Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Retinoblastoma

A Correction to this article was published on 24 September 2015

Abstract

Retinoblastoma is a rare cancer of the infant retina that is diagnosed in approximately 8,000 children each year worldwide. It forms when both retinoblastoma gene (RB1) alleles are mutated in a susceptible retinal cell, probably a cone photoreceptor precursor. Loss of the tumour-suppressive functions of the retinoblastoma protein (pRB) leads to uncontrolled cell division and recurrent genomic changes during tumour progression. Although pRB is expressed in almost all tissues, cone precursors have biochemical and molecular features that may sensitize them to RB1 loss and enable tumorigenesis. Patient survival is >95% in high-income countries but <30% globally. However, outcomes are improving owing to increased disease awareness for earlier diagnosis, application of new guidelines and sharing of expertise. Intra-arterial and intravitreal chemotherapy have emerged as promising methods to salvage eyes that with conventional treatment might have been lost. Ongoing international collaborations will replace the multiple different classifications of eye involvement with standardized definitions to consistently assess the eligibility, efficacy and safety of treatment options. Life-long follow-up is warranted, as survivors of heritable retinoblastoma are at risk for developing second cancers. Defining the molecular consequences of RB1 loss in diverse tissues may open new avenues for treatment and prevention of retinoblastoma, as well as second cancers, in patients with germline RB1 mutations.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Progression of retinoblastoma.
Figure 2: Global retinoblastoma treatment centres and patient distribution relative to resources.
Figure 3: Genetic origins of retinoblastoma.
Figure 4: Retinoblastomas originate in the retina.
Figure 5: Online diagnosis of retinoblastoma.
Figure 6: Different classification schemes for intraocular retinoblastoma confound comparison of outcomes.
Figure 7: Primary treatment choices based on the Murphree International Intraocular Retinoblastoma Classification.
Figure 8: Triplets with retinoblastoma.
Figure 9: Retinoblastoma treated with IVC.
Figure 10: Retinoblastoma treated with IAC.
Figure 11: Child Life programmes.
Figure 12: Proposed roles for cone precursor circuitry in retinoblastoma tumorigenesis and targeted therapy.

References

  1. 1

    Knudson, A. G. Two genetic hits (more or less) to cancer. Nat. Rev. Cancer 1, 157–162 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. 2

    Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Dimaras, H. et al. Loss of RB1 induces non-proliferative retinoma: increasing genomic instability correlates with progression to retinoblastoma. Hum. Mol. Genet. 17, 1363–1372 (2008). This article provides the first evidence that retinoma is the consequence of two RB1 mutations and not the result of spontaneous tumour regression, and that additional genomic changes are necessary for progression to malignancy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Dimaras, H. et al. Retinoblastoma. Lancet 379, 1436–1446 (2012).

    Article  PubMed  Google Scholar 

  5. 5

    Seregard, S., Lundell, G., Svedberg, H. & Kivela, T. Incidence of retinoblastoma from 1958 to 1998 in northern Europe: advantages of birth cohort analysis. Ophthalmology 111, 1228–1232 (2004).

    Article  PubMed  Google Scholar 

  6. 6

    Kivela, T. The epidemiological challenge of the most frequent eye cancer: retinoblastoma, an issue of birth and death. Br. J. Ophthalmol. 93, 1129–1131 (2009).

    Article  PubMed  Google Scholar 

  7. 7

    Broaddus, E., Topham, A. & Singh, A. D. Incidence of retinoblastoma in the USA: 1975–2004. Br. J. Ophthalmol. 93, 21–23 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. 8

    Nyamori, J. M., Kimani, K., Njuguna, M. W. & Dimaras, H. The incidence and distribution of retinoblastoma in Kenya. Br. J. Ophthalmol. 96, 141–143 (2012).

    Article  PubMed  Google Scholar 

  9. 9

    Canadian Retinoblastoma Society. National Retinoblastoma Strategy Canadian Guidelines for Care. Can. J. Ophthalmol. 44, S1–S88 (2009). The first evidence-based national guidelines for care to be published, showing that consensus at the national level is possible for coordinated care of patients.

    Article  Google Scholar 

  10. 10

    MacCarthy, A. et al. Retinoblastoma in Great Britain 1963–2002. Br. J. Ophthalmol. 93, 33–37 (2009). This paper describes the epidemiology of retinoblastoma for a large historical study sample (&gt; 1,600 patients) from Great Britain over four decades.

    Article  CAS  PubMed  Google Scholar 

  11. 11

    Krishna, S. M., Yu, G. P. & Finger, P. T. The effect of race on the incidence of retinoblastoma. J. Pediatr. Ophthalmol. Strabismus 46, 288–293 (2009).

    Article  PubMed  Google Scholar 

  12. 12

    Moreno, F. et al. A population-based study of retinoblastoma incidence and survival in Argentine children. Pediatr. Blood Cancer 61, 1610–1615 (2014).

    Article  PubMed  Google Scholar 

  13. 13

    One Retinoblastoma World. One Retinoblastoma World map. 1rbw[online], (2015). A ‘virtual’ retinoblastoma clinic that documents resources and expertise available for retinoblastoma treatment around the world, juxtaposed against expected new annual retinoblastoma cases per country. This sets the stage for a learning health system for retinoblastoma.

  14. 14

    Nyawira, G., Kahaki, K. & Kariuki-Wanyoike, M. Survival among retinoblastoma patients at the Kenyatta National Hospital, Kenya. J. Ophthalmol. Eastern Central Southern Africa 17, 15–19 (2013).

    Google Scholar 

  15. 15

    Dean, M. et al. Increased incidence and disparity of diagnosis of retinoblastoma patients in Guatemala. Cancer Lett. 351, 59–63 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Kumar, A., Moulik, N. R., Mishra, R. K. & Kumar, D. Causes, outcome and prevention of abandonment in retinoblastoma in India. Pediatr. Blood Cancer 60, 771–775 (2013).

    Article  PubMed  Google Scholar 

  17. 17

    Gichigo, E. N., Kariuki-Wanyoike, M. M., Kimani, K. & Nentwich, M. M. Retinoblastoma in Kenya: survival and prognostic factors. Ophthalmologe 112, 255–260 (in German) (2014).

    Article  Google Scholar 

  18. 18

    Asencio-Lopez, L., Torres-Ojeda, A. A., Isaac-Otero, G., Rosales Lopez, S. L. & Leal-Leal, C. A. Treating retinoblastoma in the first year of life in a national tertiary pediatric hospital in Mexico. Acta Paediatr. http://dx.doi.org/10.1111/apa.13033 (2015).

  19. 19

    Kenyan Ministry of Health. Kenya National Retinoblastoma Strategy: Best Practice Guidelines. Kenyan Ministry of Health[online], (2014).

  20. 20

    Vincent, A. L., Webb, M. C., Gallie, B. L. & Heon, E. Prosthetic conformers: a step towards improved rehabilitation of enucleated children. Clin. Experiment. Ophthalmol. 30, 58–59 (2002). This paper shows that implantation of an artificial eye during the enucleation surgery instead of months later improves psychosocial acceptance and coping.

    Article  PubMed  Google Scholar 

  21. 21

    Dimaras, H., White, A. & Gallie, B. L. The Kenyan National Retinoblastoma Strategy: building local capacity in the diagnosis and management of pediatric eye cancer in Kenya. Ophthalmology Rounds [online], (2008).

  22. 22

    Chantada, G. et al. SIOP-PODC recommendations for graduated-intensity treatment of retinoblastoma in developing countries. Pediatr. Blood Cancer 60, 719–727 (2013).

    Article  PubMed  Google Scholar 

  23. 23

    Perez-Cuevas, R. et al. Scaling up cancer care for children without medical insurance in developing countries: the case of Mexico. Pediatr. Blood Cancer 60, 196–203 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    de Castro Junior, C. G. & Macedo, C. R. Brazilian Society of Pediatric Oncology — SOBOPE: 30 years of history, a lot in the present, full of the future. Rev. Bras. Hematol. Hemoter. 33, 326–327 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Naseripour, M. “Retinoblastoma survival disparity”: the expanding horizon in developing countries. Saudi J. Ophthalmol. 26, 157–161 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Qaddoumi, I. et al. Team management, twinning, and telemedicine in retinoblastoma: a 3-tier approach implemented in the first eye salvage program in Jordan. Pediatr. Blood Cancer 51, 241–244 (2008).

    Article  PubMed  Google Scholar 

  27. 27

    Wilimas, J. A. et al. Development of retinoblastoma programs in Central America. Pediatr. Blood Cancer 53, 42–46 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    Traore, F. et al. [Retinoblastoma: inventory in Mali and program to develop early diagnosis, treatments and rehabilitation]. Bull. Cancer 100, 161–165 (in French) (2013).

    PubMed  Google Scholar 

  29. 29

    Luna-Fineman, S. et al. Retinoblastoma in Central America: report from the Central American Association of Pediatric Hematology Oncology (AHOPCA). Pediatr. Blood Cancer 58, 545–550 (2012). This article shows that multicentre studies in lower middle-income countries are feasible.

  30. 30

    Barr, R. D. et al. Asociacion de Hemato-Oncologia Pediatrica de Centro America (AHOPCA): a model for sustainable development in pediatric oncology. Pediatr. Blood Cancer 61, 345–354 (2014).

    Article  PubMed  Google Scholar 

  31. 31

    Waddell, K. M. et al. Improving survival of retinoblastoma in Uganda. Br. J. Ophthalmol. 99, 937–942 (2015).

    Article  PubMed  Google Scholar 

  32. 32

    Waddell, K. M. et al. Clinical features and survival among children with retinoblastoma in Uganda. Br. J. Ophthalmol. 99, 387–390 (2015).

    Article  PubMed  Google Scholar 

  33. 33

    Schvartzman, E. et al. Results of a stage-based protocol for the treatment of retinoblastoma. J. Clin. Oncol. 14, 1532–1536 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Chantada, G. L. et al. Results of a prospective study for the treatment of unilateral retinoblastoma. Pediatr. Blood Cancer 55, 60–66 (2010). This prospective study of a national referral centre in Argentina shows improved results with tailored chemotherapy regimens according to pathological risk factors.

    PubMed  Google Scholar 

  35. 35

    Chantada, G. L. et al. Impact of chemoreduction for conservative therapy for retinoblastoma in Argentina. Pediatr. Blood Cancer 61, 821–826 (2014).

    Article  PubMed  Google Scholar 

  36. 36

    Chiu, H. H., Dimaras, H., Downie, R. & Gallie, B. Breaking down barriers to communicating complex retinoblastoma information: can graphics be the solution? Can. J. Ophthalmol. 50, 230–235 (2015).

    Article  PubMed  Google Scholar 

  37. 37

    Knudson, A. G. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 820–823 (1971). This paper provides the first model of retinoblastoma development and suggests that two hits are necessary for tumour initiation. This set the stage for the discovery that cancer is a genetic disease, requiring inactivation of each allele of a gene.

    Article  PubMed  Google Scholar 

  38. 38

    Comings, D. E. A general theory of carcinogenesis. Proc. Natl Acad. Sci. USA 70, 3324–3328 (1973).

    Article  CAS  PubMed  Google Scholar 

  39. 39

    Cavenee, W. K. et al. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305, 779–784 (1983).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Dryja, T. P., Rapaport, J. M., Joyce, J. M. & Petersen, R. A. Molecular detection of deletions involving band q14 of chromosome 13 in retinoblastomas. Proc. Natl Acad. Sci. USA 83, 7391–7394 (1986).

    Article  CAS  PubMed  Google Scholar 

  41. 41

    Friend, S. H. et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323, 643–646 (1986). Following on from the research detailed in reference 40, this paper reports the isolation of a 70 kb cDNA fragment of the gene that predisposes individuals to retinoblastoma and osteosarcoma, setting the stage for the identification of RB1.

    Article  CAS  PubMed  Google Scholar 

  42. 42

    Lee, W. H. et al. Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science 235, 1394–1399 (1987).

    Article  CAS  PubMed  Google Scholar 

  43. 43

    Fung, Y. K. et al. Structural evidence for the authenticity of the human retinoblastoma gene. Science 236, 1657–1661 (1987).

    Article  CAS  PubMed  Google Scholar 

  44. 44

    Lohmann, D. R. RB1 gene mutations in retinoblastoma. Hum. Mutat. 14, 283–288 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. 45

    McEvoy, J. et al. RB1 gene inactivation by chromothripsis in human retinoblastoma. Oncotarget 5, 438–450 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46

    Dick, F. A. & Rubin, S. M. Molecular mechanisms underlying RB protein function. Nat. Rev. Mol. Cell Biol. 14, 297–306 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Lohmann, D. R., Brandt, B., Hopping, W., Passarge, E. & Horsthemke, B. Distinct RB1 gene mutations with low penetrance in hereditary retinoblastoma. Hum. Genet. 94, 349–354 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Lee, T. C., Almeida, D., Claros, N., Abramson, D. H. & Cobrinik, D. Cell cycle-specific and cell type-specific expression of Rb in the developing human retina. Invest. Ophthalmol. Vis. Sci. 47, 5590–5598 (2006).

    Article  PubMed  Google Scholar 

  49. 49

    Goodrich, D. W. How the other half lives, the amino-terminal domain of the retinoblastoma tumor suppressor protein. J. Cell. Physiol. 197, 169–180 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Cook, R. et al. Direct involvement of retinoblastoma family proteins in DNA repair by non-homologous end-joining. Cell Rep. 10, 2006–2018 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Theriault, B. L., Dimaras, H., Gallie, B. L. & Corson, T. W. The genomic landscape of retinoblastoma: a review. Clin. Experiment. Ophthalmol. 42, 33–52 (2014).

    Article  PubMed  Google Scholar 

  52. 52

    Zhang, J. et al. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature 481, 329–334 (2012). This genome-wide study identifies epigenetic SYK dysregulation in retinoblastoma and BCOR mutations in some tumours, and validates SYK inhibition as a therapy in an orthotopic xenograft model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Kooi, I. E. et al. Loss of photoreceptorness and gain of genomic alterations in retinoblastoma reveal tumor progression. eBio Med. 2, 660–670 (2015).

    Google Scholar 

  54. 54

    McEvoy, J. et al. Coexpression of normally incompatible developmental pathways in retinoblastoma genesis. Cancer Cell 20, 260–275 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Kapatai, G. et al. Gene expression profiling identifies different sub-types of retinoblastoma. Br. J. Cancer 109, 512–525 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Rushlow, D. E. et al. Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies. Lancet Oncol. 14, 327–334 (2013). By analysing mutation data of &gt;1,000 retinoblastomas, this work identifies a histologically and clinically distinct subset of retinoblastomas with no RB1 mutations but with MYCN amplification, suggesting that retinoblastoma can be initiated either by loss of tumour-suppressor gene function or by oncogene overexpression.

    Article  CAS  PubMed  Google Scholar 

  57. 57

    Kyritsis, A. P., Tsokos, M., Triche, T. J. & Chader, G. J. Retinoblastoma — origin from a primitive neuroectodermal cell? Nature 307, 471–473 (1984).

    Article  CAS  PubMed  Google Scholar 

  58. 58

    Sangwan, M. et al. Established and new mouse models reveal E2f1 and Cdk2 dependency of retinoblastoma, and expose effective strategies to block tumor initiation. Oncogene 31, 5019–5028 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Cobrinik, D. in Animal Models of Brain Tumors (eds Martinez-Murillo, R. & Martinez, A. ) 141–152 (Springer, 2013).

    Google Scholar 

  60. 60

    Munier, F. L., Balmer, A., van Melle, G. & Gailloud, C. Radial asymmetry in the topography of retinoblastoma. Clues to the cell of origin. Ophthalmic Genet. 15, 101–106 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. 61

    Xu, X. L. et al. Retinoblastoma has properties of a cone precursor tumor and depends upon cone-specific MDM2 signaling. Cell 137, 1018–1031 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Xu, X. L. et al. Rb suppresses human cone-precursor-derived retinoblastoma tumours. Nature 514, 385–388 (2014). This study provides strong evidence of the retinoblastoma cell of origin by showing that knockdown of RB1 induces proliferation of cone precursors in a manner that is dependent on proteins expressed in maturing cones, including MYCN, MDM2 and SKP2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Rootman, D. B. et al. Hand-held high-resolution spectral domain optical coherence tomography in retinoblastoma: clinical and morphologic considerations. Br. J. Ophthalmol. 97, 59–65 (2013).

    Article  PubMed  Google Scholar 

  64. 64

    Xu, X. L. et al. Tumor-associated retinal astrocytes promote retinoblastoma cell proliferation through production of IGFBP-5. Am. J. Pathol. 177, 424–435 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Hook, K. E. et al. An integrated genomic approach to identify predictive biomarkers of response to the aurora kinase inhibitor PF-03814735. Mol. Cancer Ther. 11, 710–719 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. 66

    Puissant, A. et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 3, 308–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Gallie, B. L., Trogadis, J. & Han, L.-P. in Human Cell Culture. Cancer Cell Lines Part 2 (ed. Masters, J. ) 361–374 (Springer, 1999).

    Google Scholar 

  68. 68

    Gallie, B. L., Albert, D. M., Wong, J. J., Buyukmihci, N. & Puliafito, C. A. Heterotransplantation of retinoblastoma into the athymic “nude” mouse. Invest. Ophthalmol. Vis. Sci. 16, 256–259 (1977).

    CAS  PubMed  Google Scholar 

  69. 69

    Pacal, M. & Bremner, R. Insights from animal models on the origins and progression of retinoblastoma. Curr. Mol. Med. 6, 759–781 (2006).

    CAS  PubMed  Google Scholar 

  70. 70

    Conkrite, K. et al. miR-1792 cooperates with RB pathway mutations to promote retinoblastoma. Genes Dev. 25, 1734–1745 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Windle, J. J. et al. Retinoblastoma in transgenic mice. Nature 343, 665–669 (1990).

    Article  CAS  PubMed  Google Scholar 

  72. 72

    Pajovic, S. et al. The TAg-RB murine retinoblastoma cell of origin has immunohistochemical features of differentiated Muller glia with progenitor properties. Invest. Ophthalmol. Vis. Sci. 52, 7618–7624 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Karcioglu, Z. A. Fine needle aspiration biopsy (FNAB) for retinoblastoma. Retina 22, 707–710 (2002).

    Article  PubMed  Google Scholar 

  74. 74

    de Jong, M. C. et al. Diagnostic performance of magnetic resonance imaging and computed tomography for advanced retinoblastoma: a systematic review and meta-analysis. Ophthalmology 121, 1109–1118 (2014).

    Article  PubMed  Google Scholar 

  75. 75

    de Jong, M. C. et al. Trilateral retinoblastoma: a systematic review and meta-analysis. Lancet Oncol. 15, 1157–1167 (2014).

    Article  PubMed  Google Scholar 

  76. 76

    McCarthy, M. et al. Comfort First: an evaluation of a procedural pain management programme for children with cancer. Psychooncology 22, 775–782 (2013).

    Article  PubMed  Google Scholar 

  77. 77

    Moulin, A. P., Gaillard, M. C., Balmer, A. & Munier, F. L. Ultrasound biomicroscopy evaluation of anterior extension in retinoblastoma: a clinicopathological study. Br. J. Ophthalmol. 96, 337–340 (2012).

    Article  PubMed  Google Scholar 

  78. 78

    Reese, A. B. & Ellsworth, R. M. The evaluation and current concept of retinoblastoma therapy. Trans. Am. Acad. Ophthalmol. Otolaryngol. 67, 164–172 (1963).

    CAS  PubMed  Google Scholar 

  79. 79

    Murphree, A. L. Intraocular retinoblastoma: the case for a new group classification. Ophthalmol. Clin. North Am. 18, 41–53 (2005). This article describes the creation of a new classification for retinoblastoma, representing the shift from EBRT to chemotherapy as primary therapy.

    Article  Google Scholar 

  80. 80

    Shields, C. L. et al. The International Classification of Retinoblastoma predicts chemoreduction success. Ophthalmology 113, 2276–2280 (2006).

    Article  PubMed  Google Scholar 

  81. 81

    Novetsky, D. E., Abramson, D. H., Kim, J. W. & Dunkel, I. J. Published International Classification of Retinoblastoma (ICRB) definitions contain inconsistencies — an analysis of impact. Ophthalmic Genet. 30, 40–44 (2009).

    Article  PubMed  Google Scholar 

  82. 82

    Children's OncologyGroup. Newly diagnosed with retinoblastoma. Children's Oncology Group[online], (2011).

  83. 83

    Finger, P. T. et al. in AJCC Cancer Staging Manual (eds Edge, S. B., Byrd, D. R., Carducci, M. A. & Compton, C. C. ) 561–568 (Springer, 2010).

    Google Scholar 

  84. 84

    Chantada, G. et al. A proposal for an international retinoblastoma staging system. Pediatr. Blood Cancer 47, 801–805 (2006). This paper presents a retinoblastoma staging system that encompasses the full range of the disease, as well as the collaborative work and consensus of multiple specialists from different settings.

    Article  PubMed  Google Scholar 

  85. 85

    Sastre, X. et al. Proceedings of the consensus meetings from the International Retinoblastoma Staging Working Group on the pathology guidelines for the examination of enucleated eyes and evaluation of prognostic risk factors in retinoblastoma. Arch. Pathol. Lab. Med. 133, 1199–1202 (2009). This paper details the development of clear consensus guidelines for the handling of enucleated eyes and the assessment of pathological risk factors.

    PubMed  Google Scholar 

  86. 86

    Wilson, M. W., Qaddoumi, I., Billups, C., Haik, B. G. & Rodriguez-Galindo, C. A clinicopathological correlation of 67 eyes primarily enucleated for advanced intraocular retinoblastoma. Br. J. Ophthalmol. 95, 553–558 (2011).

    Article  PubMed  Google Scholar 

  87. 87

    Sullivan, E. M. et al. Pathologic risk-based adjuvant chemotherapy for unilateral retinoblastoma following enucleation. J. Pediatr. Hematol. Oncol. 36, e335–e340 (2014). This prospective study of non-metastatic unilateral retinoblastomas treated on a graduated intensity chemotherapy protocol shows that all patients were alive at median follow-up of 3.4 years.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Mendoza, P. R. et al. Histopathologic grading of anaplasia in retinoblastoma. Am. J. Ophthalmol. 159, 764–776 (2015).

    Article  PubMed  Google Scholar 

  89. 89

    Yousef, Y. A. et al. Predictive value of TNM classification, international classification, and Reese–Ellsworth staging of retinoblastoma for the likelihood of high-risk pathologic features. Retina http://dx.doi.org/10.1097/IAE.0000000000000547 (2015).

  90. 90

    Kaliki, S., Srinivasan, V., Gupta, A., Mishra, D. K. & Naik, M. N. Clinical features predictive of high-risk retinoblastoma in 403 Asian Indian patients: a case–control study. Ophthalmology 122, 1165–1172 (2015). This research paper shows that prolonged duration of symptoms (&gt;6 months) and secondary glaucoma following attempted eye salvage are predictive of high-risk retinoblastoma.

    Article  PubMed  Google Scholar 

  91. 91

    Kim, J. W. Retinoblastoma: evidence for postenucleation adjuvant chemotherapy. Int. Ophthalmol. Clin. 55, 77–96 (2015).

    Article  PubMed  Google Scholar 

  92. 92

    Grossniklaus, H. E., Kivëla, T., Harbour, J. W. & Finger, P. T. Protocol for the examination of specimens from patients with retinoblastoma. CAP [online], (2011).

  93. 93

    Torbidoni, A. V. et al. Association of cone–rod homeobox transcription factor messenger RNA with pediatric metastatic retinoblastoma. JAMA Ophthalmol. 133, 805–812 (2015).

    Article  PubMed  Google Scholar 

  94. 94

    Torbidoni, A. V. et al. Immunoreactivity of the 14F7 Mab raised against N-glycolyl GM3 ganglioside in retinoblastoma tumours. Acta Ophthalmol. 93, e294–e300 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. 95

    Genetics, I. What is retinoblastoma? Impact Genetics [online], (2015).

  96. 96

    Wong, J. R. et al. Risk of subsequent malignant neoplasms in long-term hereditary retinoblastoma survivors after chemotherapy and radiotherapy. J. Clin. Oncol. 32, 3284–3290 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  97. 97

    Xu, K. et al. Preimplantation genetic diagnosis for retinoblastoma: the first reported liveborn. Am. J. Ophthalmol. 137, 18–23 (2004).

    Article  PubMed  Google Scholar 

  98. 98

    Dommering, C. J., Moll, A. C., Imhof, S. M., de Die-Smulders, C. E. & Coonen, E. Another liveborn after preimplantation genetic diagnosis for retinoblastoma. Am. J. Ophthalmol. 138, 1088–1089 (2004).

    Article  PubMed  Google Scholar 

  99. 99

    Dimaras, H. et al. Retinoblastoma CSF metastasis cured by multimodality chemotherapy without radiation. Ophthalmic Genet. 30, 121–126 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. 100

    Bowles, E. et al. Profiling genomic copy number changes in retinoblastoma beyond loss of RB1. Genes Chromosomes Cancer 46, 118–129 (2007).

    Article  CAS  Google Scholar 

  101. 101

    Chantada, G. L. et al. Familial retinoblastoma in developing countries. Pediatr. Blood Cancer 53, 338–342 (2009).

    Article  PubMed  Google Scholar 

  102. 102

    He, L. Q. et al. Developing clinical cancer genetics services in resource-limited countries: the case of retinoblastoma in Kenya. Public Health Genomics 17, 221–227 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  103. 103

    Patel, T. et al. Consumer digital cameras: a feasible strategy for the early detection of childhood blindness. Invest. Ophthalmol. Vis. Sci. 53, 6775 (2012).

    Google Scholar 

  104. 104

    Abdolvahabi, A. et al. Colorimetric and longitudinal analysis of leukocoria in recreational photographs of children with retinoblastoma. PLoS ONE 8, e76677 (2013). This study used common software to retrospectively quantify leukocoria in photographs of infants who were diagnosed with retinoblastoma. They identified that the saturation-value plane of the hue, saturation and value colour space are useful for counting and categorizing pupillary reflections.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    MacCarthy, A. et al. Second and subsequent tumours among 1927 retinoblastoma patients diagnosed in Britain 1951–2004. Br. J. Cancer 108, 2455–2463 (2013). This retrospective study of a large British patient cohort showed substantial evidence of increased risk of second cancers in patients with heritable retinoblastoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Abramson, D. H., Beaverson, K. L., Chang, S. T., Dunkel, I. J. & McCormick, B. Outcome following initial external beam radiotherapy in patients with Reese–Ellsworth group Vb retinoblastoma. Arch. Ophthalmol. 122, 1316–1323 (2004).

    Article  PubMed  Google Scholar 

  107. 107

    Fletcher, O. et al. Lifetime risks of common cancers among retinoblastoma survivors. J. Natl Cancer Inst. 96, 357–363 (2004).

    Article  PubMed  Google Scholar 

  108. 108

    Friedman, D. N. et al. Whole-body magnetic resonance imaging (WB-MRI) as surveillance for subsequent malignancies in survivors of hereditary retinoblastoma: a pilot study. Pediatr. Blood Cancer 61, 1440–1444 (2014).

    Article  PubMed  Google Scholar 

  109. 109

    Soliman, S. E., Dimaras, H., Souka, A. A., Ashry, M. H. & Gallie, B. L. Socioeconomic and psychological impact of treatment for unilateral intraocular retinoblastoma. J. Fr. Ophtalmol. 38, 550–558 (2015). This study shows that globe-salvage therapy produces more negative consequences (for example, family conflict, financial burden and longer treatment duration) than upfront enucleation in low- and middle-income countries.

    Article  CAS  PubMed  Google Scholar 

  110. 110

    Shields, C. L. et al. Retinoblastoma frontiers with intravenous, intra-arterial, periocular, and intravitreal chemotherapy. Eye (Lond.) 27, 253–264 (2013).

    Article  CAS  Google Scholar 

  111. 111

    Eng, C. et al. Mortality from second tumors among long-term survivors of retinoblastoma. J. Natl Cancer Inst. 85, 1121–1128 (1993).

    Article  CAS  PubMed  Google Scholar 

  112. 112

    Chantada, G. L. et al. Treatment results in patients with retinoblastoma and invasion to the cut end of the optic nerve. Pediatr. Blood Cancer 52, 218–222 (2009). This paper retrospectively evaluates three treatment modalities for patients for whom histopathological analysis shows tumour invasion to the cut end of the nerve. Results show that cure is possible (event-free survival was 0.70 at 5 years), but not without several treatment-related sequelae.

    Article  PubMed  Google Scholar 

  113. 113

    Kashyap, S. et al. Clinical predictors of high risk histopathology in retinoblastoma. Pediatr. Blood Cancer 58, 356–361 (2012).

    Article  PubMed  Google Scholar 

  114. 114

    Zhao, J. et al. Pre-enucleation chemotherapy for eyes severely affected by retinoblastoma masks risk of tumor extension and increases death from metastasis. J. Clin. Oncol. 29, 845–851 (2011). This paper provides the first evidence that delay in enucleation of &gt;3 months while neoadjuvant chemotherapy is given for an eye with high-risk clinical features (IIRC Group E) results in a significant (P &lt; 0.001) increase in the risk of metastasis and death.

    Article  PubMed  Google Scholar 

  115. 115

    Francis, J. H. et al. Efficacy and toxicity of second-course ophthalmic artery chemosurgery for retinoblastoma. Ophthalmology 122, 1016–1022 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  116. 116

    Hamama-Raz, Y., Rot, I. & Buchbinder, E. The coping experience of parents of a child with retinoblastoma-malignant eye cancer. J. Psychosoc. Oncol. 30, 21–40 (2012).

    Article  PubMed  Google Scholar 

  117. 117

    Mathew, A. A., Sachdev, N., Staffieri, S. E., McKenzie, J. D. & Elder, J. E. Superselective intra-arterial chemotherapy for advanced retinoblastoma complicated by metastatic disease. J. AAPOS 19, 72–74 (2015).

    Article  PubMed  Google Scholar 

  118. 118

    Gunduz, K. et al. Causes of chemoreduction failure in retinoblastoma and analysis of associated factors leading to eventual treatment with external beam radiotherapy and enucleation. Ophthalmology 111, 1917–1924 (2004).

    Article  PubMed  Google Scholar 

  119. 119

    Manjandavida, F. P., Honavar, S. G., Reddy, V. A. & Khanna, R. Management and outcome of retinoblastoma with vitreous seeds. Ophthalmology 121, 517–524 (2014).

    Article  PubMed  Google Scholar 

  120. 120

    Schaiquevich, P. et al. Intra-arterial chemotherapy is more effective than sequential periocular and intravenous chemotherapy as salvage treatment for relapsed retinoblastoma. Pediatr. Blood Cancer 60, 766–770 (2013). This study compares the efficacy and toxicity of IAC to that of periocular and systemic chemotherapy treatment of a retrospective cohort of patients.

    Article  CAS  PubMed  Google Scholar 

  121. 121

    Shields, C. L. et al. Iodine 125 plaque radiotherapy as salvage treatment for retinoblastoma recurrence after chemoreduction in 84 tumors. Ophthalmology 113, 2087–2092 (2006).

    Article  PubMed  Google Scholar 

  122. 122

    Chan, M. P., Hungerford, J. L., Kingston, J. E. & Plowman, P. N. Salvage external beam radiotherapy after failed primary chemotherapy for bilateral retinoblastoma: rate of eye and vision preservation. Br. J. Ophthalmol. 93, 891–894 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. 123

    Pica, A. et al. Preliminary experience in treatment of papillary and macular retinoblastoma: evaluation of local control and local complications after treatment with linear accelerator-based stereotactic radiotherapy with micromultileaf collimator as second-line or salvage treatment after chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 81, 1380–1386 (2011).

    Article  PubMed  Google Scholar 

  124. 124

    Berry, J. L. et al. Long-term outcomes of Group D eyes in bilateral retinoblastoma patients treated with chemoreduction and low-dose IMRT salvage. Pediatr. Blood Cancer 60, 688–693 (2013). This retrospective review of Group D eyes of patients with bilateral retinoblastoma shows that treatment with primary chemotherapy and focal therapy cured 47% of eyes without EBRT and 68% with rescue by EBRT at 60 months follow-up.

    Article  PubMed  Google Scholar 

  125. 125

    Munier, F. L. et al. New developments in external beam radiotherapy for retinoblastoma: from lens to normal tissue-sparing techniques. Clin. Experiment. Ophthalmol. 36, 78–89 (2008).

    Article  PubMed  Google Scholar 

  126. 126

    Mouw, K. W. et al. Proton radiation therapy for the treatment of retinoblastoma. Int. J. Radiat. Oncol. Biol. Phys. 90, 863–869 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  127. 127

    Shields, C. L. et al. Chemoreduction plus focal therapy for retinoblastoma: factors predictive of need for treatment with external beam radiotherapy or enucleation. Am. J. Ophthalmol. 133, 657–664 (2002).

    Article  PubMed  Google Scholar 

  128. 128

    Abramson, D. H. & Schefler, A. C. Update on retinoblastoma. Retina 24, 828–848 (2004).

    Article  PubMed  Google Scholar 

  129. 129

    Gobin, Y. P., Dunkel, I. J., Marr, B. P., Brodie, S. E. & Abramson, D. H. Intra-arterial chemotherapy for the management of retinoblastoma: four-year experience. Arch. Ophthalmol. 129, 732–737 (2011). This paper represents a single-arm, prospective study of the safety and efficacy of IAC for patients with advanced unilateral and bilateral intraocular retinoblastoma.

    Article  PubMed  Google Scholar 

  130. 130

    Suzuki, S., Yamane, T., Mohri, M. & Kaneko, A. Selective ophthalmic arterial injection therapy for intraocular retinoblastoma: the long-term prognosis. Ophthalmology 118, 2081–2087 (2011). This paper is a non-comparative case series reporting on the safety and efficacy on the first ever cohort of patients with retinoblastoma who were treated with IAC.

    Article  PubMed  Google Scholar 

  131. 131

    Shields, C. L. et al. Intra-arterial chemotherapy for retinoblastoma in 70 eyes: outcomes based on the international classification of retinoblastoma. Ophthalmology 121, 1453–1460 (2014). A retrospective interventional case series of the efficacy of IAC as primary or secondary treatment for retinoblastoma.

    Article  PubMed  Google Scholar 

  132. 132

    Abramson, D. H. et al. Intra-arterial chemotherapy for retinoblastoma in eyes with vitreous and/or subretinal seeding: 2-year results. Br. J. Ophthalmol. 96, 499–502 (2012).

    Article  PubMed  Google Scholar 

  133. 133

    Schaiquevich, P. et al. Pharmacokinetic analysis of topotecan after superselective ophthalmic artery infusion and periocular administration in a porcine model. Retina 32, 387–395 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. 134

    Munier, F. L. et al. Intravitreal chemotherapy for vitreous disease in retinoblastoma revisited: from prohibition to conditional indications. Br. J. Ophthalmol. 96, 1078–1083 (2012). This paper describes the first use of intravitreal chemotherapy for the treatment of vitreous seeds, which are the most difficult to manage feature of retinoblastoma.

    Article  PubMed  Google Scholar 

  135. 135

    Shields, C. L. et al. Intravitreal melphalan for persistent or recurrent retinoblastoma vitreous seeds: preliminary results. JAMA Ophthalmol. 132, 319–325 (2014).

    Article  PubMed  Google Scholar 

  136. 136

    Francis, J. H. et al. The classification of vitreous seeds in retinoblastoma and response to intravitreal melphalan. Ophthalmology 122, 1173–1179 (2015).

    Article  PubMed  Google Scholar 

  137. 137

    Munier, F. L. Classification and management of seeds in retinoblastoma. Ellsworth Lecture Ghent August 24th 2013. Ophthalmic Genet. 35, 193–207 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  138. 138

    Mallipatna, A. C., Sutherland, J. E., Gallie, B. L., Chan, H. & Heon, E. Management and outcome of unilateral retinoblastoma. J. AAPOS 13, 546–550 (2009).

    Article  PubMed  Google Scholar 

  139. 139

    Mourits, D. L., Hartong, D. T., Bosscha, M. I., Kloos, R. J. & Moll, A. C. Worldwide enucleation techniques and materials for treatment of retinoblastoma: an international survey. PLoS ONE 10, e0121292 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Yadava, U., Sachdeva, P. & Arora, V. Myoconjunctival enucleation for enhanced implant motility. Result of a randomised prospective study. Indian J. Ophthalmol. 52, 221–226 (2004).

    PubMed  Google Scholar 

  141. 141

    Shome, D., Honavar, S. G., Raizada, K. & Raizada, D. Implant and prosthesis movement after enucleation: a randomized controlled trial. Ophthalmology 117, 1638–1644 (2010). A randomized controlled trial that evaluated eye movement outcome after enucleation by comparing the use of PMMA implants using muscle imbrication or a myoconjunctival technique to the use of porous polyethylene implants after enucleation with the scleral cap technique.

    Article  PubMed  Google Scholar 

  142. 142

    Ferris, F. L. 3rd Chew, E. Y. A new era for the treatment of retinoblastoma. Arch. Ophthalmol. 114, 1412 (1996).

    Article  PubMed  Google Scholar 

  143. 143

    Chan, H. S. et al. Combining cyclosporin with chemotherapy controls intraocular retinoblastoma without requiring radiation. Clin. Cancer Res. 2, 1499–1508 (1996).

    CAS  PubMed  Google Scholar 

  144. 144

    Gallie, B. L. et al. Chemotherapy with focal therapy can cure intraocular retinoblastoma without radiotherapy. Arch. Ophthalmol. 114, 1321–1328 (1996).

    Article  CAS  PubMed  Google Scholar 

  145. 145

    Chan, H. S. L. Combination chemotherapy and cyclosporine followed by focal therapy for bilateral retinoblastoma. ClinicalTrials.gov[online], (2005).

  146. 146

    Dunkel, I. J. et al. A phase II trial of carboplatin for intraocular retinoblastoma. Pediatr. Blood Cancer 49, 643–648 (2007).

    Article  PubMed  Google Scholar 

  147. 147

    Jehanne, M. et al. Analysis of ototoxicity in young children receiving carboplatin in the context of conservative management of unilateral or bilateral retinoblastoma. Pediatr. Blood Cancer 52, 637–643 (2009).

    Article  PubMed  Google Scholar 

  148. 148

    Draper, G. J., Sanders, B. M. & Kingston, J. E. Second primary neoplasms in patients with retinoblastoma. Br. J. Cancer 53, 661–671 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. 149

    Smith, M. A. et al. Secondary leukemia or myelodysplastic syndrome after treatment with epipodophyllotoxins. J. Clin. Oncol. 17, 569–577 (1999).

    Article  CAS  PubMed  Google Scholar 

  150. 150

    Gombos, D. S. et al. Secondary acute myelogenous leukemia in patients with retinoblastoma: is chemotherapy a factor? Ophthalmology 114, 1378–1383 (2007).

    Article  PubMed  Google Scholar 

  151. 151

    Gombos, D. S., Kelly, A., Coen, P. G., Kingston, J. E. & Hungerford, J. L. Retinoblastoma treated with primary chemotherapy alone: the significance of tumour size, location, and age. Br. J. Ophthalmol. 86, 80–83 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  152. 152

    Lee, V. et al. Globe conserving treatment of the only eye in bilateral retinoblastoma. Br. J. Ophthalmol. 87, 1374–1380 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. 153

    Shields, C. L. et al. Macular retinoblastoma managed with chemoreduction: analysis of tumor control with or without adjuvant thermotherapy in 68 tumors. Arch. Ophthalmol. 123, 765–773 (2005).

    Article  PubMed  Google Scholar 

  154. 154

    Astudillo, P. P., Chan, H. S., Heon, E. & Gallie, B. L. Late-diagnosis retinoblastoma with germline mosaicism in an 8-year-old. J. AAPOS 18, 500–502 (2014).

    Article  PubMed  Google Scholar 

  155. 155

    Narang, S., Mashayekhi, A., Rudich, D. & Shields, C. L. Predictors of long-term visual outcome after chemoreduction for management of intraocular retinoblastoma. Clin. Experiment. Ophthalmol. 40, 736–742 (2012).

    Article  PubMed  Google Scholar 

  156. 156

    Watts, P. et al. Visual results in children treated for macular retinoblastoma. Eye (Lond.) 16, 75–80 (2002).

    Article  CAS  Google Scholar 

  157. 157

    Abramson, D. H., Dunkel, I. J., Brodie, S. E., Kim, J. W. & Gobin, Y. P. A phase I/II study of direct intraarterial (ophthalmic artery) chemotherapy with melphalan for intraocular retinoblastoma initial results. Ophthalmology 115, 1398–1404.e1 (2008).

    Article  PubMed  Google Scholar 

  158. 158

    Klufas, M. A. et al. Intra-arterial chemotherapy as a treatment for intraocular retinoblastoma: alternatives to direct ophthalmic artery catheterization. AJNR Am. J. Neuroradiol 33, 1608–1614 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. 159

    Abramson, D. H. et al. Ophthalmic artery chemosurgery for less advanced intraocular retinoblastoma: five year review. PLoS ONE 7, e34120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. 160

    Ong, S. J., Chao, A. N., Wong, H. F., Liou, K. L. & Kao, L. Y. Selective ophthalmic arterial injection of melphalan for intraocular retinoblastoma: a 4-year review. Jpn J. Ophthalmol. 59, 109–117 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. 161

    Francis, J. H. et al. Electroretinogram monitoring of dose-dependent toxicity after ophthalmic artery chemosurgery in retinoblastoma eyes: six year review. PLoS ONE 9, e84247 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. 162

    Abramson, D. H., Frank, C. M. & Dunkel, I. J. A phase I/II study of subconjunctival carboplatin for intraocular retinoblastoma. Ophthalmology 106, 1947–1950 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. 163

    Mallipatna, A. C., Dimaras, H., Chan, H. S., Heon, E. & Gallie, B. L. Periocular topotecan for intraocular retinoblastoma. Arch. Ophthalmol. 129, 738–745 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  164. 164

    Mulvihill, A. et al. Ocular motility changes after subtenon carboplatin chemotherapy for retinoblastoma. Arch. Ophthalmol. 121, 1120–1124 (2003).

    Article  CAS  PubMed  Google Scholar 

  165. 165

    Ghassemi, F. & Amoli, F. A. Pathological findings in enucleated eyes after intravitreal melphalan injection. Int. Ophthalmol. 34, 533–540 (2014).

    Article  PubMed  Google Scholar 

  166. 166

    Ghassemi, F., Shields, C. L., Ghadimi, H., Khodabandeh, A. & Roohipoor, R. Combined intravitreal melphalan and topotecan for refractory or recurrent vitreous seeding from retinoblastoma. JAMA Ophthalmol. 132, 936–941 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. 167

    Friedman, D. N. et al. Long-term medical outcomes in survivors of extra-ocular retinoblastoma: the Memorial Sloan-Kettering Cancer Center (MSKCC) experience. Pediatr. Blood Cancer 60, 694–699 (2013).

    Article  PubMed  Google Scholar 

  168. 168

    Bansal, M., Patel, F. D., Mohanti, B. K. & Sharma, S. C. Setting up a palliative care clinic within a radiotherapy department: a model for developing countries. Support. Care Cancer 11, 343–347 (2003).

    CAS  PubMed  Google Scholar 

  169. 169

    Willard, V. W. et al. Developmental and adaptive functioning in children with retinoblastoma: a longitudinal investigation. J. Clin. Oncol. 32, 2788–2793 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  170. 170

    Brinkman, T. M. et al. Cognitive function and social attainment in adult survivors of retinoblastoma: a report from the St. Jude Lifetime Cohort Study. Cancer 121, 123–131 (2015).

    Article  PubMed  Google Scholar 

  171. 171

    Tobin, M., Hill, E. & Hill, J. Retinoblastoma and superior verbal IQ scores? Br. J. Vis. Impair. 28, 7–18 (2010).

    Article  Google Scholar 

  172. 172

    Kelly, K. R., McKetton, L., Schneider, K. A., Gallie, B. L. & Steeves, J. K. Altered anterior visual system development following early monocular enucleation. Neuroimage Clin. 4, 72–81 (2014).

    Article  PubMed  Google Scholar 

  173. 173

    Kelly, K. R., DeSimone, K. D., Gallie, B. L. & Steeves, J. K. Increased cortical surface area and gyrification following long-term survival from early monocular enucleation. Neuroimage Clin. 7, 297–305 (2015).

    Article  PubMed  Google Scholar 

  174. 174

    Gonzalez, E. G., Lillakas, L., Lam, A., Gallie, B. L. & Steinbach, M. J. Horizontal saccade dynamics after childhood monocular enucleation. Invest. Ophthalmol. Vis. Sci. 54, 6463–6471 (2013).

    Article  PubMed  Google Scholar 

  175. 175

    Rappaport, B. A., Suresh, S., Hertz, S., Evers, A. S. & Orser, B. A. Anesthetic neurotoxicity — clinical implications of animal models. N. Engl. J. Med. 372, 796–797 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. 176

    Rappaport, B., Mellon, R. D., Simone, A. & Woodcock, J. Defining safe use of anesthesia in children. N. Engl. J. Med. 364, 1387–1390 (2011).

    Article  CAS  PubMed  Google Scholar 

  177. 177

    Ing, C. et al. Long-term differences in language and cognitive function after childhood exposure to anesthesia. Pediatrics 130, e476–e485 (2012).

    Article  PubMed  Google Scholar 

  178. 178

    Khin Hla, T. et al. Perception of pediatric pain: a comparison of postoperative pain assessments between child, parent, nurse, and independent observer. Paediatr. Anaesth. 24, 1127–1131 (2014).

    Article  PubMed  Google Scholar 

  179. 179

    Chen, E., Zeltzer, L. K., Craske, M. G. & Katz, E. R. Children's memories for painful cancer treatment procedures: implications for distress. Child Dev. 71, 933–947 (2000).

    Article  CAS  PubMed  Google Scholar 

  180. 180

    Dahlquist, L. M. & Pendley, J. S. When distraction fails: parental anxiety and children's responses to distraction during cancer procedures. J. Pediatr. Psychol. 30, 623–628 (2005).

    Article  PubMed  Google Scholar 

  181. 181

    van Dijk, J. et al. Behavioural functioning of retinoblastoma survivors. Psychooncology 18, 87–95 (2009).

    Article  CAS  PubMed  Google Scholar 

  182. 182

    van Dijk, J. et al. Coping strategies of retinoblastoma survivors in relation to behavioural problems. Psychooncology 18, 1281–1289 (2009).

    Article  CAS  PubMed  Google Scholar 

  183. 183

    Gold, J. I. PTSD can affect sick kids? Your medical PTSD questions answered. RESEARCHLA Blog (Children's Hospital Los Angeles, The Saban Research Institute, Los Angeles) [online], (2015).

  184. 184

    Committee on Hospital Care and Child Life Council. Child Life services. Pediatrics 133, e1471–e1478 (2014).

    Article  Google Scholar 

  185. 185

    O’Callaghan, C., Sexton, M. & Wheeler, G. Music therapy as a non-pharmacological anxiolytic for paediatric radiotherapy patients. Australas. Radiol. 51, 159–162 (2007).

    Article  PubMed  Google Scholar 

  186. 186

    Post-White, J. et al. Massage therapy for children with cancer. J. Pediatr. Oncol. Nurs. 26, 16–28 (2009).

    Article  PubMed  Google Scholar 

  187. 187

    Hildenbrand, A. K., Clawson, K. J., Alderfer, M. A. & Marsac, M. L. Coping with pediatric cancer: strategies employed by children and their parents to manage cancer-related stressors during treatment. J. Pediatr. Oncol. Nurs. 28, 344–354 (2011).

    Article  PubMed  Google Scholar 

  188. 188

    van Dijk, J. et al. Restrictions in daily life after retinoblastoma from the perspective of the survivors. Pediatr. Blood Cancer 54, 110–115 (2010).

    Article  PubMed  Google Scholar 

  189. 189

    van Dijk, J. et al. Quality of life of adult retinoblastoma survivors in the Netherlands. Health Qual. Life Outcomes 5, 30 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  190. 190

    Shinohara, E. T., DeWees, T. & Perkins, S. M. Subsequent malignancies and their effect on survival in patients with retinoblastoma. Pediatr. Blood Cancer 61, 116–119 (2014).

    Article  PubMed  Google Scholar 

  191. 191

    Ford, J. S., Chou, J. F. & Sklar, C. A. Attendance at a survivorship clinic: impact on knowledge and psychosocial adjustment. J. Cancer Surviv. 7, 535–543 (2013).

    Article  PubMed  Google Scholar 

  192. 192

    Schulz, C. J., Riddle, M. P., Valdimirsdottir, H. B., Abramson, D. H. & Sklar, C. A. Impact on survivors of retinoblastoma when informed of study results on risk of second cancers. Med. Pediatr. Oncol. 41, 36–43 (2003).

    Article  PubMed  Google Scholar 

  193. 193

    Rowland, E. & Metcalfe, A. Communicating inherited genetic risk between parent and child: a meta-thematic synthesis. Int. J. Nurs. Stud. 50, 870–880 (2013).

    Article  PubMed  Google Scholar 

  194. 194

    Clarke, S. A., Sheppard, L. & Eiser, C. Mothers’ explanations of communicating past health and future risks to survivors of childhood cancer. Clin. Child Psychol. Psychiatry 13, 157–170 (2008).

    Article  PubMed  Google Scholar 

  195. 195

    Weaver, R. R. Seeking high reliability in primary care: leadership, tools, and organization. Health Care Manage. Rev. 40, 183–192 (2014).

    Article  Google Scholar 

  196. 196

    Jha, P. et al. Prospective study of one million deaths in India: rationale, design, and validation results. PLoS Med. 3, e18 (2006).

    Article  PubMed  Google Scholar 

  197. 197

    Farmer, P. Who lives and who dies? Lond. Rev. Books 30, 17–20 (2015).

    Google Scholar 

  198. 198

    Ladas, E. J. et al. Improving our understanding of the use of traditional complementary/alternative medicine in children with cancer. Cancer 121, 1492–1498 (2015).

    Article  PubMed  Google Scholar 

  199. 199

    Farmer, P. & Mukherjee, J. Ebola: countries need ‘staff, stuff, and systems’. PIH [online], (2014).

  200. 200

    Panton, R. L. et al. A visual approach to providing prognostic information to parents of children with retinoblastoma. Psychooncology 18, 300–304 (2009).

    Article  PubMed  Google Scholar 

  201. 201

    Grossmann, C., Sanders, J. & English, R. A. Large Simple Trials and Knowledge Generation in a Learning Health System: Workshop Summary (National Academies Press, 2013).

    Google Scholar 

  202. 202

    Laurie, N. A. et al. Inactivation of the p53 pathway in retinoblastoma. Nature 444, 61–66 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. 203

    Pritchard, E. M. et al. Pharmacokinetics and efficacy of the spleen tyrosine kinase inhibitor r406 after ocular delivery for retinoblastoma. Pharm. Res. 31, 3060–3072 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. 204

    Mahida, J. P. et al. A synergetic screening approach with companion effector for combination therapy: application to retinoblastoma. PLoS ONE 8, e59156 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. 205

    Taich, P. et al. Clinical pharmacokinetics of intra-arterial melphalan and topotecan combination in patients with retinoblastoma. Ophthalmology 121, 889–897 (2014).

    Article  PubMed  Google Scholar 

  206. 206

    Carcaboso, A. M. et al. Episcleral implants for topotecan delivery to the posterior segment of the eye. Invest. Ophthalmol. Vis. Sci. 51, 2126–2134 (2010).

    Article  PubMed  Google Scholar 

  207. 207

    Kang, S. J., Durairaj, C., Kompella, U. B., O’Brien, J. M. & Grossniklaus, H. E. Subconjunctival nanoparticle carboplatin in the treatment of murine retinoblastoma. Arch. Ophthalmol. 127, 1043–1047 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. 208

    Oronsky, B. et al. The war on cancer: a military perspective. Front. Oncol. 4, 387 (2014).

    PubMed  Google Scholar 

  209. 209

    The World Bank Group. Data. World Bank[online], (2015).

  210. 210

    Wang, H. et al. Skp2 is required for survival of aberrantly proliferating Rb1-deficient cells and for tumorigenesis in Rb1+/− mice. Nat. Genet. 42, 83–88 (2010).

    Article  CAS  PubMed  Google Scholar 

  211. 211

    Chan, C. H. et al. Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell 154, 556–568 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.W.C. acknowledges US NIH National Center for Advancing Translational Sciences grant KL2TR001106 and support from Research to Prevent Blindness, Inc. D.C. acknowledges NIH grant R01CA137124 and support from the Larry and Celia Moh Foundation and the Margaret E. Early Medical Research Trust. H.D. and B.L.G. acknowledge the TUYF Charitable Trust (Hong Kong).

Author information

Affiliations

Authors

Contributions

Introduction (B.L.G., H.D., D.C. and T.W.C.); Epidemiology (H.D., G.L.C., J.Z. and F.N.); Mechanisms/pathophysiology (T.W.C., D.C., H.D. and B.L.G.); Diagnosis, screening and prevention (H.D., G.L.C., J.Z. and B.L.G.); Management (F.L.M., C.L.S., D.H.A., G.L.C., F.N., J.Z. and B.L.G.); Quality of life (A.W., H.D. and B.L.G.); Outlook (all); overview of Primer (B.L.G. and H.D.).

Corresponding author

Correspondence to Brenda L. Gallie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dimaras, H., Corson, T., Cobrinik, D. et al. Retinoblastoma. Nat Rev Dis Primers 1, 15021 (2015). https://doi.org/10.1038/nrdp.2015.21

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing