Article metrics


Cataract is the leading cause of reversible blindness and visual impairment globally. Blindness from cataract is more common in populations with low socioeconomic status and in developing countries than in developed countries. The only treatment for cataract is surgery. Phacoemulsification is the gold standard for cataract surgery in the developed world, whereas manual small incision cataract surgery is used frequently in developing countries. In general, the outcomes of surgery are good and complications, such as endophthalmitis, often can be prevented or have good ouctomes if properly managed. Femtosecond laser-assisted cataract surgery, an advanced technology, can automate several steps; initial data show no superiority of this approach over current techniques, but the results of many large clinical trials are pending. The greatest challenge remains the growing ‘backlog’ of patients with cataract blindness in the developing world because of lack of access to affordable surgery. Efforts aimed at training additional cataract surgeons in these countries do not keep pace with the increasing demand associated with ageing population demographics. In the absence of strategie that can prevent or delay cataract formation, it is important to focus efforts and resources on developing models for efficient delivery of cataract surgical services in underserved regions. For an illustrated summary of this Primer, visit:

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Global prevalence of visual impairment due to cataract.
Figure 2: A model for the pathogenesis of adult-onset cataract.
Figure 3: Clinical presentation of cataract.
Figure 4: Simplified schematic diagram showing different technologies used for cataract surgery.
Figure 5: Management of complicated cataracts.


  1. 1

    Song, E. et al. Age-related cataract, cataract surgery and subsequent mortality: a systematic review and meta-analysis. PLoS ONE 9, e112054 (2014).

  2. 2

    Salomon, J. A. et al. Healthy life expectancy for 187 countries, 1990-2010: a systematic analysis for the Global Burden Disease Study 2010. Lancet 380, 2144–2162 (2012).

  3. 3

    Pathengay, A., Flynn, H. W., Isom, R. F. & Miller, D. Endophthalmitis outbreaks following cataract surgery: causative organisms, etiologies, and visual acuity outcomes. J. Cataract Refract. Surg. 38, 1278–1282 (2012). References 1–3 show that cataract is the leading cause of reversible blindness and visual impairment globally.

  4. 4

    He, L., Sheehy, K. & Culbertson, W. Femtosecond laser-assisted cataract surgery. Curr. Opin. Ophthalmol. 22, 43–52 (2011).

  5. 5

    Reitblat, O. et al. Accuracy of predicted refraction with multifocal intraocular lenses using two biometry measurement devices and multiple intraocular lens power calculation formulas. Clin. Experiment. Ophthalmol. (2015).

  6. 6

    Lee, A. C., Qazi, M. A. & Pepose, J. S. Biometry and intraocular lens power calculation. Curr. Opin. Ophthalmol. 19, 13–17 (2008).

  7. 7

    Stevens, G. A. et al. Global prevalence of vision impairment and blindness: magnitude and temporal trends, 1990–2010. Ophthalmology 120, 2377–2384 (2013).

  8. 8

    Ono, K., Hiratsuka, Y. & Murakami, A. Global inequality in eye health: country-level analysis from the Global Burden of Disease Study. Am. J. Public Health 100, 1784–1788 (2010). References 7 and 8 show that blindness due to cataract is more common in populations with low socioeconomic status and in developing countries.

  9. 9

    Li, E. Y. et al. Prevalence of blindness and outcomes of cataract surgery in Hainan Province in South China. Ophthalmology 120, 2176–2183 (2013).

  10. 10

    Pascolini, D. & Mariotti, S. P. Global estimates of visual impairment: 2010. Br. J. Ophthalmol. 96, 614–618 (2012). This study shows that cataract is the leading cause of blindness.

  11. 11

    Borrow, J. C. (ed.) Basic and Clinical Science Course, Section 11: Lens and Cataract. (American Academy of Ophthalmology, 2014).

  12. 12

    Hodge, W. G., Whitcher, J. P. & Satariano, W. Risk factors for age-related cataracts. Epidemiol. Rev. 17, 336–346 (1995).

  13. 13

    Haddad, N. M. N., Sun, J. K., Abujaber, S., Schlossman, D. K. & Silva, P. S. Cataract surgery and its complications in diabetic patients. Semin. Ophthalmol. 29, 329–337 (2014).

  14. 14

    Hashim, Z. & Zarina, S. Advanced glycation end products in diabetic and non-diabetic human subjects suffering from cataract. Age 33, 377–384 (2011).

  15. 15

    Gupta, V. B., Rajagopala, M. & Ravishankar, B. Etiopathogenesis of cataract: an appraisal. Indian J. Ophthalmol. 62, 103–110 (2014).

  16. 16

    Shingleton, B. J., Crandall, A. S. & Ahmed, I. I. K. Pseudoexfoliation and the cataract surgeon: preoperative, intraoperative, and postoperative issues related to intraocular pressure, cataract, and intraocular lenses. J. Cataract Refract. Surg. 35, 1101–1120 (2009).

  17. 17

    Bair, B., Dodd, J., Heidelberg, K. & Krach, K. Cataracts in atopic dermatitis: a case presentation and review of the literature. Arch. Dermatol. 147, 585–588 (2011).

  18. 18

    James, E. R. The etiology of steroid cataract. J. Ocul. Pharmacol. Ther. 23, 403–420 (2007).

  19. 19

    Leuschen, J. et al. Association of statin use with cataracts: a propensity score-matched analysis. JAMA Ophthalmol. 131, 1427–1434 (2013).

  20. 20

    Liu, X., Wang, L., Du, C., Li, D. & Fan, Y. Mechanism of lens capsular rupture following blunt trauma: a finite element study. Comput. Methods Biomech. Biomed. Engin. 18, 914–921 (2015).

  21. 21

    Yu, Z., Schulmeister, K., Talebizadeh, N., Kronschläger, M. & Söderberg, P. Temperature-controlled in vivo ocular exposure to 1090-nm radiation suggests that near-infrared radiation cataract is thermally induced. J. Biomed. Opt. 20, 015003 (2015).

  22. 22

    Bitarafan Rajabi, A. et al. Ionizing radiation-induced cataract in interventional cardiology staff. Res. Cardiovasc. Med. 4, e25148 (2015).

  23. 23

    Awan, K. J. Delayed cataract formation after alkali burn. Can. J. Ophthalmol. 10, 423–426 (1975).

  24. 24

    Wu, R. et al. Smoking, socioeconomic factors, and age-related cataract: the Singapore Malay Eye study. Arch. Ophthalmol. 128, 1029–1035 (2010).

  25. 25

    McCarty, C. A. & Taylor, H. R. A review of the epidemiologic evidence linking ultraviolet radiation and cataracts. Dev. Ophthalmol. 35, 21–31 (2002).

  26. 26

    West, S. K. et al. Sunlight exposure and risk of lens opacities in a population-based study: the Salisbury Eye Evaluation project. JAMA 280, 714–718 (1998).

  27. 27

    Lindblad, B. E., Håkansson, N. & Wolk, A. Smoking cessation and the risk of cataract: a prospective cohort study of cataract extraction among men. JAMA Ophthalmol. 132, 253–257 (2014).

  28. 28

    World Health Organization. Prevention of blindness and visual impairment. Global cataract surgical rates. World Health Organization[online], (2004).

  29. 29

    Nangia, V., Jonas, J. B., Gupta, R., Khare, A. & Sinha, A. Prevalence of cataract surgery and postoperative visual outcome in rural central India Central India Eye and Medical Study. J. Cataract Refract. Surg. 37, 1932–1938 (2011).

  30. 30

    Weinreb, O., Dovrat, A., Dunia, I., Benedetti, E. L. & Bloemendal, H. UV-A-related alterations of young and adult lens water-insoluble α-crystallin, plasma membranous and cytoskeletal proteins. Eur. J. Biochem. 268, 536–543 (2001).

  31. 31

    Lampi, K. J. et al. Sequence analysis of βA3, βB3, and βA4 crystallins completes the identification of the major proteins in young human lens. J. Biol. Chem. 272, 2268–2275 (1997).

  32. 32

    Moreau, K. L. & King, J. A. Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends Mol. Med. 18, 273–282 (2012).

  33. 33

    Roshan, M. et al. A novel human CRYGD mutation in a juvenile autosomal dominant cataract. Mol. Vis. 16, 887–896 (2010).

  34. 34

    Bloemendal, H. et al. Ageing and vision: structure, stability and function of lens crystallins. Prog. Biophys. Mol. Biol. 86, 407–485 (2004). References 32 and 34 show that changes in the arrangement and alterations of crystallin folding result in increasing rigidity of the lens and eventually loss of transparency.

  35. 35

    Basak, A. et al. High-resolution X-ray crystal structures of human γD crystallin (1.25 A) and the R58H mutant (1.15 A) associated with aculeiform cataract. J. Mol. Biol. 328, 1137–1147 (2003).

  36. 36

    Hains, P. G. & Truscott, R. J. W. Post-translational modifications in the nuclear region of young, aged, and cataract human lenses. J. Proteome Res. 6, 3935–3943 (2007).

  37. 37

    Hains, P. G. & Truscott, R. J. W. Proteome analysis of human foetal, aged and advanced nuclear cataract lenses. Proteomics Clin. Appl. 2, 1611–1619 (2008).

  38. 38

    Serebryany, E. & King, J. A. The βγ-crystallins: native state stability and pathways to aggregation. Prog. Biophys. Mol. Biol. 115, 32–41 (2014).

  39. 39

    Kosinski-Collins, M. S., Flaugh, S. L. & King, J. Probing folding and fluorescence quenching in human γD crystallin Greek key domains using triple tryptophan mutant proteins. Protein Sci. 13, 2223–2235 (2004).

  40. 40

    Udupa, P. E. G. & Sharma, K. K. Effect of oxidized βB3-crystallin peptide (152-166) on thermal aggregation of bovine lens γ-crystallins: identification of peptide interacting sites. Exp. Eye Res. 80, 185–196 (2005).

  41. 41

    Rao, G., Santhoshkumar, P. & Sharma, K. K. Anti-chaperone βA3/A1(102-117) peptide interacting sites in human αB-crystallin. Mol. Vis. 14, 666–674 (2008).

  42. 42

    Das, P., King, J. A. & Zhou, R. Aggregation of γ-crystallins associated with human cataracts via domain swapping at the C-terminal β-strands. Proc. Natl Acad. Sci. USA 108, 10514–10519 (2011).

  43. 43

    Metlapally, S. et al. Analysis of nuclear fiber cell cytoplasmic texture in advanced cataractous lenses from Indian subjects using Debye-Bueche theory. Exp. Eye Res. 86, 434–444 (2008).

  44. 44

    Marsili, S. et al. Cataract formation in a strain of rats selected for high oxidative stress. Exp. Eye Res. 79, 595–612 (2004).

  45. 45

    Kosinski-Collins, M. S. & King, J. In vitro unfolding, refolding, and polymerization of human γD crystallin, a protein involved in cataract formation. Protein Sci. 12, 480–490 (2003).

  46. 46

    Flaugh, S. L., Kosinski-Collins, M. S. & King, J. Interdomain side-chain interactions in human γD crystallin influencing folding and stability. Protein Sci. 14, 2030–2043 (2005).

  47. 47

    Moreau, K. L. & King, J. Hydrophobic core mutations associated with cataract development in mice destabilize human γD-crystallin. J. Biol. Chem. 284, 33285–33295 (2009).

  48. 48

    Acosta-Sampson, L. & King, J. Partially folded aggregation intermediates of human γD-, γC-, and γS-crystallin are recognized and bound by human αB-crystallin chaperone. J. Mol. Biol. 401, 134–152 (2010).

  49. 49

    Dolinska, M. B., Sergeev, Y. V., Chan, M. P., Palmer, I. & Wingfield, P. T. N-terminal extension of beta B1-crystallin: identification of a critical region that modulates protein interaction with beta A3-crystallin. Biochemistry 48, 9684–9695 (2009).

  50. 50

    Pande, A. et al. Crystal cataracts: human genetic cataract caused by protein crystallization. Proc. Natl Acad. Sci. USA 98, 6116–6120 (2001).

  51. 51

    Goralska, M., Holley, B. L. & McGahan, M. C. Overexpression of H and L-ferritin subunits in lens epithelial cells: Fe metabolism and cellular response to UVB irradiation. Invest. Ophthalmol. Vis. Sci. 42, 1721–1727 (2001).

  52. 52

    Lou, M. F. Redox regulation in the lens. Prog. Retin. Eye Res. 22, 657–682 (2003).

  53. 53

    Tessem, M.-B., Midelfart, A., Cejková, J. & Bathen, T. F. Effect of UVA and UVB irradiation on the metabolic profile of rabbit cornea and lens analysed by HR-MAS 1H NMR spectroscopy. Ophthalmic Res. 38, 105–114 (2006).

  54. 54

    Schafheimer, N., Wang, Z., Schey, K. & King, J. Tyrosine/cysteine cluster sensitizing human γD-crystallin to ultraviolet radiation-induced photoaggregation in vitro. Biochemistry 53, 979–990 (2014).

  55. 55

    Mizdrak, J., Hains, P. G., Truscott, R. J. W., Jamie, J. F. & Davies, M. J. Tryptophan-derived ultraviolet filter compounds covalently bound to lens proteins are photosensitizers of oxidative damage. Free Radic. Biol. Med. 44, 1108–1119 (2008).

  56. 56

    Vrensen, G. F. J. M. et al. Tryptophan deficiency arrests chromatin breakdown in secondary lens fibers of rats. Exp. Eye Res. 78, 661–672 (2004).

  57. 57

    Giblin, F. J. et al. UVA light in vivo reaches the nucleus of the guinea pig lens and produces deleterious, oxidative effects. Exp. Eye Res. 75, 445–458 (2002).

  58. 58

    Shiels, A. & Hejtmancik, J. F. Genetics of human cataract. Clin. Genet. 84, 120–127 (2013). This study shows the influence of genetics on cataract development.

  59. 59

    Chen, Y. et al. Effect of HSF4b on age related cataract may through its novel downstream target Hif1α. Biochem. Biophys. Res. Commun. 453, 674–678 (2014).

  60. 60

    Dave, A. et al. Mutations in the EPHA2 gene are a major contributor to inherited cataracts in South-Eastern Australia. PLoS ONE 8, e72518 (2013).

  61. 61

    Zhang, Y. et al. Genetic polymorphisms of superoxide dismutases, catalase, and glutathione peroxidase in age-related cataract. Mol. Vis. 17, 2325–2332 (2011).

  62. 62

    Zhang, Y. et al. Genetic polymorphisms in DNA repair genes OGG1, APE1, XRCC1, and XPD and the risk of age-related cataract. Ophthalmology 119, 900–906 (2012).

  63. 63

    Jiang, Z., Liang, K., Zhang, Q. & Tao, L. Glutathione S-transferases polymorphisms confer susceptibility to senile cortical cataract in the Han Chinese population. Mol. Vis. 18, 1247–1252 (2012).

  64. 64

    Su, S. et al. The associations between single nucleotide polymorphisms of DNA repair genes, DNA damage, and age-related cataract: Jiangsu Eye Study. Invest. Ophthalmol. Vis. Sci. 54, 1201–1207 (2013).

  65. 65

    Gillespie, R. L. et al. Personalized diagnosis and management of congenital cataract by next-generation sequencing. Ophthalmology 121, 2124–2137 (2014).

  66. 66

    Sun, W., Xiao, X., Li, S., Guo, X. & Zhang, Q. Exome sequencing of 18 Chinese families with congenital cataracts: a new sight of the NHS gene. PLoS ONE 9, e100455 (2014).

  67. 67

    Liao, J. et al. Meta-analysis of genome-wide association studies in multiethnic Asians identifies two loci for age-related nuclear cataract. Hum. Mol. Genet. 23, 6119–6128 (2014).

  68. 68

    American Academy of Ophthalmology Preferred Practice Pattern Committee. Preferred Practice Pattern Guidelines. Comprehensive Adult Medical Eye Evaluation. (American Academy of Ophthalmology, 2010).

  69. 69

    American Academy of Ophthalmology Preferred Practice Pattern Committee. Preferred Practice Pattern Guidelines. Cataract in the Adult Eye. (American Academy of Ophthalmology, 2011). References 68 and 69 provide guidelines for the clinical evaluation and management of cataract. Patients are evaluated for visual impairment, symptoms and concomitant eye diseases that could influence the surgical plan and visual outcome.

  70. 70

    Rocha, K. M. et al. Higher-order aberrations of age-related cataract. J. Cataract Refract. Surg. 33, 1442–1446 (2007).

  71. 71

    Gus, P. I., Kwitko, I., Roehe, D. & Kwitko, S. Potential acuity meter accuracy in cataract patients. J. Cataract Refract. Surg. 26, 1238–1241 (2000).

  72. 72

    Lin, Q. et al. Genetic variations and polymorphisms in the ezrin gene are associated with age-related cataract. Mol. Vis. 19, 1572–1579 (2013).

  73. 73

    Chong, E. W. & Wong, T. Y. Multivitamin supplements and cataract prevention. Ophthalmology 115, 597–598 (2008).

  74. 74

    Milton, R. C., Sperduto, R. D., Clemons, T. E. & Ferris, F. L. Centrum use and progression of age-related cataract in the Age-Related Eye Disease Study: a propensity score approach. AREDS report No. 21. Ophthalmology 113, 1264–1270 (2006).

  75. 75

    Linebarger, E. J., Hardten, D. R., Shah, G. K. & Lindstrom, R. L. Phacoemulsification and modern cataract surgery. Surv. Ophthalmol. 44, 123–147 (1999). This paper gives an overview of the development of phacoemulsification surgery for the treatment of cataract.

  76. 76

    Tsui, P.-H., Huang, C.-C., Zhou, Q. & Shung, K. K. Cataract measurement by estimating the ultrasonic statistical parameter using an ultrasound needle transducer: an in vitro study. Physiol. Meas. 32, 513–522 (2011).

  77. 77

    Glasser, D. B., Schultz, R. O. & Hyndiuk, R. A. The role of viscoelastics, cannulas, and irrigating solution additives in post-cataract surgery corneal edema: a brief review. Lens Eye Tox. Res. 9, 351–359 (1992).

  78. 78

    Sutton, G., Bali, S. J. & Hodge, C. Femtosecond cataract surgery: transitioning to laser cataract. Curr. Opin. Ophthalmol. 24, 3–8 (2013). This paper gives an overview of the development of FLACS for the treatment of cataract.

  79. 79

    Mainster, M. A. & Sparrow, J. R. How much blue light should an IOL transmit? Br. J. Ophthalmol. 87, 1523–1529 (2003).

  80. 80

    Lockington, D., Wang, E. F., Patel, D. V., Moore, S. P. & McGhee, C. N. J. Effectiveness of cataract phacoemulsification with toric intraocular lenses in addressing astigmatism after keratoplasty. J. Cataract Refract. Surg. 40, 2044–2049 (2014).

  81. 81

    Gundersen, K. G. & Potvin, R. Comparative visual performance with monofocal and multifocal intraocular lenses. Clin. Ophthalmol. 7, 1979–1985 (2013). This paper gives an overview of different lenses used for the treatment of cataract.

  82. 82

    Tabin, G., Chen, M. & Espandar, L. Cataract surgery for the developing world. Curr. Opin. Ophthalmol. 19, 55–59 (2008).

  83. 83

    Lam, D. S. C. et al. Visual outcomes and astigmatism after sutureless, manual cataract extraction in rural China: study of cataract outcomes and up-take of services (SCOUTS) in the caring is hip project, report 1. Arch. Ophthalmol. 125, 1539–1544 (2007). This paper gives an overview of manual surgery for the treatment of cataract.

  84. 84

    Lam, D. S. C. et al. Endothelial cell loss and surgically induced astigmatism after sutureless large-incision manual cataract extraction (SLIMCE). Arch. Ophthalmol. 127, 1284–1289 (2009).

  85. 85

    Hayashi, K., Nakao, F. & Hayashi, F. Topographic analysis of early changes in corneal astigmatism after cataract surgery. J. Cataract Refract. Surg. 19, 43–47 (1993).

  86. 86

    Venkatesh, R. et al. Manual small incision cataract surgery: a review. Asia-Pacif. J. Ophthalmol. 1, 113–119 (2012).

  87. 87

    Rao, S. K., Jhanji, V. & Fan, A. H. Femtosecond laser: is it the way forward for cataract surgery? Asia-Pacif. J. Ophthalmol. 1, 3–4 (2012).

  88. 88

    Lawless, M. & Hodge, C. Femtosecond laser cataract surgery: an experience from Australia. Asia-Pacif. J. Ophthalmol. 1, 5–10 (2012).

  89. 89

    Moshirfar, M., Churgin, D. S. & Hsu, M. Femtosecond laser-assisted cataract surgery: a current review. Middle East Afr. J. Ophthalmol. 18, 285–291 (2011).

  90. 90

    Jun, J. H., Hwang, K. Y., Chang, S. D. & Joo, C.-K. Pupil-size alterations induced by photodisruption during femtosecond laser-assisted cataract surgery. J. Cataract Refract. Surg. 41, 278–285 (2015).

  91. 91

    Miháltz, K. et al. Internal aberrations and optical quality after femtosecond laser anterior capsulotomy in cataract surgery. J. Refract. Surg. 27, 711–716 (2011).

  92. 92

    Conrad-Hengerer, I., Hengerer, F. H., Schultz, T. & Dick, H. B. Effect of femtosecond laser fragmentation on effective phacoemulsification time in cataract surgery. J. Refract. Surg. 28, 879–883 (2012).

  93. 93

    Palanker, D. V. et al. Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography. Sci. Transl. Med. 2, 58ra85 (2010).

  94. 94

    Takács, A. I. et al. Central corneal volume and endothelial cell count following femtosecond laser-assisted refractive cataract surgery compared to conventional phacoemulsification. J. Refract. Surg. 28, 387–391 (2012).

  95. 95

    Rudnisky, C. J., Wan, D. & Weis, E. Antibiotic choice for the prophylaxis of post-cataract extraction endophthalmitis. Ophthalmology 121, 835–841 (2014).

  96. 96

    Pathengay, A. et al. Acute postoperative endophthalmitis following cataract surgery: a review. Asia-Pacif. J. Ophthalmol. 1, 35–42 (2012).

  97. 97

    Kessel, L. et al. Antibiotic prevention of postcataract endophthalmitis: a systematic review and meta-analysis. Acta Ophthalmol. (2015).

  98. 98

    Lam, P. T. H., Hui, M., Young, A. L., Chan, C. Y. & Lam, D. S. C. Preoperative antisepsis with povidone-iodine 5% in cataract surgery. Asia-Pacif. J. Ophthalmol. 1, 77–83 (2012).

  99. 99

    Ciulla, T. A., Starr, M. B. & Masket, S. Bacterial endophthalmitis prophylaxis for cataract surgery: an evidence-based update. Ophthalmology 109, 13–24 (2002).

  100. 100

    Nentwich, M. M. et al. Incidence of postoperative endophthalmitis from 1990 to 2009 using povidone-iodine but no intracameral antibiotics at a single academic institution. J. Cataract Refract. Surg. 41, 58–66 (2015).

  101. 101

    Packer, M. et al. Prevention, diagnosis, and management of acute postoperative bacterial endophthalmitis. J. Cataract Refract. Surg. 37, 1699–1714 (2011).

  102. 102

    Endophthalmitis Study Group, European Society of Cataract & Refractive Surgeons. Prophylaxis of postoperative endophthalmitis following cataract surgery: results of the ESCRS multicenter study and identification of risk factors. J. Cataract Refract. Surg. 33, 978–988 (2007).

  103. 103

    Pichichero, M. E. Cephalosporins can be prescribed safely for penicillin-allergic patients. J. Fam. Pract. 55, 106–112 (2006).

  104. 104

    Barry, P. Adoption of intracameral antibiotic prophylaxis of endophthalmitis following cataract surgery: update on the ESCRS Endophthalmitis Study. J. Cataract Refract. Surg. 40, 138–142 (2014).

  105. 105

    Wolfram, C. et al. Prevalence of refractive errors in the European adult population: the Gutenberg Health Study (GHS). Br. J. Ophthalmol. 98, 857–861 (2014).

  106. 106

    Lever, J. & Dahan, E. Opposite clear corneal incisions to correct pre-existing astigmatism in cataract surgery. J. Cataract Refract. Surg. 26, 803–805 (2000).

  107. 107

    Rückl, T. et al. Femtosecond laser-assisted intrastromal arcuate keratotomy to reduce corneal astigmatism. J. Cataract Refract. Surg. 39, 528–538 (2013).

  108. 108

    Visser, N., Nuijts, R. M. M. A., de Vries, N. E. & Bauer, N. J. C. Visual outcomes and patient satisfaction after cataract surgery with toric multifocal intraocular lens implantation. J. Cataract Refract. Surg. 37, 2034–2042 (2011).

  109. 109

    Koch, D. D., Jenkins, R. B., Weikert, M. P., Yeu, E. & Wang, L. Correcting astigmatism with toric intraocular lenses: effect of posterior corneal astigmatism. J. Cataract Refract. Surg. 39, 1803–1809 (2013).

  110. 110

    Visser, N., Bauer, N. J. C. & Nuijts, R. M. M. A. Toric intraocular lenses: historical overview, patient selection, IOL calculation, surgical techniques, clinical outcomes, and complications. J. Cataract Refract. Surg. 39, 624–637 (2013).

  111. 111

    Mozayan, E. & Lee, J. K. Update on astigmatism management. Curr. Opin. Ophthalmol. 25, 286–290 (2014).

  112. 112

    Xiao, J., Jiang, C. & Zhang, M. Pseudophakic monovision is an important surgical approach to being spectacle-free. Indian J. Ophthalmol. 59, 481–485 (2011).

  113. 113

    Ito, M., Shimizu, K., Niida, T., Amano, R. & Ishikawa, H. Binocular function in patients with pseudophakic monovision. J. Cataract Refract. Surg. 40, 1349–1354 (2014).

  114. 114

    De Vries, N. E. & Nuijts, R. M. M. A. Multifocal intraocular lenses in cataract surgery: literature review of benefits and side effects. J. Cataract Refract. Surg. 39, 268–278 (2013).

  115. 115

    Braga-Mele, R. et al. Multifocal intraocular lenses: relative indications and contraindications for implantation. J. Cataract Refract. Surg. 40, 313–322 (2014).

  116. 116

    Prakash, G., Prakash, D. R., Agarwal, A., Kumar, D. A. & Jacob, S. Predictive factor and kappa angle analysis for visual satisfactions in patients with multifocal IOL implantation. Eye 25, 1187–1193 (2011).

  117. 117

    Wilkins, M. R. et al. Randomized trial of multifocal intraocular lenses versus monovision after bilateral cataract surgery. Ophthalmology 120, 2449–2455 (2013).

  118. 118

    Artigas, J. M., Menezo, J. L., Peris, C., Felipe, A. & Díaz-Llopis, M. Image quality with multifocal intraocular lenses and the effect of pupil size: comparison of refractive and hybrid refractive-diffractive designs. J. Cataract Refract. Surg. 33, 2111–2117 (2007).

  119. 119

    Patel, S., Alió, J. L. & Feinbaum, C. Comparison of Acri. Smart multifocal IOL, crystalens AT-45 accommodative IOL, and Technovision presbyLASIK for correcting presbyopia. J. Refract. Surg. 24, 294–299 (2008).

  120. 120

    Alio, J. L., Abdelghany, A. A. & Fernández-Buenaga, R. Enhancements after cataract surgery. Curr. Opin. Ophthalmol. 26, 50–55 (2015).

  121. 121

    Fine, I. H. Pupilloplasty for small pupil phacoemulsification. J. Cataract Refract. Surg. 20, 192–196 (1994).

  122. 122

    Agarwal, A. et al. Modified Malyugin ring iris expansion technique in small-pupil cataract surgery with posterior capsule defect. J. Cataract Refract. Surg. 34, 724–726 (2008).

  123. 123

    Lam, D. S. C. & Wong, V. in A–Z in Ophthalmology Book 4 Ch. 2 6–11 (Bon Vision Limited, 2009).

  124. 124

    Chang, D. F. & Campbell, J. R. Intraoperative floppy iris syndrome associated with tamsulosin. J. Cataract Refract. Surg. 31, 664–673 (2005).

  125. 125

    Kimura, H. et al. Extracapsular cataract extraction with a sutureless incision for dense cataracts. J. Cataract Refract. Surg. 25, 1275–1279 (1999).

  126. 126

    Singh, R., Vasavada, A. R. & Janaswamy, G. Phacoemulsification of brunescent and black cataracts. J. Cataract Refract. Surg. 27, 1762–1769 (2001).

  127. 127

    Chakrabarti, A. & Singh, S. Phacoemulsification in eyes with white cataract. J. Cataract Refract. Surg. 26, 1041–1047 (2000).

  128. 128

    Vasavada, A., Singh, R. & Desai, J. Phacoemulsification of white mature cataracts. J. Cataract Refract. Surg. 24, 270–277 (1998).

  129. 129

    Wong, V. W. Y., Lai, T. Y. Y., Lee, G. K. Y., Lam, P. T. H. & Lam, D. S. C. A prospective study on trypan blue capsule staining under air versus under viscoelastic. Eye 20, 820–825 (2006).

  130. 130

    Arbisser, L. B. Managing intraoperative complications in cataract surgery. Curr. Opin. Ophthalmol. 15, 33–39 (2004). This paper discusses complications of cataract surgery.

  131. 131

    Sangal, N. & Chen, T. C. Cataract surgery in pseudoexfoliation syndrome. Semin. Ophthalmol. 29, 403–408 (2014).

  132. 132

    Hasanee, K., Butler, M. & Ahmed, I. I. K. Capsular tension rings and related devices: current concepts. Curr. Opin. Ophthalmol. 17, 31–41 (2006).

  133. 133

    Lam, D. S. et al. Scleral fixation of a capsular tension ring for severe ectopia lentis. J. Cataract Refract. Surg. 26, 609–612 (2000).

  134. 134

    Robbins, S. L., Breidenstein, B. & Granet, D. B. Solutions in pediatric cataracts. Curr. Opin. Ophthalmol. 25, 12–18 (2014).

  135. 135

    Gimbel, H. V. Posterior continuous curvilinear capsulorhexis and optic capture of the intraocular lens to prevent secondary opacification in pediatric cataract surgery. J. Cataract Refract. Surg. 23 (Suppl. 1), 652–656 (1997).

  136. 136

    Tassignon, M.-J. B. R., De Groot, V. & Vrensen, G. F. J. M. Bag-in-the-lens implantation of intraocular lenses. J. Cataract Refract. Surg. 28, 1182–1188 (2002).

  137. 137

    Tassignon, M.-J. et al. Bag-in-the-lens intraocular lens implantation in the pediatric eye. J. Cataract Refract. Surg. 33, 611–617 (2007).

  138. 138

    Lam, D. S. C. et al. 25-gauge transconjunctival sutureless vitrectomy system in the surgical management of children with posterior capsular opacification. Clin. Experiment. Ophthalmol. 33, 495–498 (2005).

  139. 139

    Kleinmann, G., Zaugg, B., Apple, D. J. & Bleik, J. Pediatric cataract surgery with hydrophilic acrylic intraocular lens. J. AAPOS 17, 367–370 (2013).

  140. 140

    Mataftsi, A., Dabbagh, A., Moore, W. & Nischal, K. K. Evaluation of whether intracameral dexamethasone predisposes to glaucoma after pediatric cataract surgery. J. Cataract Refract. Surg. 38, 1719–1723 (2012).

  141. 141

    McClatchey, S. K. Choosing IOL power in pediatric cataract surgery. Int. Ophthalmol. Clin. 50, 115–123 (2010).

  142. 142

    Fan, D. S. P., Rao, S. K., Yu, C. B. O., Wong, C. Y. & Lam, D. S. C. Changes in refraction and ocular dimensions after cataract surgery and primary intraocular lens implantation in infants. J. Cataract Refract. Surg. 32, 1104–1108 (2006).

  143. 143

    Lam, D. S. et al. Short-term results of scleral intraocular lens fixation in children. J. Cataract Refract. Surg. 24, 1474–1479 (1998).

  144. 144

    Kelman, C. D. Phaco-emulsification and aspiration. A new technique of cataract removal. A preliminary report. Am. J. Ophthalmol. 64, 23–35 (1967).

  145. 145

    Jaggernath, J., Gogate, P., Moodley, V. & Naidoo, K. S. Comparison of cataract surgery techniques: safety, efficacy, and cost-effectiveness. Eur. J. Ophthalmol. 24, 520–526 (2014).

  146. 146

    Helvacioglu, F., Yeter, C., Sencan, S., Tunc, Z. & Uyar, O. M. Comparison of two different ultrasound methods of phacoemulsification. Am. J. Ophthalmol. 158, 221–226.e1 (2014).

  147. 147

    Wilczynski, M. et al. Comparison of early corneal endothelial cell loss after coaxial phacoemulsification through 1.8 mm microincision and bimanual phacoemulsification through 1.7 mm microincision. J. Cataract Refract. Surg. 35, 1570–1574 (2009).

  148. 148

    Neel, S. T. A cost and policy analysis comparing immediate sequential cataract surgery and delayed sequential cataract surgery from the physician perspective in the United States. JAMA Ophthalmol. 132, 1359–1362 (2014).

  149. 149

    Johns, A. W. The role of international non-governmental organisations in dealing with cataract blindness in developing countries. Doc. Ophthalmol. 81, 345–348 (1992).

  150. 150

    Congdon, N. G. et al. Visual function and postoperative care after cataract surgery in rural China: study of cataract outcomes and up-take of services (SCOUTS) in the caring is hip project, report 2. Arch. Ophthalmol. 125, 1546–1552 (2007).

  151. 151

    Zhou, Z. et al. Distribution and visual impact of postoperative refractive error after cataract surgery in rural China: study of cataract outcomes and up-take of services report 4. J. Cataract Refract. Surg. 33, 2083–2090 (2007).

  152. 152

    Zhang, X. J. et al. Barriers for poor cataract surgery uptake among patients with operable cataract in a program of outreach screening and low-cost surgery in rural China. Ophthalm. Epidemiol. 21, 153–160 (2014).

  153. 153

    Martin, A. I., Sutton, G. & Hodge, C. The evolution of cataract surgery: controversies through the ages. Asia-Pacif. J. Ophthalmol. 2, 213–216 (2013).

  154. 154

    Shah, P. A. & Yoo, S. Innovations in phacoemulsification technology. Curr. Opin. Ophthalmol. 18, 23–26 (2007). References 153 and 54 demonstrate the ongoing battle against cataract blindness and evaluate new developments.

  155. 155

    Lamoureux, E. L., Fenwick, E., Pesudovs, K. & Tan, D. The impact of cataract surgery on quality of life. Curr. Opin. Ophthalmol. 22, 19–27 (2011). This paper shows that successful cataract surgery improves vision and quality of life.

  156. 156

    Lee, B. S., Munoz, B. E., West, S. K. & Gower, E. W. Functional improvement after one- and two-eye cataract surgery in the Salisbury Eye Evaluation. Ophthalmology 120, 949–955 (2013).

  157. 157

    Ishii, K., Kabata, T. & Oshika, T. The impact of cataract surgery on cognitive impairment and depressive mental status in elderly patients. Am. J. Ophthalmol. 146, 404–409 (2008). This paper shows that successful cataract surgery improves mental and cognitive status in elderly patients.

  158. 158

    Danquah, L. et al. The long term impact of cataract surgery on quality of life, activities and poverty: results from a six year longitudinal study in Bangladesh and the Philippines. PLoS ONE 9, e94140 (2014).

  159. 159

    McGwin, G., Gewant, H. D., Modjarrad, K., Hall, T. A. & Owsley, C. Effect of cataract surgery on falls and mobility in independently living older adults. J. Am. Geriatr. Soc. 54, 1089–1094 (2006).

  160. 160

    Chandrasekaran, S., Wang, J. J., Rochtchina, E. & Mitchell, P. Change in health-related quality of life after cataract surgery in a population-based sample. Eye 22, 479–484 (2008). This paper shows that successful cataract surgery improves health-related quality of life.

  161. 161

    Bourne, R. R. A. et al. Causes of vision loss worldwide, 1990-2010: a systematic analysis. Lancet Glob. Health 1, e339–e349 (2013).

  162. 162

    Liu, J., Xu, J. & He, M. [Comparing patients’ quality of life after phacoemulsification with intraocular lens implantation with that after extracapsular cataract extraction with intraocular lens implantation]. Zhonghua. Yan Ke Za Zhi. 39, 94–97 (2003) (in Chinese).

  163. 163

    Waring, G. O. & Berry, D. E. Advances in the surgical correction of presbyopia. Int. Ophthalmol. Clin. 53, 129–152 (2013).

  164. 164

    Hao, X. et al. High refractive index polysiloxane as injectable, in situ curable accommodating intraocular lens. Biomaterials 33, 5659–5671 (2012).

  165. 165

    Nishi, O., Nishi, K., Nishi, Y. & Chang, S. Capsular bag refilling using a new accommodating intraocular lens. J. Cataract Refract. Surg. 34, 302–309 (2008).

  166. 166

    Nishi, O., Nishi, Y., Chang, S. & Nishi, K. Accommodation amplitudes after an accommodating intraocular lens refilling procedure: in vivo update. J. Cataract Refract. Surg. 40, 295–305 (2014).

  167. 167

    Helzner, J. The Calhoun adjustable IOL breaks new ground. Ophthalmol. Manag. 18, 50–52 (2014).

  168. 168

    Bhadada, S. V., Bhadada, V. J. & Goyal, R. K. Preventive effect of Tephrosia purpurea on selenite-induced experimental cataract. Curr. Eye Res. (2015).

  169. 169

    Orhan, H., Marol, S., Hepşen, I. F. & Sahin, G. Effects of some probable antioxidants on selenite-induced cataract formation and oxidative stress-related parameters in rats. Toxicology 139, 219–232 (1999).

  170. 170

    Yamakoshi, J., Saito, M., Kataoka, S. & Tokutake, S. Procyanidin-rich extract from grape seeds prevents cataract formation in hereditary cataractous (ICR/f) rats. J. Agr. Food Chem. 50, 4983–4988 (2002).

  171. 171

    Shukla, S. M. & Sharma, S. K. Sinomenine inhibits microglial activation by Aβ and confers neuroprotection. J. Neuroinflamm. 8, 117 (2011).

  172. 172

    Gong, B., Zhang, L.-Y., Lam, D. S.-C., Pang, C.-P. & Yam, G. H.-F. Sodium 4-phenylbutyrate ameliorates the effects of cataract-causing mutant γD-crystallin in cultured cells. Mol. Vis. 16, 997–1003 (2010).

  173. 173

    World Health Organization. Prevention of blindness and visual impairment. Fact sheet Global Data 2010 full set 1–5 [online], (2010).

Download references


The authors express their gratitude to E. X. Y. Liang for her contributions to technical editing and refining references.

Author information

Introduction (S.K.R., V.R., D.L. and D.F.C.); Epidemiology (P.M. and J.J.); Mechanisms/pathophysiology (J.K., C.P.P. and V.R.); Diagnosis, screening and prevention (Y.L. and V.R.); Management (S.K.R., D.F.C., D.L., Y.L., V.R. and M.T.); Quality of life (J.J. and V.R.); Outlook (S.K.R., J.J., D.F.C., V.R., J.K. and D.L.); overview of Primer (D.L.).

Correspondence to Dennis Lam.

Ethics declarations

Competing interests

M.T. holds a patent on the BIL and ring caliper licensed to Morcher (Germany) which results in royalties. D.F.C. is a consultant for AMO Calhoun Vision Power Vision and LensAR. All other authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading