Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Obstructive sleep apnoea syndrome

A Correction to this article was published on 30 July 2015

Abstract

Obstructive sleep apnoea syndrome (OSAS) is a common clinical condition in which the throat narrows or collapses repeatedly during sleep, causing obstructive sleep apnoea events. The syndrome is particularly prevalent in middle-aged and older adults. The mechanism by which the upper airway collapses is not fully understood but is multifactorial and includes obesity, craniofacial changes, alteration in upper airway muscle function, pharyngeal neuropathy and fluid shift towards the neck. The direct consequences of the collapse are intermittent hypoxia and hypercapnia, recurrent arousals and increase in respiratory efforts, leading to secondary sympathetic activation, oxidative stress and systemic inflammation. Excessive daytime sleepiness is a burden for the majority of patients. OSAS is also associated with cardiovascular co-morbidities, including hypertension, arrhythmias, stroke, coronary heart disease, atherosclerosis and overall increased cardiovascular mortality, as well as metabolic dysfunction. Whether treating sleep apnoea can fully reverse its chronic consequences remains to be established in adequately designed studies. Continuous positive airway pressure (CPAP) is the primary treatment modality in patients with severe OSAS, whereas oral appliances are also widely used in mild to moderate forms. Finally, combining different treatment modalities such as CPAP and weight control is beneficial, but need to be evaluated in randomized controlled trials. For an illustrated summary of this Primer, visit: http://go.nature.com/Lwc6te

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Maxillofacial and soft tissue changes occurring in OSAS.
Figure 2: Global prevalence of sleep apnoea.
Figure 3: Schematic outlining the hypothesized pathways by which intermittent hypoxia activates the autonomic nervous system and leads to hypertension.
Figure 4: Oxidative stress promotes sympathetic activation, cellular and systemic inflammation, and vascular co-morbidities in OSAS.
Figure 5: Role of obesity in OSAS.
Figure 6: Polysomnography.
Figure 7: Contribution of fluid shift to upper airway collapsibility in the pathogenesis of OSAS.

References

  1. 1

    Malhotra, A. & White, D. P. Obstructive sleep apnoea. Lancet 360, 237–245 (2002).

    Article  PubMed  Google Scholar 

  2. 2

    Mayer, P. et al. Relationship between body mass index, age and upper airway measurements in snorers and sleep apnoea patients. Eur. Respir. J. 9, 1801–1809 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. 3

    White, D. P. Pathogenesis of obstructive and central sleep apnea. Am. J. Respir. Crit. Care Med. 172, 1363–1370 (2005).

    Article  PubMed  Google Scholar 

  4. 4

    Horner, R. L. Contributions of passive mechanical loads and active neuromuscular compensation to upper airway collapsibility during sleep. J. Appl. Physiol. 102, 510–512 (2007).

    Article  PubMed  Google Scholar 

  5. 5

    Berry, R. B. et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 8, 597–619 (2012).

    PubMed  PubMed Central  Google Scholar 

  6. 6

    American Academy of Sleep Medicine. International Classification of Sleep Disorders 3rd edn (American Academy of Sleep Medicine, 2014).

  7. 7

    Levy, P. et al. Intermittent hypoxia and sleep-disordered breathing: current concepts and perspectives. Eur. Respir. J. 32, 1082–1095 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. 8

    Young, T., Peppard, P. E. & Gottlieb, D. J. Epidemiology of obstructive sleep apnea: a population health perspective. Am. J. Respir. Crit. Care Med. 165, 1217–1239 (2002).

    Article  PubMed  Google Scholar 

  9. 9

    Mazza, S., Pepin, J. L., Deschaux, C., Naegele, B. & Levy, P. Analysis of error profiles occurring during the OSLER test: a sensitive mean of detecting fluctuations in vigilance in patients with obstructive sleep apnea syndrome. Am. J. Respir. Crit. Care Med. 166, 474–478 (2002).

    Article  PubMed  Google Scholar 

  10. 10

    Gottlieb, D. J. et al. Relation of sleepiness to respiratory disturbance index: the Sleep Heart Health Study. Am. J. Respir. Crit. Care Med. 159, 502–507 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    McNicholas, W. T. & Bonsignore, M. R. & Management Committee of EU COST ACTION B26. Sleep apnoea as an independent risk factor for cardiovascular disease: current evidence, basic mechanisms and research priorities. Eur. Respir. J. 29, 156–178 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Yaggi, H. K. et al. Obstructive sleep apnea as a risk factor for stroke and death. N. Engl. J. Med. 353, 2034–2041 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Young, T. et al. The occurrence of sleep-disordered breathing among middle-aged adults. N. Engl. J. Med. 328, 1230–1235 (1993). A seminal paper on OSAS epidemiology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Kuna, S. T. et al. An official ATS/AASM/ACCP/ERS workshop report: Research priorities in ambulatory management of adults with obstructive sleep apnea. Proc. Am. Thorac. Soc. 8, 1–16 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Sateia, M. J. International classification of sleep disorders — third edition: highlights and modifications. Chest 146, 1387–1394 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Punjabi, N. M. The epidemiology of adult obstructive sleep apnea. Proc. Am. Thorac. Soc. 5, 136–143 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Peppard, P. E. et al. Increased prevalence of sleep-disordered breathing in adults. Am. J. Epidemiol. 177, 1006–1014 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Redline, S., Kump, K., Tishler, P. V., Browner, I. & Ferrette, V. Gender differences in sleep disordered breathing in a community-based sample. Am. J. Respir. Crit. Care Med. 149, 722–726 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Young, T., Skatrud, J. & Peppard, P. E. Risk factors for obstructive sleep apnea in adults. JAMA 291, 2013–2016 (2004).

    Article  CAS  Google Scholar 

  20. 20

    Kent, B. D., Ryan, S. & McNicholas, W. T. The genetics of obstructive sleep apnoea. Curr. Opin. Pulm. Med. 16, 536–542 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Gislason, T. et al. Familial predisposition and cosegregation analysis of adult obstructive sleep apnea and the sudden infant death syndrome. Am. J. Respir. Crit. Care Med. 166, 833–838 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Redline, S. et al. The familial aggregation of obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 151, 682–687 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Sforza, E. et al. Cognitive function and sleep related breathing disorders in a healthy elderly population: the SYNAPSE study. Sleep 33, 515–521 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Johns, M. W. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 14, 540–545 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Marcus, C. L. et al. Diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics 130, e714–e755 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Pedrosa, R. P. et al. Obstructive sleep apnea: the most common secondary cause of hypertension associated with resistant hypertension. Hypertension 58, 811–817 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Portaluppi, F. et al. Undiagnosed sleep-disordered breathing among male nondippers with essential hypertension. J. Hypertens. 15, 1227–1233 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Schober, A. K., Neurath, M. F. & Harsch, I. A. Prevalence of sleep apnoea in diabetic patients. Clin. Respir. J. 5, 165–172 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Borel, A. L. et al. High prevalence of obstructive sleep apnoea syndrome in a type 1 diabetic adult population: a pilot study. Diabet. Med. 27, 1328–1329 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30

    Manin, G. et al. Obstructive sleep apnoea in people with type 1 diabetes: prevalence and association with micro- and macrovascular complications. Diabet. Med. 32, 90–96 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. 31

    Shaw, J. E., Punjabi, N. M., Wilding, J. P., Alberti, K. G. M. M. & Zimmet, P. Z. Sleep-disordered breathing and type 2 diabetes: a report from the International Diabetes Federation Taskforce on Epidemiology and Prevention. Diabetes Res. Clin. Pract. 81, 2–12 (2008).

    Article  PubMed  Google Scholar 

  32. 32

    Aurora, R. N. & Punjabi, N. M. Obstructive sleep apnoea and type 2 diabetes mellitus: a bidirectional association. Lancet Respir. Med. 1, 329–338 (2013).

    Article  PubMed  Google Scholar 

  33. 33

    Dempsey, J. A., Veasey, S. C., Morgan, B. J. & O'Donnell, C. P. Pathophysiology of sleep apnea. Physiol. Rev. 90, 47–112 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Levy, P., Pepin, J. L. & Dematteis, M. Pharyngeal neuropathy in obstructive sleep apnea: where are we going? Am. J. Respiratory Crit. Care Med. 185, 241–243 (2012).

    Article  Google Scholar 

  35. 35

    Polotsky, M. et al. Effects of leptin and obesity on the upper airway function. J. Appl. Physiol. 112, 1637–1643 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Shapiro, S. D. et al. Leptin and the control of pharyngeal patency during sleep in severe obesity. J. Appl. Physiol. 116, 1334–1341 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    White, L. H. & Bradley, T. D. Role of nocturnal rostral fluid shift in the pathogenesis of obstructive and central sleep apnoea. J. Physiol. 591, 1179–1193 (2013).

    Article  PubMed  Google Scholar 

  38. 38

    Saboisky, J. P. et al. Neurogenic changes in the upper airway of patients with obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 185, 322–329 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Svanborg, E. Upper airway nerve lesions in obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 164, 187–189 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Dematteis, M. et al. Charcot–Marie–Tooth disease and sleep apnoea syndrome: a family study. Lancet 357, 267–272 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. 41

    Eckert, D. J., White, D. P., Jordan, A. S., Malhotra, A. & Wellman, A. Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. Am. J. Respir. Crit. Care Med. 188, 996–1004 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42

    Somers, V. K. et al. Sleep apnea and cardiovascular disease: an American Heart Association/American College of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council On Cardiovascular Nursing. In collaboration with the National Heart, Lung, and Blood Institute National Center on Sleep Disorders Research (National Institutes of Health). Circulation 118, 1080–1111 (2008).

    Article  PubMed  Google Scholar 

  43. 43

    Ryan, S., Taylor, C. T. & McNicholas, W. T. Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 112, 2660–2667 (2005). This paper provides the first evidence of the selective activation of inflammatory pathway in OSAS.

    Article  CAS  PubMed  Google Scholar 

  44. 44

    Carreras, A. et al. Chronic sleep fragmentation induces endothelial dysfunction and structural vascular changes in mice. Sleep 37, 1817–1824 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Levy, P. et al. Sleep deprivation, sleep apnea and cardiovascular diseases. Front. Biosci. 4, 2007–2021 (2012).

    Google Scholar 

  46. 46

    Smith, R. P., Veale, D., Pepin, J. L. & Levy, P. A. Obstructive sleep apnoea and the autonomic nervous system. Sleep Med. Rev. 2, 69–92 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. 47

    Somers, V. K., Mark, A. L., Zavala, D. C. & Abboud, F. M. Influence of ventilation and hypocapnia on sympathetic nerve responses to hypoxia in normal humans. J. Appl. Physiol. 67, 2095–2100 (1989).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Somers, V. K., Mark, A. L., Zavala, D. C. & Abboud, F. M. Contrasting effects of hypoxia and hypercapnia on ventilation and sympathetic activity in humans. J. Appl. Physiol. 67, 2101–2106 (1989).

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Somers, V. K., Dyken, M. E., Clary, M. P. & Abboud, F. M. Sympathetic neural mechanisms in obstructive sleep apnea. J. Clin. Invest. 96, 1897–1904 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Tamisier, R. et al. A new model of chronic intermittent hypoxia in humans: effect on ventilation, sleep, and blood pressure. J. Appl. Physiol. 107, 17–24 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Tamisier, R. et al. 14 nights of intermittent hypoxia elevate daytime blood pressure and sympathetic activity in healthy humans. Eur. Respir. J. 37, 119–128 (2011). This paper demonstrates that intermittent hypoxia in healthy humans produces sympathetic activation and daytime increases in blood pressure.

    Article  CAS  PubMed  Google Scholar 

  52. 52

    Svatikova, A. et al. Obstructive sleep apnea and aldosterone. Sleep 32, 1589–1592 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53

    Barcelo, A. et al. Relationship between aldosterone and the metabolic syndrome in patients with obstructive sleep apnea hypopnea syndrome: effect of continuous positive airway pressure treatment. PLoS ONE 9, e84362 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Lacedonia, D. et al. Respective effects of OSA treatment and angiotensin receptor blocker on aldosterone in hypertensive OSA patients: A randomized cross-over controlled trial. Int. J. Cardiol. 177, 629–631 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. 55

    Pepin, J. L. et al. Comparison of continuous positive airway pressure and valsartan in hypertensive patients with sleep apnea. Am. J. Respir. Crit. Care Med. 182, 954–960 (2010). A head-to-head comparison study between CPAP and angiotensin receptor antagonist (valsartan) effects on blood pressure in OSAS, showing a difference of 9 mm Hg in favour of valsartan.

    Article  CAS  PubMed  Google Scholar 

  56. 56

    Kumar, G. K. et al. Chronic intermittent hypoxia induces hypoxia-evoked catecholamine efflux in adult rat adrenal medulla via oxidative stress. J. Physiol. 575, 229–239 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Peng, Y. J. et al. Regulation of hypoxia-inducible factor-α isoforms and redox state by carotid body neural activity in rats. J. Physiol. 592, 3841–3858 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Troncoso Brindeiro, C. M., da Silva, A. Q., Allahdadi, K. J., Youngblood, V. & Kanagy, N. L. Reactive oxygen species contribute to sleep apnea-induced hypertension in rats. Am. J. Physiol. Heart Circ. Physiol. 293, H2971–H2976 (2007). This article reports that intermittent hypoxia contributes to oxidative stress at the vascular endothelium, and that this contributes to the increase in blood pressure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Somers, V. K., Dyken, M. E., Mark, A. L. & Abboud, F. M. Parasympathetic hyperresponsiveness and bradyarrhythmias during apnoea in hypertension. Clin. Auton. Res. 2, 171–176 (1992).

    Article  CAS  PubMed  Google Scholar 

  60. 60

    Narkiewicz, K. et al. Selective potentiation of peripheral chemoreflex sensitivity in obstructive sleep apnea. Circulation 99, 1183–1189 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. 61

    Foster, G. E., Poulin, M. J. & Hanly, P. J. Intermittent hypoxia and vascular function: implications for obstructive sleep apnoea. Exp. Physiol. 92, 51–65 (2007).

    Article  PubMed  Google Scholar 

  62. 62

    Lavie, L. Obstructive sleep apnoea syndrome — an oxidative stress disorder. Sleep Med. Rev. 7, 35–51 (2003). A seminal review on OSAS as an oxidative stress disorder.

    Article  PubMed  Google Scholar 

  63. 63

    Lavie, L. & Lavie, P. Molecular mechanisms of cardiovascular disease in OSAHS: the oxidative stress link. Eur. Respir. J. 33, 1467–1484 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. 64

    Lavie, L. Oxidative stress inflammation and endothelial dysfunction in obstructive sleep apnea. Front. Biosci. 4, 1391–1403 (2012).

    Article  Google Scholar 

  65. 65

    Levy, P. et al. Obstructive Sleep Apnea and Atherosclerosis. Prog. Cardiovasc. Dis. 51, 400–410 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. 66

    Lavie, L. Oxidative stress in obstructive sleep apnea and intermittent hypoxia — revisited — the bad ugly and good: implications to the heart and brain. Sleep Med. Rev. 20, 27–45 (2015). A revisited review on OSAS and oxidative stress.

    Article  PubMed  Google Scholar 

  67. 67

    Stal, P. S. & Johansson, B. Abnormal mitochondria organization and oxidative activity in the palate muscles of long-term snorers with obstructive sleep apnea. Respiration 83, 407–417 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. 68

    Wang, N., Khan, S. A., Prabhakar, N. R. & Nanduri, J. Impairment of pancreatic beta-cell function by chronic intermittent hypoxia. Exp. Physiol. 98, 1376–1385 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Douglas, R. M. et al. Neuronal death during combined intermittent hypoxia/hypercapnia is due to mitochondrial dysfunction. Am. J. Physiol. Cell Physiol. 298, C1594–C1602 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Dewan, N. A., Nieto, F. J. & Somers, V. K. Intermittent hypoxemia and OSA: implications for comorbidities. Chest 147, 266–274 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. 71

    Dyugovskaya, L., Lavie, P. & Lavie, L. Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patients. Am. J. Respir. Crit. Care Med. 165, 934–939 (2002).

    Article  PubMed  Google Scholar 

  72. 72

    Dyugovskaya, L., Polyakov, A., Lavie, P. & Lavie, L. Delayed neutrophil apoptosis in patients with sleep apnea. Am. J. Respir. Crit. Care Med. 177, 544–554 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. 73

    Ramond, A. et al. Oxidative stress mediates cardiac infarction aggravation induced by intermittent hypoxia. Fundam. Clin. Pharmacol. 27, 252–261 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. 74

    Zhang, X. et al. Participation of protein kinase C in the activation of Nrf2 signaling by ischemic preconditioning in the isolated rabbit heart. Mol. Cell Biochem. 372, 169–179 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. 75

    Schulz, R. et al. Arterial hypertension in a murine model of sleep apnea: role of NADPH oxidase 2. J. Hypertens. 32, 300–305 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. 76

    Nair, D., Dayyat, E. A., Zhang, S. X., Wang, Y. & Gozal, D. Intermittent hypoxia-induced cognitive deficits are mediated by NADPH oxidase activity in a murine model of sleep apnea. PLoS ONE 6, e19847 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Jun, J. et al. Intermittent hypoxia has organ-specific effects on oxidative stress. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R1274–R1281 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Gozal, D. et al. Cognitive function in prepubertal children with obstructive sleep apnea: a modifying role for NADPH oxidase p22 subunit gene polymorphisms? Antioxid. Redox Signal. 16, 171–177 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    El Solh, A. A. et al. Allopurinol improves endothelial function in sleep apnoea: a randomised controlled study. Eur. Respir. J. 27, 997–1002 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. 80

    Dopp, J. M. et al. Xanthine oxidase inhibition attenuates endothelial dysfunction caused by chronic intermittent hypoxia in rats. Respiration 82, 458–467 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Williams, A. L., Chen, L. & Scharf, S. M. Effects of allopurinol on cardiac function and oxidant stress in chronic intermittent hypoxia. Sleep Breath. 14, 51–57 (2010).

    Article  PubMed  Google Scholar 

  82. 82

    Lavie, L., Vishnevsky, A. & Lavie, P. Evidence for lipid peroxidation in obstructive sleep apnea. Sleep 27, 123–128 (2004).

    PubMed  Google Scholar 

  83. 83

    Carpagnano, G. E. et al. 8-Isoprostane, a marker of oxidative stress, is increased in exhaled breath condensate of patients with obstructive sleep apnea after night and is reduced by continuous positive airway pressure therapy. Chest 124, 1386–1392 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. 84

    Jurado-Gamez, B. et al. Relationship of oxidative stress and endothelial dysfunction in sleep apnoea. Eur. Respir. J. 37, 873–879 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. 85

    Tan, K. C. et al. HDL dysfunction in obstructive sleep apnea. Atherosclerosis 184, 377–382 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. 86

    Yamauchi, M. et al. Oxidative stress in obstructive sleep apnea. Chest 127, 1674–1679 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. 87

    Vatansever, E., Surmen-Gur, E., Ursavas, A. & Karadag, M. Obstructive sleep apnea causes oxidative damage to plasma lipids and proteins and decreases adiponectin levels. Sleep Breath. 15, 275–282 (2011).

    Article  PubMed  Google Scholar 

  88. 88

    Klein, C. et al. Carbonyl groups: bridging the gap between sleep disordered breathing and coronary artery disease. Free Radic. Res. 44, 907–912 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. 89

    Christou, K., Moulas, A. N., Pastaka, C. & Gourgoulianis, K. I. Antioxidant capacity in obstructive sleep apnea patients. Sleep Med. 4, 225–228 (2003).

    Article  PubMed  Google Scholar 

  90. 90

    Barcelo, A. et al. Antioxidant status in patients with sleep apnoea and impact of continuous positive airway pressure treatment. Eur. Respir. J. 27, 756–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. 91

    Sanner, B. M. et al. Platelet function in patients with obstructive sleep apnoea syndrome. Eur. Respir. J. 16, 648–652 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. 92

    Lavie, L., Dyugovskaya, L. & Lavie, P. Sleep-apnea-related intermittent hypoxia and atherogenesis: adhesion molecules and monocytes/endothelial cells interactions. Atherosclerosis 183, 183–184 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. 93

    Dyugovskaya, L., Polyakov, A., Ginsberg, D., Lavie, P. & Lavie, L. Molecular pathways of spontaneous and TNF-α-mediated neutrophil apoptosis under intermittent hypoxia. Am. J. Respir. Cell. Mol. Biol. 45, 154–162 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. 94

    Dyugovskaya, L., Polyakov, A., Cohen-Kaplan, V., Lavie, P. & Lavie, L. Bax/Mcl-1 balance affects neutrophil survival in intermittent hypoxia and obstructive sleep apnea: effects of p38MAPK and ERK1/2 signaling. J. Transl. Med. 10, 211 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Htoo, A. K. et al. Activation of nuclear factor κB in obstructive sleep apnea: a pathway leading to systemic inflammation. Sleep Breath. 10, 43–50 (2006).

    Article  PubMed  Google Scholar 

  96. 96

    Dyugovskaya, L., Lavie, P., Hirsh, M. & Lavie, L. Activated CD8+ T-lymphocytes in obstructive sleep apnoea. Eur. Respir. J. 25, 820–828 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. 97

    Dyugovskaya, L., Lavie, P. & Lavie, L. Lymphocyte activation as a possible measure of atherosclerotic risk in patients with sleep apnea. Ann. NY Acad. Sci. 1051, 340–350 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. 98

    Dyugovskaya, L., Lavie, P. & Lavie, L. Phenotypic and functional characterization of blood γδ T cells in sleep apnea. Am. J. Respir. Crit. Care Med. 168, 242–249 (2003).

    Article  PubMed  Google Scholar 

  99. 99

    Hui, D. S. et al. The effects of nasal continuous positive airway pressure on platelet activation in obstructive sleep apnea syndrome. Chest 125, 1768–1775 (2004).

    Article  PubMed  Google Scholar 

  100. 100

    Shamsuzzaman, A. S. et al. Elevated C-reactive protein in patients with obstructive sleep apnea. Circulation 105, 2462–2464 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Shamsuzzaman, A., Amin, R. S., Calvin, A. D., Davison, D. & Somers, V. K. Severity of obstructive sleep apnea is associated with elevated plasma fibrinogen in otherwise healthy patients. Sleep Breath. 18, 761–766 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  102. 102

    Lavie, L. & Lavie, P. Crosstalk opposing view: most cardiovascular diseases in sleep apnoea are not caused by sympathetic activation. J. Physiol. 590, 2817–2819; discussion, 2821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Lavie, L. & Polotsky, V. Cardiovascular aspects in obstructive sleep apnea syndrome — molecular issues, hypoxia and cytokine profiles. Respiration 78, 361–370 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Testelmans, D. et al. Profile of circulating cytokines: impact of OSA, obesity and acute cardiovascular events. Cytokine 62, 210–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Jelic, S. & Le Jemtel, T. H. Inflammation, oxidative stress, and the vascular endothelium in obstructive sleep apnea. Trends Cardiovasc. Med. 18, 253–260 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Jelic, S. et al. Endothelial repair capacity and apoptosis are inversely related in obstructive sleep apnea. Vasc. Health Risk Manag. 5, 909–920 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Lavie, L., Hefetz, A., Luboshitzky, R. & Lavie, P. Plasma levels of nitric oxide and L-arginine in sleep apnea patients: effects of nCPAP treatment. J. Mol. Neurosci. 21, 57–63 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. 108

    Itzhaki, S. et al. The effects of 1-year treatment with a Herbst mandibular advancement splint on obstructive sleep apnea, oxidative stress, and endothelial function. Chest 131, 740–749 (2007).

    Article  PubMed  Google Scholar 

  109. 109

    Li, H., Horke, S. & Forstermann, U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis 237, 208–219 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. 110

    Phillips, B. G. et al. Effects of obstructive sleep apnea on endothelin-1 and blood pressure. J. Hypertens. 17, 61–66 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Jordan, W. et al. Obstructive sleep apnea: plasma endothelin-1 precursor but not endothelin-1 levels are elevated and decline with nasal continuous positive airway pressure. Peptides 26, 1654–1660 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Hoyos, C. M., Melehan, K. L., Liu, P. Y., Grunstein, R. R. & Phillips, C. L. Does obstructive sleep apnea cause endothelial dysfunction? A critical review of the literature. Sleep Med. Rev. 20, 15–26 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  113. 113

    Korcarz, C. E. et al. Combined effects of sleep disordered breathing and metabolic syndrome on endothelial function: the Wisconsin sleep cohort study. Sleep 37, 1707–1713 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  114. 114

    Dewan, N. A., Nieto, F. J. & Somers, V. K. Intermittent hypoxemia and OSA: implications for comorbidities. Chest 147, 266–274 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  115. 115

    Iiyori, N. et al. Intermittent hypoxia causes insulin resistance in lean mice independent of autonomic activity. Am. J. Respir. Crit. Care Med. 175, 851–857 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Xu, J., Long, Y. S., Gozal, D. & Epstein, P. N. Beta-cell death and proliferation after intermittent hypoxia: role of oxidative stress. Free Radic. Biol. Med. 46, 783–790 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Drager, L. F. & Polotsky, V. Y. Lipid metabolism: a new frontier in sleep apnea research. Am. J. Respir. Crit. Care Med. 184, 288–290 (2011). This article describes the complex relationships between OSAS, intermittent hypoxia, dyslipidaemia and vascular remodelling.

    Article  PubMed  PubMed Central  Google Scholar 

  118. 118

    Levy, P., Bonsignore, M. R. & Eckel, J. Sleep, sleep-disordered breathing and metabolic consequences. Eur. Respir. J. 34, 243–260 (2009). This paper provides an overview of the epidemiological, clinical data and mechanisms of the metabolic consequences of OSAS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Baguet, J. P. et al. The severity of oxygen desaturation is predictive of carotid wall thickening and plaque occurrence. Chest 128, 3407–3412 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  120. 120

    Drager, L. F. et al. Obstructive sleep apnea, hypertension, and their interaction on arterial stiffness and heart remodeling. Chest 131, 1379–1386 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  121. 121

    Drager, L. F. et al. The incremental role of obstructive sleep apnoea on markers of atherosclerosis in patients with metabolic syndrome. Atherosclerosis 208, 490–495 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Baguet, J. P., Barone-Rochette, G., Tamisier, R., Levy, P. & Pepin, J. L. Mechanisms of cardiac dysfunction in obstructive sleep apnea. Nat. Rev. Cardiol. 9, 679–688 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Poulain, L. et al. Visceral white fat remodelling contributes to intermittent hypoxia-induced atherogenesis. Eur. Respir. J. 43, 513–522 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. 124

    Stradling, J. R. & Davies, R. J. Sleep. 1: obstructive sleep apnoea/hypopnoea syndrome: definitions, epidemiology, and natural history. Thorax 59, 73–78 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Quintana-Gallego, E. et al. Gender differences in obstructive sleep apnea syndrome: a clinical study of 1166 patients. Respir. Med. 98, 984–989 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  126. 126

    Millman, R. P., Carlisle, C. C., McGarvey, S. T., Eveloff, S. E. & Levinson, P. D. Body fat distribution and sleep apnea severity in women. Chest 107, 362–366 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Ralls, F. M. & Grigg-Damberger, M. Roles of gender, age, race/ethnicity, and residential socioeconomics in obstructive sleep apnea syndromes. Curr. Opin. Pulm. Med. 18, 568–573 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  128. 128

    Resta, O., Bonfitto, P., Sabato, R., De Pergola, G. & Barbaro, M. P. Prevalence of obstructive sleep apnoea in a sample of obese women: effect of menopause. Diabetes Nutr. Metab. 17, 296–303 (2004).

    CAS  Google Scholar 

  129. 129

    Tufik, S., Santos-Silva, R., Taddei, J. A. & Bittencourt, L. R. Obstructive sleep apnea syndrome in the Sao Paulo Epidemiologic Sleep Study. Sleep Med. 11, 441–446 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  130. 130

    Tsai, W. H. et al. A decision rule for diagnostic testing in obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 167, 1427–1432 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  131. 131

    Kumar, H. V., Schroeder, J. W., Gang, Z. & Sheldon, S. H. Mallampati score and pediatric obstructive sleep apnea. J. Clin. Sleep Med. 10, 985–990 (2014).

    PubMed  PubMed Central  Google Scholar 

  132. 132

    McNicholas, W. T. Diagnosis of obstructive sleep apnea in adults. Proc. Am. Thorac. Soc. 5, 154–160 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  133. 133

    Abrishami, A., Khajehdehi, A. & Chung, F. A systematic review of screening questionnaires for obstructive sleep apnea. Can. J. Anaesth. 57, 423–438 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  134. 134

    Myers, K. A., Mrkobrada, M. & Simel, D. L. Does this patient have obstructive sleep apnea?: The Rational Clinical Examination systematic review. JAMA 310, 731–741 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Ward Flemons, W. & McNicholas, W. T. Clinical prediction of the sleep apnea syndrome. Sleep Med. Rev. 1, 19–32 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Carskadon, M. A. et al. Guidelines for the multiple sleep latency test (MSLT): a standard measure of sleepiness. Sleep 9, 519–524 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. 137

    Sangal, R. B., Thomas, L. & Mitler, M. M. Maintenance of wakefulness test and multiple sleep latency test. Measurement of different abilities in patients with sleep disorders. Chest 101, 898–902 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Bennett, L. S., Stradling, J. R. & Davies, R. J. A behavioural test to assess daytime sleepiness in obstructive sleep apnoea. J. Sleep Res. 6, 142–145 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. 139

    Beebe, D. W. & Gozal, D. Obstructive sleep apnea and the prefrontal cortex: towards a comprehensive model linking nocturnal upper airway obstruction to daytime cognitive and behavioral deficits. J. Sleep Res. 11, 1–16 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  140. 140

    Lim, D. C. & Pack, A. I. Obstructive sleep apnea and cognitive impairment: addressing the blood–brain barrier. Sleep Med. Rev. 18, 35–48 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  141. 141

    McNicholas, W. T. Chronic obstructive pulmonary disease and obstructive sleep apnea: overlaps in pathophysiology, systemic inflammation, and cardiovascular disease. Am. J. Respir. Crit. Care Med. 180, 692–700 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Marin, J. M., Soriano, J. B., Carrizo, S. J., Boldova, A. & Celli, B. R. Outcomes in patients with chronic obstructive pulmonary disease and obstructive sleep apnea: the overlap syndrome. Am. J. Respir. Crit. Care Med. 182, 325–331 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  143. 143

    Mehra, R. et al. Association of nocturnal arrhythmias with sleep-disordered breathing: the Sleep Heart Health study. Am. J. Respir. Crit. Care Med. 173, 910–916 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  144. 144

    Gami, A. S. et al. Association of atrial fibrillation and obstructive sleep apnea. Circulation 110, 364–367 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  145. 145

    Kanagala, R. et al. Obstructive sleep apnea and the recurrence of atrial fibrillation. Circulation 107, 2589–2594 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  146. 146

    Gami, A. S., Howard, D. E., Olson, E. J. & Somers, V. K. Day–night pattern of sudden death in obstructive sleep apnea. N. Engl. J. Med. 352, 1206–1214 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. 147

    Rowley, J. A., Aboussouan, L. S. & Badr, M. S. The use of clinical prediction formulas in the evaluation of obstructive sleep apnea. Sleep 23, 929–938 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. 148

    Ward, M. Periodic respiration. A short historical note. Ann. R. College Surg. Engl. 52, 330–334 (1973).

    CAS  Google Scholar 

  149. 149

    American Society of Anesthesiologists Task Force on Perioperative Management of Patients with Obstructive Sleep Apnea. Practice guidelines for the perioperative management of patients with obstructive sleep apnea: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Management of patients with obstructive sleep apnea. Anesthesiology 120, 268–286 (2014).

    Article  Google Scholar 

  150. 150

    Foster, G. D. et al. A randomized study on the effect of weight loss on obstructive sleep apnea among obese patients with type 2 diabetes: the Sleep AHEAD study. Arch. Intern. Med. 169, 1619–1626 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  151. 151

    Dixon, J. B. et al. Surgical versus conventional therapy for weight loss treatment of obstructive sleep apnea: a randomized controlled trial. JAMA 308, 1142–1149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. 152

    Araghi, M. H. et al. Effectiveness of lifestyle interventions on obstructive sleep apnea (OSA): systematic review and meta-analysis. Sleep 36, 1553–1562 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  153. 153

    Barbe, F. et al. Effect of continuous positive airway pressure on the incidence of hypertension and cardiovascular events in nonsleepy patients with obstructive sleep apnea: a randomized controlled trial. JAMA 307, 2161–2168 (2012). A report of a large RCT in patients with minimally symptomatic OSAS, which was not significant in the intention-to-treat analysis and only significant for patients using CPAP for more than 4 hours per night (per-protocol analysis).

  154. 154

    Sullivan, C. E., Issa, F. G., Berthon-Jones, M. & Eves, L. Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet 1, 862–865 (1981). The first study to show that CPAP treatment is effective in OSAS. CPAP is still the first-line treatment 30 years later.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. 155

    Patel, S. R., White, D. P., Malhotra, A., Stanchina, M. L. & Ayas, N. T. Continuous positive airway pressure therapy for treating sleepiness in a diverse population with obstructive sleep apnea: results of a meta-analysis. Arch. Intern. Med. 163, 565–571 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  156. 156

    Marshall, N. S. et al. Continuous positive airway pressure reduces daytime sleepiness in mild to moderate obstructive sleep apnoea: a meta-analysis. Thorax 61, 430–434 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. 157

    Lamphere, J. et al. Recovery of alertness after CPAP in apnea. Chest 96, 1364–1367 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. 158

    Pepin, J. L. et al. Effective compliance during the first 3 months of continuous positive airway pressure. A European prospective study of 121 patients. Am. J. Respir. Crit. Care Med. 160, 1124–1129 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. 159

    Antic, N. A. et al. The effect of CPAP in normalizing daytime sleepiness, quality of life, and neurocognitive function in patients with moderate to severe OSA. Sleep 34, 111–119 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  160. 160

    Weaver, T. E. et al. Relationship between hours of CPAP use and achieving normal levels of sleepiness and daily functioning. Sleep 30, 711–719 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  161. 161

    Haentjens, P. et al. The impact of continuous positive airway pressure on blood pressure in patients with obstructive sleep apnea syndrome: evidence from a meta-analysis of placebo-controlled randomized trials. Arch. Intern. Med. 167, 757–764 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  162. 162

    Bazzano, L. A., Khan, Z., Reynolds, K. & He, J. Effect of nocturnal nasal continuous positive airway pressure on blood pressure in obstructive sleep apnea. Hypertension 50, 417–423 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. 163

    Bakker, J. P. et al. Blood pressure improvement with continuous positive airway pressure is independent of obstructive sleep apnea severity. J. Clin. Sleep Med. 10, 365–369 (2014).

    PubMed  PubMed Central  Google Scholar 

  164. 164

    Martinez-Garcia, M. A. et al. Effect of CPAP on blood pressure in patients with obstructive sleep apnea and resistant hypertension: the HIPARCO randomized clinical trial. JAMA 310, 2407–2415 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. 165

    Bratton, D. J., Stradling, J. R., Barbe, F. & Kohler, M. Effect of CPAP on blood pressure in patients with minimally symptomatic obstructive sleep apnoea: a meta-analysis using individual patient data from four randomised controlled trials. Thorax 69, 1128–1135 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  166. 166

    Pepin, J. L., Timsit, J. F., Tamisier, R. & Levy, P. Is CPAP effective in reducing blood pressure in minimally symptomatic obstructive sleep apnoea? Thorax 69, 1068–1070 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  167. 167

    Marin, J. M. et al. Association between treated and untreated obstructive sleep apnea and risk of hypertension. JAMA 307, 2169–2176 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. 168

    Marin, J. M., Carrizo, S. J., Vicente, E. & Agusti, A. G. Long-term cardiovascular outcomes in men with obstructive sleep apnoea–hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 365, 1046–1053 (2005). A longitudinal follow-up study evidencing a major increase in morbidity and mortality in severe OSAS, as well as suggesting (non-RCT) a major benefit with CPAP.

    Article  PubMed  PubMed Central  Google Scholar 

  169. 169

    Antic, N. A. et al. The Sleep Apnea cardioVascular Endpoints (SAVE) trial: rationale, ethics, design, and progress. Sleep 24 Nov 2014 [Epub ahead of print].

  170. 170

    Esquinas, C. et al. Rationale and methodology of the impact of continuous positive airway pressure on patients with ACS and nonsleepy OSA: the ISAACC Trial. Clin. Cardiol. 36, 495–501 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  171. 171

    Kribbs, N. B. et al. Objective measurement of patterns of nasal CPAP use by patients with obstructive sleep apnea. Am. Rev. Respir. Dis. 147, 887–895 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. 172

    Reeves-Hoche, M. K., Meck, R. & Zwillich, C. W. Nasal CPAP: an objective evaluation of patient compliance. Am. J. Respir. Crit. Care Med. 149, 149–154 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. 173

    Engleman, H. M., Martin, S. E., Deary, I. J. & Douglas, N. J. Effect of continuous positive airway pressure treatment on daytime function in sleep apnoea/hypopnoea syndrome. Lancet 343, 572–575 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. 174

    Gay, P., Weaver, T., Loube, D. & Iber, C. Evaluation of positive airway pressure treatment for sleep related breathing disorders in adults. Sleep 29, 381–401 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  175. 175

    Krieger, J. Long-term compliance with nasal continuous positive airway pressure (CPAP) in obstructive sleep apnea patients and nonapneic snorers. Sleep 15, S42–S46 (1992).

    Article  CAS  PubMed  Google Scholar 

  176. 176

    Fleury, B., Rakotonanahary, D., Hausser-Hauw, C., Lebeau, B. & Guilleminault, C. Objective patient compliance in long-term use of nCPAP. Eur. Respir. J. 9, 2356–2359 (1996).

    Article  CAS  PubMed  Google Scholar 

  177. 177

    Pepin, J. L. et al. Side effects of nasal continuous positive airway pressure in sleep apnea syndrome. Study of 193 patients in two French sleep centers. Chest 107, 375–381 (1995).

    Article  CAS  PubMed  Google Scholar 

  178. 178

    Chirinos, J. A. et al. CPAP, weight loss, or both for obstructive sleep apnea. N. Engl. J. Med. 370, 2265–2275 (2014). This paper provides an evaluation of weight loss, CPAP or combined intervention on OSAS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. 179

    Thomasouli, M. A. et al. The impact of diet and lifestyle management strategies for obstructive sleep apnoea in adults: a systematic review and meta-analysis of randomised controlled trials. Sleep Breath. 17, 925–935 (2013).

    Article  PubMed  Google Scholar 

  180. 180

    Randerath, W. J. et al. Non-CPAP therapies in obstructive sleep apnoea. Eur. Respir. J. 37, 1000–1028 (2011).

    Article  CAS  PubMed  Google Scholar 

  181. 181

    Sundaram, S., Bridgman, S. A., Lim, J. & Lasserson, T. J. Surgery for obstructive sleep apnoea. Cochrane Database Syst. Rev. CD001004 (2005).

  182. 182

    Caples, S. M. et al. Surgical modifications of the upper airway for obstructive sleep apnea in adults: a systematic review and meta-analysis. Sleep 33, 1396–1407 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  183. 183

    Mortimore, I. L., Bradley, P. A., Murray, J. A. & Douglas, N. J. Uvulopalatopharyngoplasty may compromise nasal CPAP therapy in sleep apnea syndrome. Am. J. Respir. Crit. Care Med. 154, 1759–1762 (1996).

    Article  CAS  PubMed  Google Scholar 

  184. 184

    Holty, J. E. & Guilleminault, C. Maxillomandibular advancement for the treatment of obstructive sleep apnea: a systematic review and meta-analysis. Sleep Med. Rev. 14, 287–297 (2010).

    Article  PubMed  Google Scholar 

  185. 185

    Johansson, K. et al. Effect of a very low energy diet on moderate and severe obstructive sleep apnoea in obese men: a randomised controlled trial. BMJ 339, b4609 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  186. 186

    Drager, L. F. et al. Effects of CPAP on body weight in patients with obstructive sleep apnoea: a meta-analysis of randomised trials. Thorax 70, 258–264 (2015).

    Article  PubMed  Google Scholar 

  187. 187

    Grunstein, R. R. et al. Two year reduction in sleep apnea symptoms and associated diabetes incidence after weight loss in severe obesity. Sleep 30, 703–710 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  188. 188

    Ashrafian, H. et al. Metabolic surgery and obstructive sleep apnoea: the protective effects of bariatric procedures. Thorax 67, 442–449 (2012).

    Article  PubMed  Google Scholar 

  189. 189

    Greenburg, D. L., Lettieri, C. J. & Eliasson, A. H. Effects of surgical weight loss on measures of obstructive sleep apnea: a meta-analysis. Am. J. Med. 122, 535–542 (2009).

    Article  PubMed  Google Scholar 

  190. 190

    Flum, D. R. et al. Perioperative safety in the longitudinal assessment of bariatric surgery. N. Engl. J. Med. 361, 445–454 (2009).

    Article  PubMed  Google Scholar 

  191. 191

    Sutherland, K. et al. Oral appliance treatment for obstructive sleep apnea: an update. J. Clin. Sleep Med. 10, 215–227 (2014).

    PubMed  PubMed Central  Google Scholar 

  192. 192

    Marklund, M., Verbraecken, J. & Randerath, W. Non-CPAP therapies in obstructive sleep apnoea: mandibular advancement device therapy. Eur. Respir. J. 39, 1241–1247 (2012).

    Article  PubMed  Google Scholar 

  193. 193

    Lim, J., Lasserson, T. J., Fleetham, J. & Wright, J. Oral appliances for obstructive sleep apnoea. Cochrane Database Syst. Rev. CD004435 (2006).

  194. 194

    Phillips, C. L. et al. Health outcomes of continuous positive airway pressure versus oral appliance treatment for obstructive sleep apnea: a randomized controlled trial. Am. J. Respir. Crit. Care Med. 187, 879–887 (2013). A head-to-head comparison study between CPAP and an oral appliance (mandibular advancement device). There was no advantage on health outcome when comparing CPAP to the mandibular advancement device despite a higher reduction in the AHI with the oral appliance.

    Article  PubMed  Google Scholar 

  195. 195

    Gagnadoux, F. et al. Titrated mandibular advancement versus positive airway pressure for sleep apnoea. Eur. Respir. J. 34, 914–920 (2009).

    Article  CAS  PubMed  Google Scholar 

  196. 196

    Iftikhar, I. H., Hays, E. R., Iverson, M. A., Magalang, U. J. & Maas, A. K. Effect of oral appliances on blood pressure in obstructive sleep apnea: a systematic review and meta-analysis. J. Clin. Sleep Med. 9, 165–174 (2013).

    PubMed  PubMed Central  Google Scholar 

  197. 197

    Craig, S. E. et al. Continuous positive airway pressure improves sleepiness but not calculated vascular risk in patients with minimally symptomatic obstructive sleep apnoea: the MOSAIC randomised controlled trial. Thorax 67, 1090–1096 (2012).

    Article  PubMed  Google Scholar 

  198. 198

    Yee, B. J. et al. The effect of sibutramine-assisted weight loss in men with obstructive sleep apnoea. Int. J. Obes. 31, 161–168 (2006).

    Article  CAS  Google Scholar 

  199. 199

    Ferland, A., Poirier, P. & Series, F. Sibutramine versus continuous positive airway pressure in obese obstructive sleep apnoea patients. Eur. Respir. J. 34, 694–701 (2009).

    Article  CAS  PubMed  Google Scholar 

  200. 200

    Oksenberg, A. & Silverberg, D. S. The effect of body posture on sleep-related breathing disorders: facts and therapeutic implications. Sleep Med. Rev. 2, 139–162 (1998).

    Article  CAS  PubMed  Google Scholar 

  201. 201

    Mador, M. J. et al. Prevalence of positional sleep apnea in patients undergoing polysomnography. Chest 128, 2130–2137 (2005).

    Article  PubMed  Google Scholar 

  202. 202

    Walsh, J. H. et al. Effect of body posture on pharyngeal shape and size in adults with and without obstructive sleep apnea. Sleep 31, 1543–1549 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  203. 203

    Jokic, R., Klimaszewski, A., Crossley, M. Sridhar, G. & Fitzpatrick, M. F. Positional treatment versus continuous positive airway pressure in patients with positional obstructive sleep apnea syndrome. Chest 115, 771–781 (1999).

    Article  CAS  PubMed  Google Scholar 

  204. 204

    Bignold, J. J. et al. Poor long-term patient compliance with the tennis ball technique for treating positional obstructive sleep apnea. J. Clin. Sleep Med. 5, 428–430 (2009).

    PubMed  PubMed Central  Google Scholar 

  205. 205

    Reimer, M. & Flemons, W. W. Measuring quality of live in disorders of sleep and breathing. Sleep Breath. 3, 139–146 (1999).

    Article  PubMed  Google Scholar 

  206. 206

    [No authors listed.] Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. The Report of an American Academy of Sleep Medicine Task Force. Sleep 22, 667–689 (1999).

  207. 207

    D'Ambrosio, C., Bowman, T. & Mohsenin, V. Quality of life in patients with obstructive sleep apnea: effect of nasal continuous positive airway pressure — a prospective study. Chest 115, 123–129 (1999).

    Article  CAS  PubMed  Google Scholar 

  208. 208

    Jenkinson, C., Davies, R. J., Mullins, R. & Stradling, J. R. Comparison of therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnoea: a randomised prospective parallel trial. Lancet 353, 2100–2105 (1999). This study is the first placebo-controlled evaluation of CPAP using sham-CPAP, which involves the use of a suboptimal CPAP pressure.

    Article  CAS  PubMed  Google Scholar 

  209. 209

    McDaid, C. et al. Continuous positive airway pressure devices for the treatment of obstructive sleep apnoea–hypopnoea syndrome: a systematic review and economic analysis. Health Technol. Assess. 13, 143–274 (2009).

    Article  Google Scholar 

  210. 210

    Teran-Santos, J., Jimenez-Gomez, A. & Cordero-Guevara, J. The association between sleep apnea and the risk of traffic accidents. Cooperative Group Burgos-Santander. N. Engl. J. Med. 340, 847–851 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. 211

    Mazza, S. et al. Driving ability in sleep apnoea patients before and after CPAP treatment: evaluation on a road safety platform. Eur. Respir. J. 28, 1020–1028 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. 212

    Tregear, S., Reston, J., Schoelles, K. & Phillips, B. Continuous positive airway pressure reduces risk of motor vehicle crash among drivers with obstructive sleep apnea: systematic review and meta-analysis. Sleep 33, 1373–1380 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  213. 213

    Strohl, K. P. et al. An official American Thoracic Society Clinical Practice Guideline: sleep apnea, sleepiness, and driving risk in noncommercial drivers. An update of a 1994 Statement. Am. J. Respir. Crit. Care Med. 187, 1259–1266 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  214. 214

    Yang, E. H. et al. Sleep apnea and quality of life. Sleep 23, 535–541 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. 215

    Jenkinson, C., Stradling, J. & Petersen, S. Comparison of three measures of quality of life outcome in the evaluation of continuous positive airways pressure therapy for sleep apnoea. J. Sleep Res. 6, 199–204 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. 216

    Quan, S. F. et al. The association between obstructive sleep apnea and neurocognitive performance — the Apnea Positive Pressure Long-term Efficacy Study (APPLES). Sleep 34, 303B–314B (2011).

    Article  Google Scholar 

  217. 217

    Lacasse, Y., Bureau, M. P. & Series, F. A new standardised and self-administered quality of life questionnaire specific to obstructive sleep apnoea. Thorax 59, 494–499 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. 218

    Flemons, W. W. & Reimer, M. A. Measurement properties of the calgary sleep apnea quality of life index. Am. J. Respir. Crit. Care Med. 165, 159–164 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  219. 219

    Weaver, T. E. et al. An instrument to measure functional status outcomes for disorders of excessive sleepiness. Sleep 20, 835–843 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. 220

    Chasens, E. R., Ratcliffe, S. J. & Weaver, T. E. Development of the FOSQ-10: a short version of the Functional Outcomes of Sleep Questionnaire. Sleep 32, 915–919 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  221. 221

    Kim, A. M. et al. Tongue fat and its relationship to obstructive sleep apnea. Sleep 37, 1639–1648 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  222. 222

    Kim, A. M. et al. Metabolic activity of the tongue in obstructive sleep apnea. A novel application of FDG positron emission tomography imaging. Am. J. Respir. Crit. Care Med. 189, 1416–1425 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  223. 223

    Elias, R. M. et al. Relationship of pharyngeal water content and jugular volume with severity of obstructive sleep apnea in renal failure. Nephrol. Dial. Transplant. 28, 937–944 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. 224

    Lavie, P. & Lavie, L. Unexpected survival advantage in elderly people with moderate sleep apnoea. J. Sleep Res. 18, 397–403 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  225. 225

    Lavie, L. & Lavie, P. Coronary collateral circulation in sleep apnea: a cardioprotective mechanism? Chest 137, 511–512 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  226. 226

    Aronson, D. et al. Clinical implications of sleep disordered breathing in acute myocardial infarction. PLoS ONE 9, e88878 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. 227

    Berger, S., Aronson, D., Lavie, P. & Lavie, L. Endothelial progenitor cells in acute myocardial infarction and sleep-disordered breathing. Am. J. Respir. Crit. Care Med. 187, 90–98 (2013).

    Article  CAS  PubMed  Google Scholar 

  228. 228

    Beguin, P. C., Joyeux-Faure, M., Godin-Ribuot, D., Levy, P. & Ribuot, C. Acute intermittent hypoxia improves rat myocardium tolerance to ischemia. J. Appl. Physiol. 99, 1064–1069 (2005).

    Article  CAS  PubMed  Google Scholar 

  229. 229

    Belaidi, E., Beguin, P. C., Levy, P., Ribuot, C. & Godin-Ribuot, D. Prevention of HIF-1 activation and iNOS gene targeting by low-dose cadmium results in loss of myocardial hypoxic preconditioning in the rat. Am. J. Physiol. Heart Circ. Physiol. 294, H901–H908 (2008).

    Article  CAS  PubMed  Google Scholar 

  230. 230

    Jackman, K. A. et al. Dichotomous effects of chronic intermittent hypoxia on focal cerebral ischemic injury. Stroke 45, 1460–1467 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  231. 231

    Lavie, P., Lavie, L. & Herer, P. All-cause mortality in males with sleep apnoea syndrome: declining mortality rates with age. Eur. Respir. J. 25, 514–520 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. 232

    Punjabi, N. M. et al. Sleep-disordered breathing and mortality: a prospective cohort study. PLoS Med. 6, e1000132 (2009). This article reports the increase in cardiovascular and all-cause mortality in patients with OSAS in the general population.

    Article  PubMed  PubMed Central  Google Scholar 

  233. 233

    Mehra, R., Principe-Rodriguez, K., Kirchner, H. L. & Strohl, K. P. Sleep apnea in acute coronary syndrome: high prevalence but low impact on 6-month outcome. Sleep Med. 7, 521–528 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  234. 234

    Steiner, S., Schueller, P. O., Schulze, V. & Strauer, B. E. Occurrence of coronary collateral vessels in patients with sleep apnea and total coronary occlusion. Chest 137, 516–520 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  235. 235

    Lavie, L. & Lavie, P. Ischemic preconditioning as a possible explanation for the age decline relative mortality in sleep apnea. Med. Hypotheses 66, 1069–1073 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  236. 236

    Navarrete-Opazo, A. A. & Mitchell, G. S. Therapeutic potential of intermittent hypoxia: a matter of dose. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R1181–R1197 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. 237

    Kiely, J. L., Nolan, P. & McNicholas, W. T. Intranasal corticosteroid therapy for obstructive sleep apnoea in patients with co-existing rhinitis. Thorax 59, 50–55 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. 238

    Hedner, J., Kraiczi, H., Peker, Y. & Murphy, P. Reduction of sleep-disordered breathing after physostigmine. Am. J. Respir. Crit. Care Med. 168, 1246–1251 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  239. 239

    Carley, D. W., Olopade, C., Ruigt, G. S. & Radulovacki, M. Efficacy of mirtazapine in obstructive sleep apnea syndrome. Sleep 30, 35–41 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  240. 240

    Marshall, N. S. et al. Two randomized placebo-controlled trials to evaluate the efficacy and tolerability of mirtazapine for the treatment of obstructive sleep apnea. Sleep 31, 824–831 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  241. 241

    Wirth, K. J., Steinmeyer, K. & Ruetten, H. Sensitization of upper airway mechanoreceptors as a new pharmacologic principle to treat obstructive sleep apnea: investigations with AVE0118 in anesthetized pigs. Sleep 36, 699–708 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  242. 242

    Eisele, D. W., Smith, P. L., Alam, D. S. & Schwartz, A. R. Direct hypoglossal nerve stimulation in obstructive sleep apnea. Arch. Otolaryngol. Head Neck Surg. 123, 57–61 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. 243

    Kezirian, E. J. et al. Electrical stimulation of the hypoglossal nerve in the treatment of obstructive sleep apnea. Sleep Med. Rev. 14, 299–305 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  244. 244

    Strollo, P. J. Jr et al. Upper-airway stimulation for obstructive sleep apnea. N. Engl. J. Med. 370, 139–149 (2014). A report on the promising treatment of OSAS using unilateral stimulation of the hypoglossal nerve.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. 245

    Mwenge, G. B., Rombaux, P., Dury, M., Lengele, B. & Rodenstein, D. Targeted hypoglossal neurostimulation for obstructive sleep apnoea: a 1-year pilot study. Eur. Respir. J. 41, 360–367 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  246. 246

    Rodenstein, D., Rombaux, P., Lengele, B., Dury, M. & Mwenge, G. B. Residual effect of THN hypoglossal stimulation in obstructive sleep apnea: a disease-modifying therapy. Am. J. Respir. Crit. Care Med. 187, 1276–1278 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  247. 247

    Schwartz, A. R. et al. Acute upper airway responses to hypoglossal nerve stimulation during sleep in obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 185, 420–426 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  248. 248

    Inspire Medical Systems, Inc. Stimulation Therapy for Apnea Reduction (Www.theSTARtrial.Com) (NCT01161420). ClinicalTrials.gov[online] (2014).

  249. 249

    Apnex Medical, Inc. Apnex Clinical Study of the Hypoglossal Nerve Stimulation (HGNS®) System to Treat Obstructive Sleep Apnea (NCT01446601). ClinicalTrials.gov[online] (2015).

  250. 250

    Pepin, J. L., Tamisier, R. & Levy, P. Obstructive sleep apnoea and metabolic syndrome: put CPAP efficacy in a more realistic perspective. Thorax 67, 1025–1027 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  251. 251

    Sivam, S. et al. Effects of 8 weeks of continuous positive airway pressure on abdominal adiposity in obstructive sleep apnoea. Eur. Respir. J. 40, 913–918 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. 252

    Levy, P., Godin-Ribuot, D. & Pepin, J. L. Sleep apnoea and cancer: the new challenge. Eur. Respir. J. 43, 1567–1570 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  253. 253

    Campos-Rodriguez, F. et al. Association between obstructive sleep apnea and cancer incidence in a large multicenter Spanish cohort. Am. J. Respir. Crit. Care Med. 187, 99–105 (2013). This article reports that there is accumulating evidence to indicate that OSAS is associated with increases in cancer incidence and cancer aggressiveness.

    Article  PubMed  PubMed Central  Google Scholar 

  254. 254

    Nieto, F. J. et al. Sleep-disordered breathing and cancer mortality: results from the Wisconsin sleep cohort study. Am. J. Respir. Crit. Care Med. 186, 190–194 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  255. 255

    Almendros, I. et al. Intermittent hypoxia enhances cancer progression in a mouse model of sleep apnoea. Eur. Respir. J. 39, 215–217 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. 256

    Almendros, I. et al. Obesity and intermittent hypoxia increase tumor growth in a mouse model of sleep apnea. Sleep Med. 13, 1254–1260 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  257. 257

    Almendros, I. et al. Intermittent hypoxia increases melanoma metastasis to the lung in a mouse model of sleep apnea. Respir. Physiol. Neurobiol. 186, 303–307 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. 258

    Martinez-Garcia, M. A. et al. Association between sleep disordered breathing and aggressiveness markers of malignant cutaneous melanoma. Eur. Respir. J. 43, 1661–1668 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  259. 259

    Nanduri, J., Yuan, G., Kumar, G. K., Semenza, G. L. & Prabhakar, N. R. Transcriptional responses to intermittent hypoxia. Respir. Physiol. Neurobiol. 164, 277–281 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. 260

    Almendros, I. et al. Intermittent hypoxia-induced changes in tumor-associated macrophages and tumor malignancy in a mouse model of sleep apnea. Am. J. Respir. Crit. Care Med. 189, 593–601 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  261. 261

    Hakim, F. et al. Fragmented sleep accelerates tumor growth and progression through recruitment of tumor-associated macrophages and TLR4 signaling. Cancer Res. 74, 1329–1337 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. 262

    Pepin, J. L. et al. Prevalence of residual excessive sleepiness in CPAP-treated sleep apnoea patients: the French multicentre study. Eur. Respir. J. 33, 1062–1067 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  263. 263

    Gasa, M. et al. Residual sleepiness in sleep apnea patients treated by continuous positive airway pressure. J. Sleep Res. 22, 389–397 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  264. 264

    Stradling, J. R., Smith, D. & Crosby, J. Post-CPAP sleepiness — a specific syndrome? J. Sleep Res. 16, 436–438 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  265. 265

    Weaver, T. E., Chasens, E. R. & Arora, S. Modafinil improves functional outcomes in patients with residual excessive sleepiness associated with CPAP treatment. J. Clin. Sleep Med. 5, 499–505 (2009).

    PubMed  PubMed Central  Google Scholar 

  266. 266

    Bixler, E. O. et al. Excessive daytime sleepiness in a general population sample: the role of sleep apnea, age, obesity, diabetes, and depression. J. Clin. Endocrinol. Metab. 90, 4510–4515 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. 267

    Coughlin, S. R., Mawdsley, L., Mugarza, J. A., Wilding, J. P. & Calverley, P. M. Cardiovascular and metabolic effects of CPAP in obese males with OSA. Eur. Respir. J. 29, 720–727 (2007).

    Article  CAS  Google Scholar 

  268. 268

    West, S. D., Nicoll, D. J., Wallace, T. M., Matthews, D. R. & Stradling, J. R. Effect of CPAP on insulin resistance and HbA1c in men with obstructive sleep apnoea and type 2 diabetes. Thorax 62, 969–974 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  269. 269

    Weinstock, T. G. et al. A controlled trial of CPAP therapy on metabolic control in individuals with impaired glucose tolerance and sleep apnea. Sleep 35, 617B–625B (2012).

    Article  Google Scholar 

  270. 270

    Hoyos, C. M. et al. Cardiometabolic changes after continuous positive airway pressure for obstructive sleep apnoea: a randomised sham-controlled study. Thorax 67, 1081–1089 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  271. 271

    Mendelson, M. et al. Low physical activity is a determinant for elevated blood pressure in high cardiovascular risk obstructive sleep apnea. Respir. Care 59, 1218–1227 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  272. 272

    Joyeux-Faure, M. et al. Response to statin therapy in obstructive sleep apnea syndrome: a multicenter randomized controlled trial. Mediators Inflamm. 2014, 423120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. 273

    Stanke-Labesque, F., Pepin, J. L., Gautier-Veyret, E., Levy, P. & Back, M. Leukotrienes as a molecular link between obstructive sleep apnoea and atherosclerosis. Cardiovasc. Res. 101, 187–193 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. 274

    Quinnell, T. G. et al. A crossover randomised controlled trial of oral mandibular advancement devices for obstructive sleep apnoea-hypopnoea (TOMADO). Thorax 69, 938–945 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  275. 275

    Vanderveken, O. M. et al. Objective measurement of compliance during oral appliance therapy for sleep-disordered breathing. Thorax 68, 91–96 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  276. 276

    Petit, F. X. et al. Mandibular advancement devices: rate of contraindications in 100 consecutive obstructive sleep apnea patients. Am. J. Respir. Crit. Care Med. 166, 274–278 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  277. 277

    Bixler, E. O., Vgontzas, A., Have, T. T., Tyson, K. & Kales, A. Effects of age on sleep apnea in men. Am. J. Resp Crit. Care Med. 157, 144–148 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. 278

    Bixler, E. O. et al. Prevalence of sleep-disordered breathing in women: effects of gender. Am. J. Respir. Crit. Care Med. 163, 608–613 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. 279

    Ip, M. S. et al. A community study of sleep-disordered breathing in middle-aged Chinese men in Hong Kong. Chest 119, 62–69 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. 280

    Ip, M. S. et al. A community study of sleep-disordered breathing in middle-aged Chinese women in Hong Kong: prevalence and gender differences. Chest 125, 127–134 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  281. 281

    Sutherland, K., Lee, R. W. & Cistulli, P. A. Obesity and craniofacial structure as risk factors for obstructive sleep apnoea: impact of ethnicity. Respirology 17, 213–222 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  282. 282

    Bearpark, H. et al. Snoring and sleep apnea: a population study in Australian men. Am. J. Respir. Crit. Care Med. 151, 1459–1465 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. 283

    Olson, L. G., King, M. T., Hensley, M. J. & Saunders, N. A. A community study of snoring and sleep-disordered breathing. Prevalence. Am. J. Respir. Crit. Care Med. 152, 711–716 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. 284

    Redline, S. et al. Racial differences in sleep-disordered breathing in African–Americans and Caucasians. Am. J. Respir. Crit. Care Med. 155, 186–192 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. 285

    Udwadia, Z. F., Doshi, A. V., Lonkar, S. G. & Singh, C. I. Prevalence of sleep-disordered breathing and sleep apnea in middle-aged urban Indian men. Am. J. Respir. Crit. Care Med. 169, 168–173 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  286. 286

    Leonard, M. O. et al. Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia–reperfusion injury. FASEB J. 20, 2624–2626 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. 287

    Han, Q., Yeung, S. C., Ip, M. S. & Mak, J. C. Intermittent hypoxia-induced NF-κB and HO-1 regulation in human endothelial EA.hy926 cells. Cell Biochem. Biophys. 66, 431–441 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. 288

    Lavie, L. et al. Plasma vascular endothelial growth factor in sleep apnea syndrome: effects of nasal continuous positive air pressure treatment. Am. J. Respir. Crit. Care Med. 165, 1624–1628 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  289. 289

    Drager, L. F., Togeiro, S. M., Polotsky, V. Y. & Lorenzi-Filho, G. Obstructive sleep apnea: a cardiometabolic risk in obesity and the metabolic syndrome. J. Am. Coll. Cardiol. 62, 569–576 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

Introduction (P.L.); Epidemiology (W.T.M.); Mechanisms/pathophysiology (L.L., J.-L.P. and V.K.S.); Diagnosis, screening and prevention (M.K.); Management (J.-L.P. and D.M.); Quality of life (F.B.); Outlook (P.L.); and overview of the Primer (P.L.).

Corresponding author

Correspondence to Patrick Lévy.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lévy, P., Kohler, M., McNicholas, W. et al. Obstructive sleep apnoea syndrome. Nat Rev Dis Primers 1, 15015 (2015). https://doi.org/10.1038/nrdp.2015.15

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing