptibility and prognostic genes: a review of the literature. J. Am. Acad. Dermatol. 67, 1055–1067 (2012).

    Article  Google Scholar 

  36. 36

    Raimondi, S. et al. MC1R variants, melanoma and red hair color phenotype: a meta-analysis. Int. J. Cancer 122, 2753–2760 (2008).

    Article  CAS  Google Scholar 

  37. 37

    García-Borrón, J. C., Sánchez-Laorden, B. L. & Jiménez-Cervantes, C. Melanocortin-1 receptor structure and functional regulation. Pigment Cell Res. 18, 393–410 (2005).

    PubMed  Google Scholar 

  38. 38

    Garraway, L. A. et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436, 117–122 (2005).

    Article  CAS  Google Scholar 

  39. 39

    Hodis, E. et al. A landscape of driver mutations in melanoma. Cell 150, 251–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Berger, M. F. et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 485, 502–506 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Krauthammer, M. et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat. Genet. 44, 1006–1014 (2012). References 39, 41 and 42 are landmark papers describing the mutational landscape of melanoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Flaherty, K. T., Hodi, F. S. & Fisher, D. E. From genes to drugs: targeted strategies for melanoma. Nat. Rev. Cancer 12, 349–361 (2012).

    Article  CAS  Google Scholar 

  44. 44

    Kamb, A. Role of a cell cycle regulator in hereditary and sporadic cancer. Cold Spring Harb. Symp. Quant. Biol. 59, 39–47 (1994).

    Article  CAS  Google Scholar 

  45. 45

    Hussussian, C. J. et al. Germline p16 mutations in familial melanoma. Nat. Genet. 8, 15–21 (1994).

    Article  CAS  Google Scholar 

  46. 46

    Kwong, L. N. et al. Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma. Nat. Med. 18, 1503–1510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Jakob, J. A. et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer 118, 4014–4023 (2012).

    Article  CAS  Google Scholar 

  48. 48

    Griewank, K. G. et al. Genetic alterations and personalized medicine in melanoma: progress and future prospects. J. Natl. Cancer Inst. 106, djt435 (2014).

    Article  Google Scholar 

  49. 49

    Van Raamsdonk, C. D. et al. Mutations in GNA11 in uveal melanoma. N. Engl. J. Med. 363, 2191–2199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Noonan, F. P. et al. Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment. Nat. Commun. 3, 884 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Lito, P., Rosen, N. & Solit, D. B. Tumor adaptation and resistance to RAF inhibitors. Nat. Med. 19, 1401–1409 (2013).

    Article  CAS  Google Scholar 

  52. 52

    McArthur, G. A. et al. Safety and efficacy of vemurafenib in BRAFV600E and BRAFV600K mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet. Oncol. 15, 323–332 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Hauschild, A. et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380, 358–365 (2012).

    Article  CAS  Google Scholar 

  54. 54

    Flaherty, K. T. et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med. 367, 1694–1703 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Ribas, A. et al. Combination of vemurafenib and cobimetinib in patients with advanced BRAFV600-mutated melanoma: a phase 1b study. Lancet. Oncol. 15, 954–965 (2014).

    Article  CAS  Google Scholar 

  56. 56

    Hartsough, E., Shao, Y. & Aplin, A. E. Resistance to RAF inhibitors revisited. J. Invest. Dermatol. 134, 319–325 (2014).

    Article  CAS  Google Scholar 

  57. 57

    Roesch, A. Tumor heterogeneity and plasticity as elusive drivers for resistance to MAPK pathway inhibition in melanoma. Oncogenehttp://dx.doi.org/10.1038/onc.2014.249 (2014).

  58. 58

    Shi, H. et al. Melanoma whole-exome sequencing identifies V600EB-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat. Commun. 3, 724 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Poulikakos, P. I. et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480, 387–390 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Johannessen, C. M. et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468, 968–972 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Montagut, C. et al. Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res. 68, 4853–4861 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Nazarian, R. et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468, 973–977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Sun, C. et al. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature 508, 118–122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Villanueva, J. et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18, 683–695 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).

    Article  CAS  Google Scholar 

  66. 66

    Gaffal, E. et al. Neonatal UVB exposure accelerates melanoma growth and enhances distant metastases in Hgf-Cdk4R24C C57BL/6 mice. Int. J. Cancer 129, 285–294 (2011).

    Article  CAS  Google Scholar 

  67. 67

    Bald, T. et al. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 507, 109–113 (2014).

    Article  CAS  Google Scholar 

  68. 68

    Viros, A. et al. Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53. Nature 511, 478–482 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Mitra, D. et al. An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair fair skin background. Nature 491, 449–453 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Dankort, D. et al. BrafV600E cooperates with Pten loss to induce metastatic melanoma. Nat. Genet. 41, 544–552 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Tsao, H., Goel, V., Wu, H., Yang, G. & Haluska, F. G. Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J. Invest. Dermatol. 122, 337–341 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Nathanson, K. L. et al. Tumor genetic analyses of patients with metastatic melanoma treated with the BRAF inhibitor dabrafenib (GSK2118436). Clin. Cancer Res. 19, 4868–4878 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Topalian, S. L. et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J. Clin. Oncol. 32, 1020–1030 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369, 122–133 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Umansky, V. & Sevko, A. Melanoma-induced immunosuppression and its neutralization. Semin. Cancer Biol. 22, 319–326 (2012).

    Article  CAS  Google Scholar 

  77. 77

    Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Damsky, W. E., Theodosakis, N. & Bosenberg, M. Melanoma metastasis: new concepts and evolving paradigms. Oncogene 33, 2413–2422 (2014).

    Article  CAS  Google Scholar 

  79. 79

    Hüsemann, Y. et al. Systemic spread is an early step in breast cancer. Cancer Cell 13, 58–68 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Klein, C. A. Parallel progression of primary tumours and metastases. Nat. Rev. Cancer 9, 302–312 (2009).

    Article  CAS  Google Scholar 

  81. 81

    Bernards, R. & Weinberg, R. A. A progression puzzle. Nature 418, 823 (2002).

    Article  CAS  Google Scholar 

  82. 82

    Gartner, J. J. et al. Comparative exome sequencing of metastatic lesions provides insights into the mutational progression of melanoma. BMC Genomics 13, 505 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Pleasance, E. D. et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463, 191–196 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Turajlic, S. et al. Whole genome sequencing of matched primary and metastatic acral melanomas. Genome Res. 22, 196–207 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Meacham, C. E. & Morrison, S. J. Tumour heterogeneity and cancer cell plasticity. Nature 501, 328–337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Roesch, A. et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141, 583–594 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Roesch, A. et al. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1Bhigh cells. Cancer Cell 23, 811–825 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Ramirez, R. D. et al. Progressive increase in telomerase activity from benign melanocytic conditions to malignant melanoma. Neoplasia 1, 42–49 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Rudolph, P. et al. Telomerase activity in melanocytic lesions: A potential marker of tumor biology. Am. J. Pathol. 156, 1425–1432 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Horn, S. et al. TERT promoter mutations in familial and sporadic melanoma. Science 339, 959–961 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Huang, F. W. et al. Highly recurrent TERT promoter mutations in human melanoma. Science 339, 957–959 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Griewank, K. G. et al. TERT promoter mutation status as an independent prognostic factor in cutaneous melanoma. J. Natl. Cancer Inst. 106, dju246 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Hartman, M. L. & Czyz, M. Anti-apoptotic proteins on guard of melanoma cell survival. Cancer Lett. 331, 24–34 (2013).

    Article  CAS  Google Scholar 

  94. 94

    Liu, J., Fukunaga-Kalabis, M., Li, L. & Herlyn, M. Developmental pathways activated in melanocytes and melanoma. Arch. Biochem. Biophys. 563C, 13–21 (2014).

    Article  CAS  Google Scholar 

  95. 95

    Curtin, J. A. et al. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med. 353, 2135–2147 (2005).

    Article  CAS  Google Scholar 

  96. 96

    McPherson, M. et al. Presentation and detection of invasive melanoma in a high-risk population. J. Am. Acad. Dermatol. 54, 783–792 (2006).

    Article  Google Scholar 

  97. 97

    Brady, M. S. et al. Patterns of detection in patients with cutaneous melanoma. Cancer 89, 342–347 (2000).

    Article  CAS  Google Scholar 

  98. 98

    Criscione, V. D. & Weinstock, M. A. Melanoma thickness trends in the United States, 1988–2006. J. Invest. Dermatol. 130, 793–797 (2010).

    Article  CAS  Google Scholar 

  99. 99

    Argenziano, G. et al. Accuracy in melanoma detection: a 10-year multicenter survey. J. Am. Acad. Dermatol. 67, 54–59 (2012).

    Article  Google Scholar 

  100. 100

    Marghoob, A. A. & Scope, A. The complexity of diagnosing melanoma. J. Invest. Dermatol. 129, 11–13 (2009).

    Article  CAS  Google Scholar 

  101. 101

    Vestergaard, M. E., Macaskill, P., Holt, P. E. & Menzies, S. W. Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: a meta-analysis of studies performed in a clinical setting. Br. J. Dermatol. 159, 669–676 (2008). After excluding two outlier studies, this meta-analysis of seven prospective studies with consecutively recruited patients showed that dermoscopy has a relative diagnostic odds ratio of 9.0 (95%CI 1.5–54.6; P = 0.03) for primary melanoma detection compared with naked-eye examination alone.

    CAS  PubMed  Google Scholar 

  102. 102

    Carli, P. et al. Addition of dermoscopy to conventional naked-eye examination in melanoma screening: a randomized study. J. Am. Acad. Dermatol. 50, 683–689 (2004).

    Article  Google Scholar 

  103. 103

    Carli, P. et al. Improvement of malignant/benign ratio in excised melanocytic lesions in the “dermoscopy era”: a retrospective study 1997–2001. Br. J. Dermatol. 150, 687–692 (2004).

    Article  CAS  Google Scholar 

  104. 104

    Tromme, I. et al. Availability of digital dermoscopy in daily practice dramatically reduces the number of excised melanocytic lesions: results from an observational study. Br. J. Dermatol. 167, 778–786 (2012).

    Article  CAS  Google Scholar 

  105. 105

    Kittler, H. et al. Identification of clinically featureless incipient melanoma using sequential dermoscopy imaging. Arch. Dermatol. 142, 1113–1119 (2006).

    Article  Google Scholar 

  106. 106

    Haenssle, H. A. et al. Results from an observational trial: digital epiluminescence microscopy follow-up of atypical nevi increases the sensitivity and the chance of success of conventional dermoscopy in detecting melanoma. J. Invest. Dermatol. 126, 980–985 (2006).

    Article  CAS  Google Scholar 

  107. 107

    Kelly, J. W., Yeatman, J. M., Regalia, C., Mason, G. & Henham, A. P. A high incidence of melanoma found in patients with multiple dysplastic naevi by photographic surveillance. Med. J. Aust. 167, 191–194 (1997).

    Article  CAS  Google Scholar 

  108. 108

    Feit, N. E., Dusza, S. W. & Marghoob, A. A. Melanomas detected with the aid of total cutaneous photography. Br. J. Dermatol. 150, 706–714 (2004).

    Article  CAS  Google Scholar 

  109. 109

    Goodson, A. G., Florell, S. R., Hyde, M., Bowen, G. M. & Grossman, D. Comparative analysis of total body and dermatoscopic photographic monitoring of nevi in similar patient populations at risk for cutaneous melanoma. Dermatol. Surg. 36, 1087–1098 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Rhodes, A. R. Intervention strategy to prevent lethal cutaneous melanoma: use of dermatologic photography to aid surveillance of high-risk persons. J. Am. Acad. Dermatol. 39, 262–267 (1998).

    Article  CAS  Google Scholar 

  111. 111

    Moloney, F. J. et al. Detection of primary melanoma in individuals at extreme high risk: a prospective 5-year follow-up study. JAMA Dermatol. 150, 819–827 (2014).

    Article  Google Scholar 

  112. 112

    Salerni, G. et al. Benefits of total body photography and digital dermatoscopy (“two-step method of digital follow-up”) in the early diagnosis of melanoma in patients at high risk for melanoma. J. Am. Acad. Dermatol. 67, e17–e27 (2012).

    Article  Google Scholar 

  113. 113

    Guitera, P. et al. In vivo reflectance confocal microscopy enhances secondary evaluation of melanocytic lesions. J. Invest. Dermatol. 129, 131–138 (2009).

    Article  CAS  Google Scholar 

  114. 114

    Pellacani, G., Pepe, P., Casari, A. & Longo, C. Reflectance confocal microscopy as a second-level examination in skin oncology improves diagnostic accuracy and saves unnecessary excisions: a longitudinal prospective study. Br. J. Dermatol.http://dx.doi.org/10.1111/bjd.13148 (2014).

  115. 115

    Monheit, G. et al. The performance of MelaFind: a prospective multicenter study. Arch. Dermatol. 147, 188–194 (2011).

    Article  Google Scholar 

  116. 116

    Malvehy, J. et al. Clinical performance of the Nevisense system in cutaneous melanoma detection: an international, multicentre, prospective and blinded clinical trial on efficacy and safety. Br. J. Dermatol. 171, 1099–1107 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Thomas, N. E. et al. Comparison of clinicopathologic features and survival of histopathologically amelanotic and pigmented melanomas: a population-based study. JAMA Dermatol. 150, 12 (2014).

    Article  Google Scholar 

  118. 118

    Lodha, S., Saggar, S., Celebi, J. T. & Silvers, D. N. Discordance in the histopathologic diagnosis of difficult melanocytic neoplasms in the clinical setting. J. Cutan. Pathol. 35, 349–352 (2008).

    Article  Google Scholar 

  119. 119

    Shoo, B. A., Sagebiel, R. W. & Kashani-Sabet, M. Discordance in the histopathologic diagnosis of melanoma at a melanoma referral center. J. Am. Acad. Dermatol. 62, 751–756 (2010).

    Article  Google Scholar 

  120. 120

    Cerroni, L. et al. Melanocytic tumors of uncertain malignant potential: results of a tutorial held at the XXIX Symposium of the International Society of Dermatopathology in Graz, October 2008. Am. J. Surg. Pathol. 34, 314–326 (2010).

    Article  Google Scholar 

  121. 121

    Levell, N. J., Beattie, C. C., Shuster, S. & Greenberg, D. C. Melanoma epidemic: a midsummer night's dream? Br. J. Dermatol. 161, 630–634 (2009).

    Article  CAS  Google Scholar 

  122. 122

    Ohsie, S. J., Sarantopoulos, G. P., Cochran, A. J. & Binder, S. W. Immunohistochemical characteristics of melanoma. J. Cutan. Pathol. 35, 433–444 (2008).

    Article  Google Scholar 

  123. 123

    Bauer, J. & Bastian, B. C. Distinguishing melanocytic nevi from melanoma by DNA copy number changes: comparative genomic hybridization as a research and diagnostic tool. Dermatol. Ther. 19, 40–49.

  124. 124

    Luo, S., Sepehr, A. & Tsao, H. Spitz nevi and other Spitzoid lesions part I. Background and diagnoses. J. Am. Acad. Dermatol. 65, 1073–1084 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  125. 125

    Gerami, P. et al. Fluorescence in situ hybridization (FISH) as an ancillary diagnostic tool in the diagnosis of melanoma. Am. J. Surg. Pathol. 33, 1146–1156 (2009).

    Article  Google Scholar 

  126. 126

    Massi, D. et al. Atypical Spitzoid melanocytic tumors: a morphological, mutational, and FISH analysis. J. Am. Acad. Dermatol. 64, 919–935 (2011).

    Article  Google Scholar 

  127. 127

    Vergier, B. et al. Fluorescence in situ hybridization, a diagnostic aid in ambiguous melanocytic tumors: European study of 113 cases. Mod. Pathol. 24, 613–623 (2011).

    Article  CAS  Google Scholar 

  128. 128

    Raskin, L. et al. Copy number variations and clinical outcome in atypical spitz tumors. Am. J. Surg. Pathol. 35, 243–252 (2011).

    Article  Google Scholar 

  129. 129

    Gaiser, T. et al. Classifying ambiguous melanocytic lesions with FISH and correlation with clinical long-term follow up. Mod. Pathol. 23, 413–419 (2010).

    Article  CAS  Google Scholar 

  130. 130

    Gerami, P. et al. Sensitivity of fluorescence in situ hybridization for melanoma diagnosis using RREB1, MYB, Cep6, and 11q13 probes in melanoma subtypes. Arch. Dermatol. 146, 273–278 (2010).

    Article  Google Scholar 

  131. 131

    Pouryazdanparast, P. et al. Distinctive clinical and histologic features in cutaneous melanoma with copy number gains in 8q24. Am. J. Surg. Pathol. 36, 253–264 (2012).

    Article  Google Scholar 

  132. 132

    Gammon, B., Beilfuss, B., Guitart, J. & Gerami, P. Enhanced detection of spitzoid melanomas using fluorescence in situ hybridization with 9p21 as an adjunctive probe. Am. J. Surg. Pathol. 36, 81–88 (2012).

    Article  Google Scholar 

  133. 133

    Gerami, P. et al. Fluorescence in situ hybridization for distinguishing nevoid melanomas from mitotically active nevi. Am. J. Surg. Pathol. 33, 1783–1788 (2009).

    Article  Google Scholar 

  134. 134

    Busam, K. J. Molecular pathology of melanocytic tumors. Semin. Diagn. Pathol. 30, 362–374 (2013).

    Article  Google Scholar 

  135. 135

    Rock, C. et al. Development and validation of a gene expression signature to distinguish malignant melanoma from benign nevi. ASCO Meet. Abstr. 32, 9021 (2014).

    Google Scholar 

  136. 136

    Van Kempen, L. C. & Spatz, A. From biomarker development towards implementation of multidimensional biomarker panels in a clinical setting. Mol. Oncol. 8, 781–782 (2014).

    Article  Google Scholar 

  137. 137

    U.S. Preventive Services Task Force. Screening for skin cancer. U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 150, 188–193 (2009).

    Article  Google Scholar 

  138. 138

    Ferrini, R. L., Perlman, M. & Hill, L. American College of Preventive Medicine policy statement: screening for skin cancer. Am. J. Prev. Med. 14, 80–82 (1998).

    Article  CAS  Google Scholar 

  139. 139

    Kefford, R. et al. Genetic testing for melanoma. Lancet. Oncol. 3, 653–654 (2002).

    Article  Google Scholar 

  140. 140

    Hansen, C. B., Wadge, L. M., Lowstuter, K., Boucher, K. & Leachman, S. A. Clinical germline genetic testing for melanoma. Lancet. Oncol. 5, 314–319 (2004).

    Article  CAS  Google Scholar 

  141. 141

    Welch, H. G. & Black, W. C. Overdiagnosis in cancer. J. Natl Cancer Inst. 102, 605–613 (2010).

    Article  Google Scholar 

  142. 142

    Beddingfield, F. C. The melanoma epidemic: res ipsa loquitur. Oncologist 8, 459–465 (2003).

    Article  Google Scholar 

  143. 143

    Welch, H. G., Woloshin, S. & Schwartz, L. M. Skin biopsy rates and incidence of melanoma: population based ecological study. BMJ 331, 481 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  144. 144

    Swerlick, R. A. & Chen, S. The melanoma epidemic: more apparent than real? Mayo Clin. Proc. 72, 559–564 (1997).

    Article  CAS  Google Scholar 

  145. 145

    Epstein, D. S., Lange, J. R., Gruber, S. B., Mofid, M. & Koch, S. E. Is physician detection associated with thinner melanomas? JAMA 281, 640–643 (1999).

    Article  CAS  Google Scholar 

  146. 146

    Katalinic, A. et al. Does skin cancer screening save lives?: an observational study comparing trends in melanoma mortality in regions with and without screening. Cancer 118, 5395–5402 (2012). This paper reports that melanoma-specific mortality decreased by 47% in the years after a population-based skin cancer screening programme was conducted in the German state of Schleswig-Holstein from July 2003 to June 2004.

    Article  Google Scholar 

  147. 147

    U.S. Preventive Services Task Force. Skin cancer: screening. Summary of recommendations and evidence. [online], (2009).

  148. 148

    U.S. Department of Health and Human Services. The Surgeon General's call to action to prevent skin cancer. [online], (2014).

  149. 149

    Lu, C. et al. The genomic landscape of childhood and adolescent melanoma. J. Invest. Dermatol. 135, 816–823 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. 150

    El Ghissassi, F. et al. A review of human carcinogens—part D: radiation. Lancet Oncol. 10, 751–752 (2009).

    Article  Google Scholar 

  151. 151

    Colantonio, S., Bracken, M. B. & Beecker, J. The association of indoor tanning and melanoma in adults: systematic review and meta-analysis. J. Am. Acad. Dermatol. 70, 847–857.e1-18 (2014).

    Article  Google Scholar 

  152. 152

    Green, A. C., Williams, G. M., Logan, V. & Strutton, G. M. Reduced melanoma after regular sunscreen use: randomized trial follow-up. J. Clin. Oncol. 29, 257–263 (2011). In this prospective randomized controlled trial conducted in Queensland, Australia, daily sunscreen application to the head and arms reduced the risk of all melanomas by 50% (P = 0.051) and invasive melanomas by 73% (P = 0.045) compared with discretionary sunscreen application.

    Article  CAS  Google Scholar 

  153. 153

    Goldenhersh, M. A. & Koslowsky, M. Increased melanoma after regular sunscreen use? J. Clin. Oncol. 29, e557–e558 (2011).

    Article  Google Scholar 

  154. 154

    Bigby, M. & Kim, C. C. A prospective randomized controlled trial indicates that sunscreen use reduced the risk of developing melanoma. Arch. Dermatol. 147, 853–854 (2011).

    Article  Google Scholar 

  155. 155

    Matsuoka, L. Y., Wortsman, J., Hanifan, N. & Holick, M. F. Chronic sunscreen use decreases circulating concentrations of 25-hydroxyvitamin D. A preliminary study. Arch. Dermatol. 124, 1802–1804 (1988).

    Article  CAS  Google Scholar 

  156. 156

    Holick, M. F. & Chen, T. C. Vitamin D deficiency: a worldwide problem with health consequences. Am. J. Clin. Nutr. 87, 1080S–1086S (2008).

    Article  CAS  Google Scholar 

  157. 157

    Marks, R. et al. The effect of regular sunscreen use on vitamin D levels in an Australian population. Results of a randomized controlled trial. Arch. Dermatol. 131, 415–421 (1995).

    Article  CAS  Google Scholar 

  158. 158

    Holick, M. F., Matsuoka, L. Y. & Wortsman, J. Regular use of sunscreen on vitamin D levels. Arch. Dermatol. 131, 1337–1339 (1995).

    Article  CAS  Google Scholar 

  159. 159

    Vieth, R. Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am. J. Clin. Nutr. 69, 842–856 (1999).

    Article  CAS  Google Scholar 

  160. 160

    Mosher, C. E. & Danoff-Burg, S. Addiction to indoor tanning: relation to anxiety, depression, and substance use. Arch. Dermatol. 146, 412–417 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  161. 161

    Harrington, C. R. et al. Addictive-like behaviours to ultraviolet light among frequent indoor tanners. Clin. Exp. Dermatol. 36, 33–38 (2011).

    Article  CAS  Google Scholar 

  162. 162

    Fell, G. L., Robinson, K. C., Mao, J., Woolf, C. J. & Fisher, D. E. Skin β-endorphin mediates addiction to UV light. Cell 157, 1527–1534 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. 163

    The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N. Engl. J. Med. 330, 1029–1035 (1994).

    Article  Google Scholar 

  164. 164

    Solomon, S. D. et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N. Engl. J. Med. 352, 1071–1080 (2005).

    Article  CAS  Google Scholar 

  165. 165

    Bonovas, S. et al. Can statin therapy reduce the risk of melanoma? A meta-analysis of randomized controlled trials. Eur. J. Epidemiol. 25, 29–35 (2010).

    Article  CAS  Google Scholar 

  166. 166

    Freeman, S. R. et al. Statins, fibrates, and melanoma risk: a systematic review and meta-analysis. J. Natl Cancer Inst. 98, 1538–1546 (2006).

    Article  CAS  Google Scholar 

  167. 167

    Cook, N. R. et al. Low-dose aspirin in the primary prevention of cancer: the Women's Health Study: a randomized controlled trial. JAMA 294, 47–55 (2005).

    Article  CAS  Google Scholar 

  168. 168

    Jacobs, E. J. et al. A large cohort study of long-term daily use of adult-strength aspirin and cancer incidence. J. Natl Cancer Inst. 99, 608–615 (2007).

    Article  CAS  Google Scholar 

  169. 169

    Asgari, M. M., Maruti, S. S. & White, E. A large cohort study of nonsteroidal anti-inflammatory drug use and melanoma incidence. J. Natl Cancer Inst. 100, 967–971 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. 170

    Francis, S. O., Mahlberg, M. J., Johnson, K. R., Ming, M. E. & Dellavalle, R. P. Melanoma chemoprevention. J. Am. Acad. Dermatol. 55, 849–861 (2006).

    Article  Google Scholar 

  171. 171

    Uzarska, M. et al. Chemoprevention of skin melanoma: facts and myths. Melanoma Res. 23, 426–433 (2013).

    Article  CAS  Google Scholar 

  172. 172

    Gershenwald, J. E. & Ross, M. I. Sentinel-lymph-node biopsy for cutaneous melanoma. N. Engl. J. Med. 364, 1738–1745 (2011). A review of current practice of SNB.

    Article  CAS  Google Scholar 

  173. 173

    Morton, D. L. et al. Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch. Surg. 127, 392–399 (1992).

    Article  CAS  Google Scholar 

  174. 174

    Wong, S. L. et al. Sentinel lymph node biopsy for melanoma: American Society of Clinical Oncology and Society of Surgical Oncology joint clinical practice guideline. Ann. Surg. Oncol. 19, 3313–3324 (2012).

    Article  Google Scholar 

  175. 175

    Gershenwald, J. E., Coit, D. G., Sondak, V. K. & Thompson, J. F. The challenge of defining guidelines for sentinel lymph node biopsy in patients with thin primary cutaneous melanomas. Ann. Surg. Oncol. 19, 3301–3303 (2012).

    Article  Google Scholar 

  176. 176

    NCCN Clinical Practice Guidelines in Oncology: Melanoma. National Comprehensive Cancer Network[online], (2012).

  177. 177

    Gershenwald, J. E. et al. Multi-institutional melanoma lymphatic mapping experience: the prognostic value of sentinel lymph node status in 612 stage I or II melanoma patients. J. Clin. Oncol. 17, 976–983 (1999).

    Article  CAS  Google Scholar 

  178. 178

    Morton, D. L. et al. Final trial report of sentinel-node biopsy versus nodal observation in melanoma. N. Engl. J. Med. 370, 599–609 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. 179

    Mocellin, S., Lens, M. B., Pasquali, S., Pilati, P. & Chiarion Sileni, V. Interferon alpha for the adjuvant treatment of cutaneous melanoma. Cochrane Database Syst. Rev. 6, CD008955 (2013). A meta-analysis of IFNα use in adjuvant trials.

    Google Scholar 

  180. 180

    Grob, J. J. et al. Adjuvant therapy with pegylated interferon alfa-2b (36 months) versus low-dose interferon alfa-2b (18 months) in melanoma patients without macrometastatic nodes: an open-label, randomised, phase 3 European Association for Dermato-Oncology (EADO) study. Eur. J. Cancer 49, 166–174 (2013).

    Article  CAS  Google Scholar 

  181. 181

    Ascierto, P. A. et al. Adjuvant interferon alfa in malignant melanoma: an interdisciplinary and multinational expert review. Crit. Rev. Oncol. Hematol. 85, 149–161 (2013).

    Article  Google Scholar 

  182. 182

    Eggermont, A. M. M. et al. Ulceration and stage are predictive of interferon efficacy in melanoma: results of the phase III adjuvant trials EORTC 18952 and EORTC 18991. Eur. J. Cancer 48, 218–225 (2012). This study describes ulceration as an important biomarker for IFN treatment and clinical benefit.

    Article  CAS  Google Scholar 

  183. 183

    Jemal, A. et al. Recent trends in cutaneous melanoma incidence and death rates in the United States, 1992–2006. J. Am. Acad. Dermatol. 65, S17–S25.e1–e3 (2011).

    Article  Google Scholar 

  184. 184

    Corrie, P. G. et al. Adjuvant bevacizumab in patients with melanoma at high risk of recurrence (AVAST-M): preplanned interim results from a multicentre, open-label, randomised controlled phase 3 study. Lancet Oncol. 15, 620–630 (2014).

    Article  CAS  Google Scholar 

  185. 185

    Eggermont, A. M. et al. Ipilimumab versus placebo after complete resection of stage III melanoma: Initial efficacy and safety results from the EORTC 18071 phase III trial. ASCO Meet. Abstr. 32, LBA9008 (2014).

    Google Scholar 

  186. 186

    Garraway, L. A. & Baselga, J. Whole-genome sequencing and cancer therapy: is too much ever enough? Cancer Discov. 2, 766–768 (2012).

    Article  Google Scholar 

  187. 187

    Hsueh, E. C., Famatiga, E., Gupta, R. K., Qi, K. & Morton, D. L. Enhancement of complement-dependent cytotoxicity by polyvalent melanoma cell vaccine (CancerVax): correlation with survival. Ann. Surg. Oncol. 5, 595–602.

  188. 188

    Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. 189

    Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364, 2517–2526 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. 190

    Bristol-Myers Squibb. YERVOY® (ipilimumab). [online], (2013).

  191. 191

    Ribas, A. & Flaherty, K. T. BRAF targeted therapy changes the treatment paradigm in melanoma. Nat. Rev. Clin. Oncol. 8, 426–433 (2011).

    Article  CAS  Google Scholar 

  192. 192

    McArthur, G. A. & Ribas, A. Targeting oncogenic drivers and the immune system in melanoma. J. Clin. Oncol. 31, 499–506 (2013).

    Article  CAS  Google Scholar 

  193. 193

    Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011). The first paper to describe an overall survival benefit using targeted therapy (the selective BRAF inhibitor vemurafenib) compared with chemotherapy in untreated metastatic melanoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. 194

    Hauschild, A. 1092PD: an update on overall survival (OS) and follow-on therapies in BREAK-3, a phase III, randomized trial: dabrafenib (D) versus dacarbazine (DTIC) in patients (pts) with BRAF V600E mutation-positive metastatic melanoma (MM). Ann. Oncol. 25 (Suppl. 4), iv374–iv393 (2014).

    Google Scholar 

  195. 195

    Hauschild, A. et al. An update on BREAK-3, a phase III, randomized trial: Dabrafenib (DAB) versus dacarbazine (DTIC) in patients with BRAF V600E-positive mutation metastatic melanoma (MM). ASCO Meet. Abstr. 31, 9013 (2013).

    Google Scholar 

  196. 196

    Sosman, J. A. et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N. Engl. J. Med. 366, 707–714 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. 197

    Zimmer, L. et al. Atypical melanocytic proliferations and new primary melanomas in patients with advanced melanoma undergoing selective BRAF inhibition. J. Clin. Oncol. 30, 2375–2383 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. 198

    Oberholzer, P. A. et al. RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. J. Clin. Oncol. 30, 316–321 (2012).

    Article  CAS  Google Scholar 

  199. 199

    Su, F. et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N. Engl. J. Med. 366, 207–215 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. 200

    Solit, D. B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 439, 358–362 (2006).

    Article  CAS  Google Scholar 

  201. 201

    Von Euw, E. et al. Antitumor effects of the investigational selective MEK inhibitor TAK733 against cutaneous and uveal melanoma cell lines. Mol. Cancer 11, 22 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. 202

    Flaherty, K. T. et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N. Engl. J. Med. 367, 107–114 (2012).

    Article  CAS  Google Scholar 

  203. 203

    Van Allen, E. M. et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 4, 94–109 (2014).

    Article  CAS  Google Scholar 

  204. 204

    Shi, H. et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 4, 80–93 (2014).

    Article  CAS  Google Scholar 

  205. 205

    Long, G. V. et al. Combined BRAF and MEK Inhibition versus BRAF Inhibition Alone in Melanoma. N. Engl. J. Med. 371, 1877–1888 (2014).

    Article  CAS  Google Scholar 

  206. 206

    Larkin, J. et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N. Engl. J. Med. 371, 1867–1876 (2014).

    Article  CAS  Google Scholar 

  207. 207

    Robert, C. et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N. Eng. J. Med. 372, 30–39 (2015). The first study to demonstrate an overall survival benefit in patients with BRAFV600-mutant melanoma using a combined BRAF inhibitor plus MEK inhibitor compared with BRAF-inhibitor monotherapy.

    Article  CAS  Google Scholar 

  208. 208

    Carvajal, R. D. et al. KIT as a therapeutic target in metastatic melanoma. JAMA 305, 2327–2334 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. 209

    Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. 210

    Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. 211

    Hamid, O. et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369, 134–144 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. 212

    Robert, C. et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet 384, 1109–1117 (2014).

    Article  CAS  Google Scholar 

  213. 213

    Robert, C. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Eng. J. Med. 372, 320–330 (2015). The first clinical study to demonstrate a clinically meaningful benefit using a PD1-specific antibody in untreated melanoma patients with no BRAF mutation compared with dacarbazine chemotherapy, leading to an increase in 1-year survival rate from 43% to 73%.

    Article  CAS  Google Scholar 

  214. 214

    Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. 215

    Rosenberg, S. A. Cell transfer immunotherapy for metastatic solid cancer—what clinicians need to know. Nat. Rev. Clin. Oncol. 8, 577–585 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. 216

    Rosenberg, S. A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17, 4550–4557 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. 217

    Hersh, E. M. et al. A phase 2 clinical trial of nab-paclitaxel in previously treated and chemotherapy-naive patients with metastatic melanoma. Cancer 116, 155–163 (2010).

    CAS  PubMed  Google Scholar 

  218. 218

    Hauschild, A. et al. Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. J. Clin. Oncol. 27, 2823–2830 (2009).

    Article  CAS  Google Scholar 

  219. 219

    Atkins, M. B. et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol. 17, 2105–2116 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. 220

    Andtbacka, R. H. I. et al. OPTiM: A randomized phase III trial of talimogene laherparepvec (T-VEC) versus subcutaneous (SC) granulocyte-macrophage colony-stimulating factor (GM-CSF) for the treatment (tx) of unresected stage IIIB/C & IV melanoma. ASCO Meet. Abstr. 31, LBA9008 (2013).

    Google Scholar 

  221. 221

    Burton, A. W., Chai, T. & Smith, L. S. Cancer pain assessment. Curr. Opin. Support. Palliat. Care 8, 112–116 (2014).

    Article  Google Scholar 

  222. 222

    Cleeland, C. S. & Ryan, K. M. Pain assessment: global use of the Brief Pain Inventory. Ann. Acad. Med. Singapore 23, 129–138 (1994).

    CAS  PubMed  Google Scholar 

  223. 223

    Kvaal, K., Ulstein, I., Nordhus, I. H. & Engedal, K. The Spielberger State-Trait Anxiety Inventory (STAI): the state scale in detecting mental disorders in geriatric patients. Int. J. Geriatr. Psychiatry 20, 629–634 (2005).

    Article  Google Scholar 

  224. 224

    Spielberger, C. D., Gorsuch, R. L. & Lushene, R. E. Manual for the State–Trait Anxiety Inventory. (Palo Alto, CA: Consulting Psychologists Press, 1970).

    Google Scholar 

  225. 225

    Manocchia, M. et al. SF-36 Health Survey Annotated Bibliography: Second Edition (1988–1996). (The Health Assessment Lab, New England Medical Center, 1998).

    Google Scholar 

  226. 226

    Aaronson, N. K. et al. The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. J. Natl Cancer Inst. 85, 365–376 (1993).

    Article  CAS  Google Scholar 

  227. 227

    Holterhues, C. et al. Impact of melanoma on patients' lives among 562 survivors: a Dutch population-based study. Arch. Dermatol. 147, 177–185 (2011).

    Article  Google Scholar 

  228. 228

    De Vries, M., Hoekstra, H. J. & Hoekstra-Weebers, J. E. H. M. Quality of life after axillary or groin sentinel lymph node biopsy, with or without completion lymph node dissection, in patients with cutaneous melanoma. Ann. Surg. Oncol. 16, 2840–2847 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  229. 229

    Hamidou, Z., Dabakuyo, T. S. & Bonnetain, F. Impact of response shift on longitudinal quality-of-life assessment in cancer clinical trials. Expert Rev. Pharmacoecon. Outcomes Res. 11, 549–559 (2011).

    Article  Google Scholar 

  230. 230

    Brandberg, Y. et al. Health-related quality of life in patients with high-risk melanoma randomised in the Nordic phase 3 trial with adjuvant intermediate-dose interferon alfa-2b. Eur. J. Cancer 48, 2012–2019 (2012).

    Article  CAS  Google Scholar 

  231. 231

    Mohr, P., Hauschild, A., Trefzer, U. & Weichenthal, M. Quality of life in patients receiving high-dose interferon alfa-2b after resected high-risk melanoma. J. Clin. Oncol. 27, e70; author reply e71 (2009).

    Article  Google Scholar 

  232. 232

    Bottomley, A. et al. Adjuvant therapy with pegylated interferon alfa-2b versus observation in resected stage III melanoma: a phase III randomized controlled trial of health-related quality of life and symptoms by the European Organisation for Research and Treatment of Cancer. J. Clin. Oncol. 27, 2916–2923 (2009).

    Article  CAS  Google Scholar 

  233. 233

    De Kock, I. et al. Conversion of Karnofsky Performance Status (KPS) and Eastern Cooperative Oncology Group Performance Status (ECOG) to Palliative Performance Scale (PPS), and the interchangeability of PPS and KPS in prognostic tools. J. Palliat. Care 29, 163–169 (2013).

    Article  Google Scholar 

  234. 234

    Mor, V., Laliberte, L., Morris, J. N. & Wiemann, M. The Karnofsky Performance Status Scale. An examination of its reliability and validity in a research setting. Cancer 53, 2002–2007 (1984).

    Article  CAS  Google Scholar 

  235. 235

    Hatswell, A. J. et al. Patient-reported utilities in advanced or metastatic melanoma, including analysis of utilities by time to death. Health Qual. Life Outcomes 12, 140 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  236. 236

    Schadendorf, D. et al. 1091PD COMBI-D: quality of life (QOL) impact of the combination of dabrafenib and trametinib (D + T) versus dabrafenib monotherapy (D) in patients with BRAF V600E/K unresectable or metastatic melanoma in a Phase III trial. Ann. Onc. 25 (Suppl. 4), iv377–iv393 (2014).

    Article  Google Scholar 

  237. 237

    Grob, J.-J. et al. Patient perception of the benefit of a BRAF inhibitor in metastatic melanoma: quality-of-life analyses of the BREAK-3 study comparing dabrafenib with dacarbazine. Ann. Oncol. 25, 1428–1436 (2014).

    Article  Google Scholar 

  238. 238

    Schadendorf, D. et al. Functional and symptom impact of trametinib versus chemotherapy in BRAF V600E advanced or metastatic melanoma: quality-of-life analyses of the METRIC study. Ann. Oncol. 25, 700–706 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. 239

    Flaherty, K. T. et al. Surrogate endpoints for overall survival in metastatic melanoma: a meta-analysis of randomised controlled trials. Lancet. Oncol. 15, 297–304 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  240. 240

    Ives, N. J., Stowe, R. L., Lorigan, P. & Wheatley, K. Chemotherapy compared with biochemotherapy for the treatment of metastatic melanoma: a meta-analysis of 18 trials involving 2,621 patients. J. Clin. Oncol. 25, 5426–5434 (2007).

    Article  CAS  Google Scholar 

  241. 241

    Zimmer, L. et al. Phase II DeCOG-study of ipilimumab in pretreated and treatment-naïve patients with metastatic uveal melanoma. PLoS ONE (in the press).

  242. 242

    Chen, X. et al. Combined PKC and MEK inhibition in uveal melanoma with GNAQ and GNA11 mutations. Oncogene 33, 4724–4734 (2014).

    Article  CAS  Google Scholar 

  243. 243

    Feng, X. et al. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell 25, 831–845 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. 244

    Yu, F.-X. et al. Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell 25, 822–830 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. 245

    Martin, M. et al. Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nat. Genet. 45, 933–936 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. 246

    Harbour, J. W. et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 330, 1410–1413 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. 247

    Prescher, G. et al. Prognostic implications of monosomy 3 in uveal melanoma. Lancet 347, 1222–1225 (1996).

    Article  CAS  Google Scholar 

  248. 248

    Matatall, K. A. et al. BAP1 deficiency causes loss of melanocytic cell identity in uveal melanoma. BMC Cancer 13, 371 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. 249

    Landreville, S. et al. Histone deacetylase inhibitors induce growth arrest and differentiation in uveal melanoma. Clin. Cancer Res. 18, 408–416 (2012).

    Article  CAS  Google Scholar 

  250. 250

    Schadendorf, D. et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol.http://dx.doi.org/10.1200/JCO.2014.59.5041 (2015). An analysis of almost 5,000 patients with advanced-stage melanoma treated with ipilimumab, showing for the first time a long-term clinical benefit of a treatment and a 5-year survival rate of 20%.

  251. 251

    Schadendorf, D. et al. Overall survival (OS) update on METRIC (NCT01245062), a randomized phase 3 study to assess efficacy of trametinib (T) compared with chemotherapy (C) in patients (pts) with BRAFV600E/K mutation-positive (+) advanced or metastatic melanoma (MM). Pigment Cell Melanoma Res, 26, 997 (2013).

    Google Scholar 

  252. 252

    Maio, M. et al. Five-year survival rates for treatment-naive patients with advanced melanoma who received ipilimumab plus dacarbazine in a Phase III trial. J. Clin. Oncol.http://dx.doi.org/10.0.4.176/JCO.2014.56.6018 (2015).

  253. 253

    Daud, A. et al. Overall survival update for BRF113220 Part C, a Phase II three-arm randomized study of dabrafenib alone (D) versus a combination of dabrafenib and trametinib (D+T) in pts with BRAF V600 mutation-positive metastatic melanoma. Society for Melanoma Research 2013 International Congress (17–20 Nov 2013).

Download references

Acknowledgements

This work was not supported by a third party.

Author information

Affiliations

Authors

Contributions

Introduction (D.S. and A. Hauschild); Epidemiology (C.G.); Mechanisms/pathophysiology (M.H. and A. Roesch); Diagnosis, screening and prevention (D.F., A. Halpern and M.A.M.); Management (J.E.G., J.-J.G., G.M. and A. Ribas); Quality of life (J.-J.G. and D.S.); Outlook (D.S. and A. Hauschild); and overview of Primer (D.S.).

Corresponding author

Correspondence to Dirk Schadendorf.

Ethics declarations

Competing interests

D.S. and A. Hauschild declare an association with the following companies: Amgen, Bristol–Myers Squibb, Genentech, GlaxoSmithKline, Merck/MSD, Novartis, Pfizer, Boehringer Ingelheim and Roche. C.G. declares personal fees from Amgen, Merck/MSD and Novartis, and declares grants and personal fees from Bristol–Myers Squibb, GlaxoSmithKline and Roche outside of the submitted work. A. Roesch has received travel grants and honoraria from Roche and TEVA, and research grants from Novartis. M.A.M. has received honoraria from Next Meeting Generation for speaking on the topic of dermoscopy at the American Dermoscopy Meeting. A. Halpern serves as a consultant to Caliber Imaging and Diagnostics, Canfield Scientific, DermTech and SciBase AB, and serves on the data safety and monitoring board of Quintiles and Janssen Research and Development LLC. J.-J.G. has received fees for advisory boards and lectures from Amgen, GlaxoSmithKline, MSD, Novartis and Roche, and has received research grants from Bristol–Myers Squibb and Roche. J.E.G. serves on the global advisory board for Merck. A. Ribas has served as consultant for Amgen, Astellas, Genentech-Roche, GlaxoSmithKline, Merck, Novartis and Pierre Fabre, and serves on the scientific advisory board and has stock options for Compugen, Flexus Biosciences and Kite Pharma. G.M. has received consulting income from Provectus, and has received research support from Celgene and Pfizer. M.H. and D.E.F. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schadendorf, D., Fisher, D., Garbe, C. et al. Melanoma. Nat Rev Dis Primers 1, 15003 (2015). https://doi.org/10.1038/nrdp.2015.3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing