Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Cataract

Abstract

Cataract is the leading cause of reversible blindness and visual impairment globally. Blindness from cataract is more common in populations with low socioeconomic status and in developing countries than in developed countries. The only treatment for cataract is surgery. Phacoemulsification is the gold standard for cataract surgery in the developed world, whereas manual small incision cataract surgery is used frequently in developing countries. In general, the outcomes of surgery are good and complications, such as endophthalmitis, often can be prevented or have good ouctomes if properly managed. Femtosecond laser-assisted cataract surgery, an advanced technology, can automate several steps; initial data show no superiority of this approach over current techniques, but the results of many large clinical trials are pending. The greatest challenge remains the growing ‘backlog’ of patients with cataract blindness in the developing world because of lack of access to affordable surgery. Efforts aimed at training additional cataract surgeons in these countries do not keep pace with the increasing demand associated with ageing population demographics. In the absence of strategie that can prevent or delay cataract formation, it is important to focus efforts and resources on developing models for efficient delivery of cataract surgical services in underserved regions. For an illustrated summary of this Primer, visit: http://go.nature.com/eQkKll

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global prevalence of visual impairment due to cataract.
Figure 2: A model for the pathogenesis of adult-onset cataract.
Figure 3: Clinical presentation of cataract.
Figure 4: Simplified schematic diagram showing different technologies used for cataract surgery.
Figure 5: Management of complicated cataracts.

Similar content being viewed by others

References

  1. Song, E. et al. Age-related cataract, cataract surgery and subsequent mortality: a systematic review and meta-analysis. PLoS ONE 9, e112054 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Salomon, J. A. et al. Healthy life expectancy for 187 countries, 1990-2010: a systematic analysis for the Global Burden Disease Study 2010. Lancet 380, 2144–2162 (2012).

    Article  PubMed  Google Scholar 

  3. Pathengay, A., Flynn, H. W., Isom, R. F. & Miller, D. Endophthalmitis outbreaks following cataract surgery: causative organisms, etiologies, and visual acuity outcomes. J. Cataract Refract. Surg. 38, 1278–1282 (2012). References 1–3 show that cataract is the leading cause of reversible blindness and visual impairment globally.

    Article  PubMed  Google Scholar 

  4. He, L., Sheehy, K. & Culbertson, W. Femtosecond laser-assisted cataract surgery. Curr. Opin. Ophthalmol. 22, 43–52 (2011).

    PubMed  Google Scholar 

  5. Reitblat, O. et al. Accuracy of predicted refraction with multifocal intraocular lenses using two biometry measurement devices and multiple intraocular lens power calculation formulas. Clin. Experiment. Ophthalmol.http://dx.doi.org/10.1111/ceo.12478 (2015).

  6. Lee, A. C., Qazi, M. A. & Pepose, J. S. Biometry and intraocular lens power calculation. Curr. Opin. Ophthalmol. 19, 13–17 (2008).

    Article  PubMed  Google Scholar 

  7. Stevens, G. A. et al. Global prevalence of vision impairment and blindness: magnitude and temporal trends, 1990–2010. Ophthalmology 120, 2377–2384 (2013).

    Article  PubMed  Google Scholar 

  8. Ono, K., Hiratsuka, Y. & Murakami, A. Global inequality in eye health: country-level analysis from the Global Burden of Disease Study. Am. J. Public Health 100, 1784–1788 (2010). References 7 and 8 show that blindness due to cataract is more common in populations with low socioeconomic status and in developing countries.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li, E. Y. et al. Prevalence of blindness and outcomes of cataract surgery in Hainan Province in South China. Ophthalmology 120, 2176–2183 (2013).

    Article  PubMed  Google Scholar 

  10. Pascolini, D. & Mariotti, S. P. Global estimates of visual impairment: 2010. Br. J. Ophthalmol. 96, 614–618 (2012). This study shows that cataract is the leading cause of blindness.

    Article  PubMed  Google Scholar 

  11. Borrow, J. C. (ed.) Basic and Clinical Science Course, Section 11: Lens and Cataract. (American Academy of Ophthalmology, 2014).

  12. Hodge, W. G., Whitcher, J. P. & Satariano, W. Risk factors for age-related cataracts. Epidemiol. Rev. 17, 336–346 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Haddad, N. M. N., Sun, J. K., Abujaber, S., Schlossman, D. K. & Silva, P. S. Cataract surgery and its complications in diabetic patients. Semin. Ophthalmol. 29, 329–337 (2014).

    Article  PubMed  Google Scholar 

  14. Hashim, Z. & Zarina, S. Advanced glycation end products in diabetic and non-diabetic human subjects suffering from cataract. Age 33, 377–384 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Gupta, V. B., Rajagopala, M. & Ravishankar, B. Etiopathogenesis of cataract: an appraisal. Indian J. Ophthalmol. 62, 103–110 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shingleton, B. J., Crandall, A. S. & Ahmed, I. I. K. Pseudoexfoliation and the cataract surgeon: preoperative, intraoperative, and postoperative issues related to intraocular pressure, cataract, and intraocular lenses. J. Cataract Refract. Surg. 35, 1101–1120 (2009).

    Article  PubMed  Google Scholar 

  17. Bair, B., Dodd, J., Heidelberg, K. & Krach, K. Cataracts in atopic dermatitis: a case presentation and review of the literature. Arch. Dermatol. 147, 585–588 (2011).

    Article  PubMed  Google Scholar 

  18. James, E. R. The etiology of steroid cataract. J. Ocul. Pharmacol. Ther. 23, 403–420 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Leuschen, J. et al. Association of statin use with cataracts: a propensity score-matched analysis. JAMA Ophthalmol. 131, 1427–1434 (2013).

    Article  PubMed  Google Scholar 

  20. Liu, X., Wang, L., Du, C., Li, D. & Fan, Y. Mechanism of lens capsular rupture following blunt trauma: a finite element study. Comput. Methods Biomech. Biomed. Engin. 18, 914–921 (2015).

    Article  PubMed  Google Scholar 

  21. Yu, Z., Schulmeister, K., Talebizadeh, N., Kronschläger, M. & Söderberg, P. Temperature-controlled in vivo ocular exposure to 1090-nm radiation suggests that near-infrared radiation cataract is thermally induced. J. Biomed. Opt. 20, 015003 (2015).

    Article  PubMed  Google Scholar 

  22. Bitarafan Rajabi, A. et al. Ionizing radiation-induced cataract in interventional cardiology staff. Res. Cardiovasc. Med. 4, e25148 (2015).

    PubMed  PubMed Central  Google Scholar 

  23. Awan, K. J. Delayed cataract formation after alkali burn. Can. J. Ophthalmol. 10, 423–426 (1975).

    CAS  PubMed  Google Scholar 

  24. Wu, R. et al. Smoking, socioeconomic factors, and age-related cataract: the Singapore Malay Eye study. Arch. Ophthalmol. 128, 1029–1035 (2010).

    Article  PubMed  Google Scholar 

  25. McCarty, C. A. & Taylor, H. R. A review of the epidemiologic evidence linking ultraviolet radiation and cataracts. Dev. Ophthalmol. 35, 21–31 (2002).

    Article  PubMed  Google Scholar 

  26. West, S. K. et al. Sunlight exposure and risk of lens opacities in a population-based study: the Salisbury Eye Evaluation project. JAMA 280, 714–718 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Lindblad, B. E., Håkansson, N. & Wolk, A. Smoking cessation and the risk of cataract: a prospective cohort study of cataract extraction among men. JAMA Ophthalmol. 132, 253–257 (2014).

    Article  PubMed  Google Scholar 

  28. World Health Organization. Prevention of blindness and visual impairment. Global cataract surgical rates. World Health Organization[online], (2004).

  29. Nangia, V., Jonas, J. B., Gupta, R., Khare, A. & Sinha, A. Prevalence of cataract surgery and postoperative visual outcome in rural central India Central India Eye and Medical Study. J. Cataract Refract. Surg. 37, 1932–1938 (2011).

    Article  PubMed  Google Scholar 

  30. Weinreb, O., Dovrat, A., Dunia, I., Benedetti, E. L. & Bloemendal, H. UV-A-related alterations of young and adult lens water-insoluble α-crystallin, plasma membranous and cytoskeletal proteins. Eur. J. Biochem. 268, 536–543 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Lampi, K. J. et al. Sequence analysis of βA3, βB3, and βA4 crystallins completes the identification of the major proteins in young human lens. J. Biol. Chem. 272, 2268–2275 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Moreau, K. L. & King, J. A. Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends Mol. Med. 18, 273–282 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Roshan, M. et al. A novel human CRYGD mutation in a juvenile autosomal dominant cataract. Mol. Vis. 16, 887–896 (2010).

    PubMed  PubMed Central  Google Scholar 

  34. Bloemendal, H. et al. Ageing and vision: structure, stability and function of lens crystallins. Prog. Biophys. Mol. Biol. 86, 407–485 (2004). References 32 and 34 show that changes in the arrangement and alterations of crystallin folding result in increasing rigidity of the lens and eventually loss of transparency.

    Article  CAS  PubMed  Google Scholar 

  35. Basak, A. et al. High-resolution X-ray crystal structures of human γD crystallin (1.25 A) and the R58H mutant (1.15 A) associated with aculeiform cataract. J. Mol. Biol. 328, 1137–1147 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Hains, P. G. & Truscott, R. J. W. Post-translational modifications in the nuclear region of young, aged, and cataract human lenses. J. Proteome Res. 6, 3935–3943 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Hains, P. G. & Truscott, R. J. W. Proteome analysis of human foetal, aged and advanced nuclear cataract lenses. Proteomics Clin. Appl. 2, 1611–1619 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Serebryany, E. & King, J. A. The βγ-crystallins: native state stability and pathways to aggregation. Prog. Biophys. Mol. Biol. 115, 32–41 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kosinski-Collins, M. S., Flaugh, S. L. & King, J. Probing folding and fluorescence quenching in human γD crystallin Greek key domains using triple tryptophan mutant proteins. Protein Sci. 13, 2223–2235 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Udupa, P. E. G. & Sharma, K. K. Effect of oxidized βB3-crystallin peptide (152-166) on thermal aggregation of bovine lens γ-crystallins: identification of peptide interacting sites. Exp. Eye Res. 80, 185–196 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Rao, G., Santhoshkumar, P. & Sharma, K. K. Anti-chaperone βA3/A1(102-117) peptide interacting sites in human αB-crystallin. Mol. Vis. 14, 666–674 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Das, P., King, J. A. & Zhou, R. Aggregation of γ-crystallins associated with human cataracts via domain swapping at the C-terminal β-strands. Proc. Natl Acad. Sci. USA 108, 10514–10519 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Metlapally, S. et al. Analysis of nuclear fiber cell cytoplasmic texture in advanced cataractous lenses from Indian subjects using Debye-Bueche theory. Exp. Eye Res. 86, 434–444 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Marsili, S. et al. Cataract formation in a strain of rats selected for high oxidative stress. Exp. Eye Res. 79, 595–612 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Kosinski-Collins, M. S. & King, J. In vitro unfolding, refolding, and polymerization of human γD crystallin, a protein involved in cataract formation. Protein Sci. 12, 480–490 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Flaugh, S. L., Kosinski-Collins, M. S. & King, J. Interdomain side-chain interactions in human γD crystallin influencing folding and stability. Protein Sci. 14, 2030–2043 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Moreau, K. L. & King, J. Hydrophobic core mutations associated with cataract development in mice destabilize human γD-crystallin. J. Biol. Chem. 284, 33285–33295 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Acosta-Sampson, L. & King, J. Partially folded aggregation intermediates of human γD-, γC-, and γS-crystallin are recognized and bound by human αB-crystallin chaperone. J. Mol. Biol. 401, 134–152 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dolinska, M. B., Sergeev, Y. V., Chan, M. P., Palmer, I. & Wingfield, P. T. N-terminal extension of beta B1-crystallin: identification of a critical region that modulates protein interaction with beta A3-crystallin. Biochemistry 48, 9684–9695 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Pande, A. et al. Crystal cataracts: human genetic cataract caused by protein crystallization. Proc. Natl Acad. Sci. USA 98, 6116–6120 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Goralska, M., Holley, B. L. & McGahan, M. C. Overexpression of H and L-ferritin subunits in lens epithelial cells: Fe metabolism and cellular response to UVB irradiation. Invest. Ophthalmol. Vis. Sci. 42, 1721–1727 (2001).

    CAS  PubMed  Google Scholar 

  52. Lou, M. F. Redox regulation in the lens. Prog. Retin. Eye Res. 22, 657–682 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Tessem, M.-B., Midelfart, A., Cejková, J. & Bathen, T. F. Effect of UVA and UVB irradiation on the metabolic profile of rabbit cornea and lens analysed by HR-MAS 1H NMR spectroscopy. Ophthalmic Res. 38, 105–114 (2006).

    Article  PubMed  Google Scholar 

  54. Schafheimer, N., Wang, Z., Schey, K. & King, J. Tyrosine/cysteine cluster sensitizing human γD-crystallin to ultraviolet radiation-induced photoaggregation in vitro. Biochemistry 53, 979–990 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Mizdrak, J., Hains, P. G., Truscott, R. J. W., Jamie, J. F. & Davies, M. J. Tryptophan-derived ultraviolet filter compounds covalently bound to lens proteins are photosensitizers of oxidative damage. Free Radic. Biol. Med. 44, 1108–1119 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Vrensen, G. F. J. M. et al. Tryptophan deficiency arrests chromatin breakdown in secondary lens fibers of rats. Exp. Eye Res. 78, 661–672 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Giblin, F. J. et al. UVA light in vivo reaches the nucleus of the guinea pig lens and produces deleterious, oxidative effects. Exp. Eye Res. 75, 445–458 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shiels, A. & Hejtmancik, J. F. Genetics of human cataract. Clin. Genet. 84, 120–127 (2013). This study shows the influence of genetics on cataract development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, Y. et al. Effect of HSF4b on age related cataract may through its novel downstream target Hif1α. Biochem. Biophys. Res. Commun. 453, 674–678 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Dave, A. et al. Mutations in the EPHA2 gene are a major contributor to inherited cataracts in South-Eastern Australia. PLoS ONE 8, e72518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, Y. et al. Genetic polymorphisms of superoxide dismutases, catalase, and glutathione peroxidase in age-related cataract. Mol. Vis. 17, 2325–2332 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, Y. et al. Genetic polymorphisms in DNA repair genes OGG1, APE1, XRCC1, and XPD and the risk of age-related cataract. Ophthalmology 119, 900–906 (2012).

    Article  PubMed  Google Scholar 

  63. Jiang, Z., Liang, K., Zhang, Q. & Tao, L. Glutathione S-transferases polymorphisms confer susceptibility to senile cortical cataract in the Han Chinese population. Mol. Vis. 18, 1247–1252 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Su, S. et al. The associations between single nucleotide polymorphisms of DNA repair genes, DNA damage, and age-related cataract: Jiangsu Eye Study. Invest. Ophthalmol. Vis. Sci. 54, 1201–1207 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Gillespie, R. L. et al. Personalized diagnosis and management of congenital cataract by next-generation sequencing. Ophthalmology 121, 2124–2137 (2014).

    Article  PubMed  Google Scholar 

  66. Sun, W., Xiao, X., Li, S., Guo, X. & Zhang, Q. Exome sequencing of 18 Chinese families with congenital cataracts: a new sight of the NHS gene. PLoS ONE 9, e100455 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liao, J. et al. Meta-analysis of genome-wide association studies in multiethnic Asians identifies two loci for age-related nuclear cataract. Hum. Mol. Genet. 23, 6119–6128 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. American Academy of Ophthalmology Preferred Practice Pattern Committee. Preferred Practice Pattern Guidelines. Comprehensive Adult Medical Eye Evaluation. (American Academy of Ophthalmology, 2010).

  69. American Academy of Ophthalmology Preferred Practice Pattern Committee. Preferred Practice Pattern Guidelines. Cataract in the Adult Eye. (American Academy of Ophthalmology, 2011). References 68 and 69 provide guidelines for the clinical evaluation and management of cataract. Patients are evaluated for visual impairment, symptoms and concomitant eye diseases that could influence the surgical plan and visual outcome.

  70. Rocha, K. M. et al. Higher-order aberrations of age-related cataract. J. Cataract Refract. Surg. 33, 1442–1446 (2007).

    Article  PubMed  Google Scholar 

  71. Gus, P. I., Kwitko, I., Roehe, D. & Kwitko, S. Potential acuity meter accuracy in cataract patients. J. Cataract Refract. Surg. 26, 1238–1241 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Lin, Q. et al. Genetic variations and polymorphisms in the ezrin gene are associated with age-related cataract. Mol. Vis. 19, 1572–1579 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chong, E. W. & Wong, T. Y. Multivitamin supplements and cataract prevention. Ophthalmology 115, 597–598 (2008).

    Article  PubMed  Google Scholar 

  74. Milton, R. C., Sperduto, R. D., Clemons, T. E. & Ferris, F. L. Centrum use and progression of age-related cataract in the Age-Related Eye Disease Study: a propensity score approach. AREDS report No. 21. Ophthalmology 113, 1264–1270 (2006).

    Article  PubMed  Google Scholar 

  75. Linebarger, E. J., Hardten, D. R., Shah, G. K. & Lindstrom, R. L. Phacoemulsification and modern cataract surgery. Surv. Ophthalmol. 44, 123–147 (1999). This paper gives an overview of the development of phacoemulsification surgery for the treatment of cataract.

    Article  CAS  PubMed  Google Scholar 

  76. Tsui, P.-H., Huang, C.-C., Zhou, Q. & Shung, K. K. Cataract measurement by estimating the ultrasonic statistical parameter using an ultrasound needle transducer: an in vitro study. Physiol. Meas. 32, 513–522 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Glasser, D. B., Schultz, R. O. & Hyndiuk, R. A. The role of viscoelastics, cannulas, and irrigating solution additives in post-cataract surgery corneal edema: a brief review. Lens Eye Tox. Res. 9, 351–359 (1992).

    CAS  Google Scholar 

  78. Sutton, G., Bali, S. J. & Hodge, C. Femtosecond cataract surgery: transitioning to laser cataract. Curr. Opin. Ophthalmol. 24, 3–8 (2013). This paper gives an overview of the development of FLACS for the treatment of cataract.

    Article  PubMed  Google Scholar 

  79. Mainster, M. A. & Sparrow, J. R. How much blue light should an IOL transmit? Br. J. Ophthalmol. 87, 1523–1529 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lockington, D., Wang, E. F., Patel, D. V., Moore, S. P. & McGhee, C. N. J. Effectiveness of cataract phacoemulsification with toric intraocular lenses in addressing astigmatism after keratoplasty. J. Cataract Refract. Surg. 40, 2044–2049 (2014).

    Article  PubMed  Google Scholar 

  81. Gundersen, K. G. & Potvin, R. Comparative visual performance with monofocal and multifocal intraocular lenses. Clin. Ophthalmol. 7, 1979–1985 (2013). This paper gives an overview of different lenses used for the treatment of cataract.

    PubMed  PubMed Central  Google Scholar 

  82. Tabin, G., Chen, M. & Espandar, L. Cataract surgery for the developing world. Curr. Opin. Ophthalmol. 19, 55–59 (2008).

    Article  PubMed  Google Scholar 

  83. Lam, D. S. C. et al. Visual outcomes and astigmatism after sutureless, manual cataract extraction in rural China: study of cataract outcomes and up-take of services (SCOUTS) in the caring is hip project, report 1. Arch. Ophthalmol. 125, 1539–1544 (2007). This paper gives an overview of manual surgery for the treatment of cataract.

    Article  PubMed  Google Scholar 

  84. Lam, D. S. C. et al. Endothelial cell loss and surgically induced astigmatism after sutureless large-incision manual cataract extraction (SLIMCE). Arch. Ophthalmol. 127, 1284–1289 (2009).

    Article  PubMed  Google Scholar 

  85. Hayashi, K., Nakao, F. & Hayashi, F. Topographic analysis of early changes in corneal astigmatism after cataract surgery. J. Cataract Refract. Surg. 19, 43–47 (1993).

    Article  CAS  PubMed  Google Scholar 

  86. Venkatesh, R. et al. Manual small incision cataract surgery: a review. Asia-Pacif. J. Ophthalmol. 1, 113–119 (2012).

    Article  Google Scholar 

  87. Rao, S. K., Jhanji, V. & Fan, A. H. Femtosecond laser: is it the way forward for cataract surgery? Asia-Pacif. J. Ophthalmol. 1, 3–4 (2012).

    Article  Google Scholar 

  88. Lawless, M. & Hodge, C. Femtosecond laser cataract surgery: an experience from Australia. Asia-Pacif. J. Ophthalmol. 1, 5–10 (2012).

    Article  Google Scholar 

  89. Moshirfar, M., Churgin, D. S. & Hsu, M. Femtosecond laser-assisted cataract surgery: a current review. Middle East Afr. J. Ophthalmol. 18, 285–291 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Jun, J. H., Hwang, K. Y., Chang, S. D. & Joo, C.-K. Pupil-size alterations induced by photodisruption during femtosecond laser-assisted cataract surgery. J. Cataract Refract. Surg. 41, 278–285 (2015).

    Article  PubMed  Google Scholar 

  91. Miháltz, K. et al. Internal aberrations and optical quality after femtosecond laser anterior capsulotomy in cataract surgery. J. Refract. Surg. 27, 711–716 (2011).

    Article  PubMed  Google Scholar 

  92. Conrad-Hengerer, I., Hengerer, F. H., Schultz, T. & Dick, H. B. Effect of femtosecond laser fragmentation on effective phacoemulsification time in cataract surgery. J. Refract. Surg. 28, 879–883 (2012).

    Article  PubMed  Google Scholar 

  93. Palanker, D. V. et al. Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography. Sci. Transl. Med. 2, 58ra85 (2010).

    Article  PubMed  Google Scholar 

  94. Takács, A. I. et al. Central corneal volume and endothelial cell count following femtosecond laser-assisted refractive cataract surgery compared to conventional phacoemulsification. J. Refract. Surg. 28, 387–391 (2012).

    Article  PubMed  Google Scholar 

  95. Rudnisky, C. J., Wan, D. & Weis, E. Antibiotic choice for the prophylaxis of post-cataract extraction endophthalmitis. Ophthalmology 121, 835–841 (2014).

    Article  PubMed  Google Scholar 

  96. Pathengay, A. et al. Acute postoperative endophthalmitis following cataract surgery: a review. Asia-Pacif. J. Ophthalmol. 1, 35–42 (2012).

    Article  Google Scholar 

  97. Kessel, L. et al. Antibiotic prevention of postcataract endophthalmitis: a systematic review and meta-analysis. Acta Ophthalmol.http://dx.doi.org/10.1111/aos.12684 (2015).

  98. Lam, P. T. H., Hui, M., Young, A. L., Chan, C. Y. & Lam, D. S. C. Preoperative antisepsis with povidone-iodine 5% in cataract surgery. Asia-Pacif. J. Ophthalmol. 1, 77–83 (2012).

    Article  CAS  Google Scholar 

  99. Ciulla, T. A., Starr, M. B. & Masket, S. Bacterial endophthalmitis prophylaxis for cataract surgery: an evidence-based update. Ophthalmology 109, 13–24 (2002).

    Article  PubMed  Google Scholar 

  100. Nentwich, M. M. et al. Incidence of postoperative endophthalmitis from 1990 to 2009 using povidone-iodine but no intracameral antibiotics at a single academic institution. J. Cataract Refract. Surg. 41, 58–66 (2015).

    Article  PubMed  Google Scholar 

  101. Packer, M. et al. Prevention, diagnosis, and management of acute postoperative bacterial endophthalmitis. J. Cataract Refract. Surg. 37, 1699–1714 (2011).

    Article  PubMed  Google Scholar 

  102. Endophthalmitis Study Group, European Society of Cataract & Refractive Surgeons. Prophylaxis of postoperative endophthalmitis following cataract surgery: results of the ESCRS multicenter study and identification of risk factors. J. Cataract Refract. Surg. 33, 978–988 (2007).

    Article  Google Scholar 

  103. Pichichero, M. E. Cephalosporins can be prescribed safely for penicillin-allergic patients. J. Fam. Pract. 55, 106–112 (2006).

    PubMed  Google Scholar 

  104. Barry, P. Adoption of intracameral antibiotic prophylaxis of endophthalmitis following cataract surgery: update on the ESCRS Endophthalmitis Study. J. Cataract Refract. Surg. 40, 138–142 (2014).

    Article  PubMed  Google Scholar 

  105. Wolfram, C. et al. Prevalence of refractive errors in the European adult population: the Gutenberg Health Study (GHS). Br. J. Ophthalmol. 98, 857–861 (2014).

    Article  PubMed  Google Scholar 

  106. Lever, J. & Dahan, E. Opposite clear corneal incisions to correct pre-existing astigmatism in cataract surgery. J. Cataract Refract. Surg. 26, 803–805 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Rückl, T. et al. Femtosecond laser-assisted intrastromal arcuate keratotomy to reduce corneal astigmatism. J. Cataract Refract. Surg. 39, 528–538 (2013).

    Article  PubMed  Google Scholar 

  108. Visser, N., Nuijts, R. M. M. A., de Vries, N. E. & Bauer, N. J. C. Visual outcomes and patient satisfaction after cataract surgery with toric multifocal intraocular lens implantation. J. Cataract Refract. Surg. 37, 2034–2042 (2011).

    Article  PubMed  Google Scholar 

  109. Koch, D. D., Jenkins, R. B., Weikert, M. P., Yeu, E. & Wang, L. Correcting astigmatism with toric intraocular lenses: effect of posterior corneal astigmatism. J. Cataract Refract. Surg. 39, 1803–1809 (2013).

    Article  PubMed  Google Scholar 

  110. Visser, N., Bauer, N. J. C. & Nuijts, R. M. M. A. Toric intraocular lenses: historical overview, patient selection, IOL calculation, surgical techniques, clinical outcomes, and complications. J. Cataract Refract. Surg. 39, 624–637 (2013).

    Article  PubMed  Google Scholar 

  111. Mozayan, E. & Lee, J. K. Update on astigmatism management. Curr. Opin. Ophthalmol. 25, 286–290 (2014).

    Article  PubMed  Google Scholar 

  112. Xiao, J., Jiang, C. & Zhang, M. Pseudophakic monovision is an important surgical approach to being spectacle-free. Indian J. Ophthalmol. 59, 481–485 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ito, M., Shimizu, K., Niida, T., Amano, R. & Ishikawa, H. Binocular function in patients with pseudophakic monovision. J. Cataract Refract. Surg. 40, 1349–1354 (2014).

    Article  PubMed  Google Scholar 

  114. De Vries, N. E. & Nuijts, R. M. M. A. Multifocal intraocular lenses in cataract surgery: literature review of benefits and side effects. J. Cataract Refract. Surg. 39, 268–278 (2013).

    Article  PubMed  Google Scholar 

  115. Braga-Mele, R. et al. Multifocal intraocular lenses: relative indications and contraindications for implantation. J. Cataract Refract. Surg. 40, 313–322 (2014).

    Article  PubMed  Google Scholar 

  116. Prakash, G., Prakash, D. R., Agarwal, A., Kumar, D. A. & Jacob, S. Predictive factor and kappa angle analysis for visual satisfactions in patients with multifocal IOL implantation. Eye 25, 1187–1193 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wilkins, M. R. et al. Randomized trial of multifocal intraocular lenses versus monovision after bilateral cataract surgery. Ophthalmology 120, 2449–2455 (2013).

    Article  PubMed  Google Scholar 

  118. Artigas, J. M., Menezo, J. L., Peris, C., Felipe, A. & Díaz-Llopis, M. Image quality with multifocal intraocular lenses and the effect of pupil size: comparison of refractive and hybrid refractive-diffractive designs. J. Cataract Refract. Surg. 33, 2111–2117 (2007).

    Article  PubMed  Google Scholar 

  119. Patel, S., Alió, J. L. & Feinbaum, C. Comparison of Acri. Smart multifocal IOL, crystalens AT-45 accommodative IOL, and Technovision presbyLASIK for correcting presbyopia. J. Refract. Surg. 24, 294–299 (2008).

    Article  PubMed  Google Scholar 

  120. Alio, J. L., Abdelghany, A. A. & Fernández-Buenaga, R. Enhancements after cataract surgery. Curr. Opin. Ophthalmol. 26, 50–55 (2015).

    Article  PubMed  Google Scholar 

  121. Fine, I. H. Pupilloplasty for small pupil phacoemulsification. J. Cataract Refract. Surg. 20, 192–196 (1994).

    Article  CAS  PubMed  Google Scholar 

  122. Agarwal, A. et al. Modified Malyugin ring iris expansion technique in small-pupil cataract surgery with posterior capsule defect. J. Cataract Refract. Surg. 34, 724–726 (2008).

    Article  PubMed  Google Scholar 

  123. Lam, D. S. C. & Wong, V. in A–Z in Ophthalmology Book 4 Ch. 2 6–11 (Bon Vision Limited, 2009).

    Google Scholar 

  124. Chang, D. F. & Campbell, J. R. Intraoperative floppy iris syndrome associated with tamsulosin. J. Cataract Refract. Surg. 31, 664–673 (2005).

    Article  PubMed  Google Scholar 

  125. Kimura, H. et al. Extracapsular cataract extraction with a sutureless incision for dense cataracts. J. Cataract Refract. Surg. 25, 1275–1279 (1999).

    Article  CAS  PubMed  Google Scholar 

  126. Singh, R., Vasavada, A. R. & Janaswamy, G. Phacoemulsification of brunescent and black cataracts. J. Cataract Refract. Surg. 27, 1762–1769 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Chakrabarti, A. & Singh, S. Phacoemulsification in eyes with white cataract. J. Cataract Refract. Surg. 26, 1041–1047 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Vasavada, A., Singh, R. & Desai, J. Phacoemulsification of white mature cataracts. J. Cataract Refract. Surg. 24, 270–277 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. Wong, V. W. Y., Lai, T. Y. Y., Lee, G. K. Y., Lam, P. T. H. & Lam, D. S. C. A prospective study on trypan blue capsule staining under air versus under viscoelastic. Eye 20, 820–825 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Arbisser, L. B. Managing intraoperative complications in cataract surgery. Curr. Opin. Ophthalmol. 15, 33–39 (2004). This paper discusses complications of cataract surgery.

    Article  PubMed  Google Scholar 

  131. Sangal, N. & Chen, T. C. Cataract surgery in pseudoexfoliation syndrome. Semin. Ophthalmol. 29, 403–408 (2014).

    Article  PubMed  Google Scholar 

  132. Hasanee, K., Butler, M. & Ahmed, I. I. K. Capsular tension rings and related devices: current concepts. Curr. Opin. Ophthalmol. 17, 31–41 (2006).

    PubMed  Google Scholar 

  133. Lam, D. S. et al. Scleral fixation of a capsular tension ring for severe ectopia lentis. J. Cataract Refract. Surg. 26, 609–612 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Robbins, S. L., Breidenstein, B. & Granet, D. B. Solutions in pediatric cataracts. Curr. Opin. Ophthalmol. 25, 12–18 (2014).

    Article  PubMed  Google Scholar 

  135. Gimbel, H. V. Posterior continuous curvilinear capsulorhexis and optic capture of the intraocular lens to prevent secondary opacification in pediatric cataract surgery. J. Cataract Refract. Surg. 23 (Suppl. 1), 652–656 (1997).

    Article  PubMed  Google Scholar 

  136. Tassignon, M.-J. B. R., De Groot, V. & Vrensen, G. F. J. M. Bag-in-the-lens implantation of intraocular lenses. J. Cataract Refract. Surg. 28, 1182–1188 (2002).

    Article  PubMed  Google Scholar 

  137. Tassignon, M.-J. et al. Bag-in-the-lens intraocular lens implantation in the pediatric eye. J. Cataract Refract. Surg. 33, 611–617 (2007).

    Article  PubMed  Google Scholar 

  138. Lam, D. S. C. et al. 25-gauge transconjunctival sutureless vitrectomy system in the surgical management of children with posterior capsular opacification. Clin. Experiment. Ophthalmol. 33, 495–498 (2005).

    Article  PubMed  Google Scholar 

  139. Kleinmann, G., Zaugg, B., Apple, D. J. & Bleik, J. Pediatric cataract surgery with hydrophilic acrylic intraocular lens. J. AAPOS 17, 367–370 (2013).

    Article  PubMed  Google Scholar 

  140. Mataftsi, A., Dabbagh, A., Moore, W. & Nischal, K. K. Evaluation of whether intracameral dexamethasone predisposes to glaucoma after pediatric cataract surgery. J. Cataract Refract. Surg. 38, 1719–1723 (2012).

    Article  PubMed  Google Scholar 

  141. McClatchey, S. K. Choosing IOL power in pediatric cataract surgery. Int. Ophthalmol. Clin. 50, 115–123 (2010).

    Article  PubMed  Google Scholar 

  142. Fan, D. S. P., Rao, S. K., Yu, C. B. O., Wong, C. Y. & Lam, D. S. C. Changes in refraction and ocular dimensions after cataract surgery and primary intraocular lens implantation in infants. J. Cataract Refract. Surg. 32, 1104–1108 (2006).

    Article  PubMed  Google Scholar 

  143. Lam, D. S. et al. Short-term results of scleral intraocular lens fixation in children. J. Cataract Refract. Surg. 24, 1474–1479 (1998).

    Article  CAS  PubMed  Google Scholar 

  144. Kelman, C. D. Phaco-emulsification and aspiration. A new technique of cataract removal. A preliminary report. Am. J. Ophthalmol. 64, 23–35 (1967).

    Article  CAS  PubMed  Google Scholar 

  145. Jaggernath, J., Gogate, P., Moodley, V. & Naidoo, K. S. Comparison of cataract surgery techniques: safety, efficacy, and cost-effectiveness. Eur. J. Ophthalmol. 24, 520–526 (2014).

    Article  PubMed  Google Scholar 

  146. Helvacioglu, F., Yeter, C., Sencan, S., Tunc, Z. & Uyar, O. M. Comparison of two different ultrasound methods of phacoemulsification. Am. J. Ophthalmol. 158, 221–226.e1 (2014).

    Article  PubMed  Google Scholar 

  147. Wilczynski, M. et al. Comparison of early corneal endothelial cell loss after coaxial phacoemulsification through 1.8 mm microincision and bimanual phacoemulsification through 1.7 mm microincision. J. Cataract Refract. Surg. 35, 1570–1574 (2009).

    Article  PubMed  Google Scholar 

  148. Neel, S. T. A cost and policy analysis comparing immediate sequential cataract surgery and delayed sequential cataract surgery from the physician perspective in the United States. JAMA Ophthalmol. 132, 1359–1362 (2014).

    Article  PubMed  Google Scholar 

  149. Johns, A. W. The role of international non-governmental organisations in dealing with cataract blindness in developing countries. Doc. Ophthalmol. 81, 345–348 (1992).

    Article  CAS  PubMed  Google Scholar 

  150. Congdon, N. G. et al. Visual function and postoperative care after cataract surgery in rural China: study of cataract outcomes and up-take of services (SCOUTS) in the caring is hip project, report 2. Arch. Ophthalmol. 125, 1546–1552 (2007).

    Article  PubMed  Google Scholar 

  151. Zhou, Z. et al. Distribution and visual impact of postoperative refractive error after cataract surgery in rural China: study of cataract outcomes and up-take of services report 4. J. Cataract Refract. Surg. 33, 2083–2090 (2007).

    Article  PubMed  Google Scholar 

  152. Zhang, X. J. et al. Barriers for poor cataract surgery uptake among patients with operable cataract in a program of outreach screening and low-cost surgery in rural China. Ophthalm. Epidemiol. 21, 153–160 (2014).

    Article  Google Scholar 

  153. Martin, A. I., Sutton, G. & Hodge, C. The evolution of cataract surgery: controversies through the ages. Asia-Pacif. J. Ophthalmol. 2, 213–216 (2013).

    Article  Google Scholar 

  154. Shah, P. A. & Yoo, S. Innovations in phacoemulsification technology. Curr. Opin. Ophthalmol. 18, 23–26 (2007). References 153 and 54 demonstrate the ongoing battle against cataract blindness and evaluate new developments.

    Article  PubMed  Google Scholar 

  155. Lamoureux, E. L., Fenwick, E., Pesudovs, K. & Tan, D. The impact of cataract surgery on quality of life. Curr. Opin. Ophthalmol. 22, 19–27 (2011). This paper shows that successful cataract surgery improves vision and quality of life.

    Article  PubMed  Google Scholar 

  156. Lee, B. S., Munoz, B. E., West, S. K. & Gower, E. W. Functional improvement after one- and two-eye cataract surgery in the Salisbury Eye Evaluation. Ophthalmology 120, 949–955 (2013).

    Article  PubMed  Google Scholar 

  157. Ishii, K., Kabata, T. & Oshika, T. The impact of cataract surgery on cognitive impairment and depressive mental status in elderly patients. Am. J. Ophthalmol. 146, 404–409 (2008). This paper shows that successful cataract surgery improves mental and cognitive status in elderly patients.

    Article  PubMed  Google Scholar 

  158. Danquah, L. et al. The long term impact of cataract surgery on quality of life, activities and poverty: results from a six year longitudinal study in Bangladesh and the Philippines. PLoS ONE 9, e94140 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. McGwin, G., Gewant, H. D., Modjarrad, K., Hall, T. A. & Owsley, C. Effect of cataract surgery on falls and mobility in independently living older adults. J. Am. Geriatr. Soc. 54, 1089–1094 (2006).

    Article  PubMed  Google Scholar 

  160. Chandrasekaran, S., Wang, J. J., Rochtchina, E. & Mitchell, P. Change in health-related quality of life after cataract surgery in a population-based sample. Eye 22, 479–484 (2008). This paper shows that successful cataract surgery improves health-related quality of life.

    Article  CAS  PubMed  Google Scholar 

  161. Bourne, R. R. A. et al. Causes of vision loss worldwide, 1990-2010: a systematic analysis. Lancet Glob. Health 1, e339–e349 (2013).

    Article  PubMed  Google Scholar 

  162. Liu, J., Xu, J. & He, M. [Comparing patients’ quality of life after phacoemulsification with intraocular lens implantation with that after extracapsular cataract extraction with intraocular lens implantation]. Zhonghua. Yan Ke Za Zhi. 39, 94–97 (2003) (in Chinese).

    PubMed  Google Scholar 

  163. Waring, G. O. & Berry, D. E. Advances in the surgical correction of presbyopia. Int. Ophthalmol. Clin. 53, 129–152 (2013).

    Article  PubMed  Google Scholar 

  164. Hao, X. et al. High refractive index polysiloxane as injectable, in situ curable accommodating intraocular lens. Biomaterials 33, 5659–5671 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Nishi, O., Nishi, K., Nishi, Y. & Chang, S. Capsular bag refilling using a new accommodating intraocular lens. J. Cataract Refract. Surg. 34, 302–309 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Nishi, O., Nishi, Y., Chang, S. & Nishi, K. Accommodation amplitudes after an accommodating intraocular lens refilling procedure: in vivo update. J. Cataract Refract. Surg. 40, 295–305 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Helzner, J. The Calhoun adjustable IOL breaks new ground. Ophthalmol. Manag. 18, 50–52 (2014).

    Google Scholar 

  168. Bhadada, S. V., Bhadada, V. J. & Goyal, R. K. Preventive effect of Tephrosia purpurea on selenite-induced experimental cataract. Curr. Eye Res.http://dx.doi.org/10.3109/02713683.2015.1011281 (2015).

  169. Orhan, H., Marol, S., Hepşen, I. F. & Sahin, G. Effects of some probable antioxidants on selenite-induced cataract formation and oxidative stress-related parameters in rats. Toxicology 139, 219–232 (1999).

    Article  CAS  PubMed  Google Scholar 

  170. Yamakoshi, J., Saito, M., Kataoka, S. & Tokutake, S. Procyanidin-rich extract from grape seeds prevents cataract formation in hereditary cataractous (ICR/f) rats. J. Agr. Food Chem. 50, 4983–4988 (2002).

    Article  CAS  Google Scholar 

  171. Shukla, S. M. & Sharma, S. K. Sinomenine inhibits microglial activation by Aβ and confers neuroprotection. J. Neuroinflamm. 8, 117 (2011).

    Article  CAS  Google Scholar 

  172. Gong, B., Zhang, L.-Y., Lam, D. S.-C., Pang, C.-P. & Yam, G. H.-F. Sodium 4-phenylbutyrate ameliorates the effects of cataract-causing mutant γD-crystallin in cultured cells. Mol. Vis. 16, 997–1003 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. World Health Organization. Prevention of blindness and visual impairment. Fact sheet Global Data 2010 full set 1–5 [online], (2010).

Download references

Acknowledgements

The authors express their gratitude to E. X. Y. Liang for her contributions to technical editing and refining references.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (S.K.R., V.R., D.L. and D.F.C.); Epidemiology (P.M. and J.J.); Mechanisms/pathophysiology (J.K., C.P.P. and V.R.); Diagnosis, screening and prevention (Y.L. and V.R.); Management (S.K.R., D.F.C., D.L., Y.L., V.R. and M.T.); Quality of life (J.J. and V.R.); Outlook (S.K.R., J.J., D.F.C., V.R., J.K. and D.L.); overview of Primer (D.L.).

Corresponding author

Correspondence to Dennis Lam.

Ethics declarations

Competing interests

M.T. holds a patent on the BIL and ring caliper licensed to Morcher (Germany) which results in royalties. D.F.C. is a consultant for AMO Calhoun Vision Power Vision and LensAR. All other authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, D., Rao, S., Ratra, V. et al. Cataract. Nat Rev Dis Primers 1, 15014 (2015). https://doi.org/10.1038/nrdp.2015.14

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2015.14

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing