Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

HTLV-1-associated myelopathy/tropical spastic paraparesis

A Corrigendum to this article was published on 06 August 2015

Abstract

Human T-lymphotropic virus 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a progressive disease of the CNS that causes weakness or paralysis of the legs, lower back pain and urinary symptoms. HAM/TSP was first described in Jamaica in the nineteenth century, but the aetiology of the condition, infection with the retrovirus HTLV-1, was only identified in the 1980s. HAM/TSP causes chronic disability and, accordingly, imposes a substantial health burden in areas where HTLV-1 infection is endemic. Since the discovery of the cause of HAM/TSP, considerable advances have been made in the understanding of the virology, immunology, cell biology and pathology of HTLV-1 infection and its associated diseases. However, progress has been limited by the lack of accurate animal models of the disease. Moreover, the treatment of HAM/TSP remains highly unsatisfactory: antiretroviral drugs have little impact on the infection and, although potential disease-modifying therapies are widely used, their value is unproved. At present, clinical management is focused on symptomatic treatment and counselling. Here, we summarize current knowledge on the epidemiology, pathogenesis and treatment of HAM/TSP and identify areas in which further research is needed. For an illustrated summary of this Primer, visit: http://go.nature.com/tjZCFM

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: HTLV-1 life cycle.
Figure 2: Global prevalence of HTLV-1 infection in endemic areas.
Figure 3: MRI scan of an atrophic spinal cord in a patient with human T-lymphotropic virus 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis.
Figure 4: Risk factors for HAM/TSP development.
Figure 5: Proposed mechanism of tissue damage in HAM/TSP.
Figure 6: Flower cells in HTLV-1 infection.
Figure 7: Flowchart for the treatment of HAM/TSP.

References

  1. 1

    Taylor, G. P. & Matsuoka, M. Natural history of adult T-cell leukemia/lymphoma and approaches to therapy. Oncogene 24, 6047–6057 (2005).

    Article  CAS  Google Scholar 

  2. 2

    Uchiyama, T., Yodoi, J., Sagawa, K., Takatsuki, K. & Uchino, H. Adult T-cell leukemia: clinical and hematologic features of 16 cases. Blood 50, 481–492 (1977).

    CAS  PubMed  Google Scholar 

  3. 3

    Donegan, E. et al. Transfusion transmission of retroviruses: human T-lymphotropic virus types I and II compared with human immunodeficiency virus type 1. Transfusion 34, 478–483 (1994).

    Article  CAS  Google Scholar 

  4. 4

    Manns, A. et al. A prospective study of transmission by transfusion of HTLV-I and risk factors associated with seroconversion. Int. J. Cancer 51, 886–891 (1992).

    Article  CAS  Google Scholar 

  5. 5

    Sullivan, M. T. et al. Transmission of human T-lymphotropic virus types I and II by blood transfusion. A retrospective study of recipients of blood components The American Red Cross HTLV-I/II Collaborative Study Group. Arch. Intern. Med. 151, 2043–2048 (1991).

    Article  CAS  Google Scholar 

  6. 6

    Hewitt, P. E., Davison, K., Howell, D. R. & Taylor, G. P. Human T-lymphotropic virus lookback in NHS Blood and Transplant (England) reveals the efficacy of leukoreduction. Transfusion 53, 2168–2175 (2013).

    PubMed  Google Scholar 

  7. 7

    Laydon, D. J. et al. Quantification of HTLV-1 clonality and TCR diversity. PLoS Comput. Biol. 10, e1003646 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Melamed, A. et al. Genome-wide determinants of proviral targeting, clonal abundance and expression in natural HTLV-1 infection. PLoS Pathog. 9, e1003271 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Gillet, N. A. et al. The host genomic environment of the provirus determines the abundance of HTLV-1-infected T cell clones. Blood 117, 3113–3122 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Wattel, E., Vartanian, J. P., Pannetier, C. & Wain-Hobson, S. Clonal expansion of human T-cell leukemia virus type I-infected cells in asymptomatic and symptomatic carriers without malignancy. J. Virol. 69, 2863–2868 (1995).

    CAS  PubMed  Google Scholar 

  11. 11

    Cruickshank, E. K. A neuropathic syndrome of uncertain origin; review of 100 cases. West Indian Med. J. 5, 147–158 (1956).

    CAS  PubMed  Google Scholar 

  12. 12

    Montgomery, R. D., Cruickshank, E. K., Robertson, W. B. & McMenemey, W. H. Clinical and pathological observations on Jamaican neuropathy, a report on 206 cases. Brain 87, 425–462 (1964). This paper provides the classic description of Jamaican neuropathy, as HAM/TSP was formerly known.

    Article  CAS  Google Scholar 

  13. 13

    Gessain, A. et al. Antibodies to human T-lymphotropic virus type-I in patients with tropical spastic paraparesis. Lancet 2, 407–410 (1985). This paper identifies HTLV-1 as the probable causative agent of TSP, another former name for HAM/TSP.

    Article  CAS  Google Scholar 

  14. 14

    Osame, M. et al. HTLV-I associated myelopathy, a new clinical entity. Lancet 1, 1031–1032 (1986). This article identifies HAM in Japan; the syndrome was subsequently shown to be identical to TSP, leading to the current designation HAM/TSP.

    Article  CAS  Google Scholar 

  15. 15

    Iwasaki, Y., Ohara, Y., Kobayashi, I. & Akizuki, S. Infiltration of helper/inducer T lymphocytes heralds central nervous system damage in human T-cell leukemia virus infection. Am. J. Pathol. 140, 1003–1008 (1992).

    CAS  PubMed  Google Scholar 

  16. 16

    Nagai, M. et al. Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP. J. Neurovirol. 4, 586–593 (1998). This is the largest systematic study of HTLV-1 proviral load and its disease association.

    Article  CAS  Google Scholar 

  17. 17

    Olindo, S. et al. Natural history of human T-lymphotropic virus 1-associated myelopathy: a 14-year follow-up study. Arch. Neurol. 63, 1560–1566 (2006).

    Article  Google Scholar 

  18. 18

    Gessain, A. & Cassar, O. Epidemiological aspects and world distribution of HTLV-1 infection. Front. Microbiol. 3, 388 (2012). This article is the most comprehensive analysis of the prevalence of HTLV-1. This invaluable resource for clinicians and public health policymakers alike also identifies the data gaps.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    de The, G. & Bomford, R. An HTLV-I vaccine: why, how, for whom? AIDS Res. Hum. Retroviruses 9, 381–386 (1993).

    Article  CAS  Google Scholar 

  20. 20

    Hlela, C., Shepperd, S., Khumalo, N. P. & Taylor, G. P. The prevalence of human T-cell lymphotropic virus type 1 in the general population is unknown. AIDS Rev. 11, 205–214 (2009).

    PubMed  Google Scholar 

  21. 21

    European Centre for Disease Prevention and Control. Geographical distribution of areas with a high prevalence of HTLV-1 infection. ECDC[online], (2015).

  22. 22

    Einsiedel, L. et al. Clinical associations of human T-lymphotropic virus type 1 infection in an indigenous Australian population. PLoS Negl. Trop. Dis. 8, e2643 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Chang, Y. B. et al. Seroprevalence and demographic determinants of human T-lymphotropic virus type 1 and 2 infections among first-time blood donors — United States, 2000–2009. J. Infect. Dis. 209, 523–531 (2014).

    Article  CAS  Google Scholar 

  24. 24

    Ando, Y. et al. Long-term follow up study of vertical HTLV-I infection in children breast-fed by seropositive mothers. J. Infect. 46, 177–179 (2003).

    Article  CAS  Google Scholar 

  25. 25

    Murphy, E. L. et al. Human T-lymphotropic virus type I (HTLV-I) seroprevalence in Jamaica. I. Demographic determinants. Am. J. Epidemiol. 133, 1114–1124 (1991).

    Article  CAS  Google Scholar 

  26. 26

    Kaplan, J. E. et al. The risk of development of HTLV-I-associated myelopathy/tropical spastic paraparesis among persons infected with HTLV-I. J. Acquir. Immune Defic. Syndr. 3, 1096–1101 (1990).

    CAS  PubMed  Google Scholar 

  27. 27

    Murphy, E. L. et al. HTLV-associated myelopathy in a cohort of HTLV-I and HTLV-II-infected blood donors. The REDS investigators. Neurology 48, 315–320 (1997).

    Article  CAS  Google Scholar 

  28. 28

    Orland, J. R. et al. Prevalence and clinical features of HTLV neurologic disease in the HTLV Outcomes Study. Neurology 61, 1588–1594 (2003).

    Article  CAS  Google Scholar 

  29. 29

    Maloney, E. M. et al. Incidence of HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in Jamaica and Trinidad. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 17, 167–170 (1998).

    Article  CAS  Google Scholar 

  30. 30

    Romanelli, L. C. et al. Incidence of human T cell lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis in a long-term prospective cohort study of initially asymptomatic individuals in Brazil. AIDS Res. Hum. Retroviruses 29, 1199–1202 (2013).

    Article  Google Scholar 

  31. 31

    Kayembe, K., Goubau, P., Desmyter, J., Vlietinck, R. & Carton, H. A cluster of HTLV-1 associated tropical spastic paraparesis in Equateur (Zaire): ethnic and familial distribution. J. Neurol. Neurosurg. Psychiatry 53, 4–10 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Arisawa, K. et al. Evaluation of adult T-cell leukemia/lymphoma incidence and its impact on non-Hodgkin lymphoma incidence in southwestern Japan. Int. J. Cancer 85, 319–324 (2000).

    Article  CAS  Google Scholar 

  33. 33

    Iwasaki, Y. Human T cell leukemia virus type I infection and chronic myelopathy. Brain Pathol. 3, 1–10 (1993). This article provides a classic description of the neuropathology of HAM/TSP.

    Article  CAS  Google Scholar 

  34. 34

    Aye, M. M. et al. Histopathological analysis of four autopsy cases of HTLV-I-associated myelopathy/tropical spastic paraparesis: inflammatory changes occur simultaneously in the entire central nervous system. Acta Neuropathol. 100, 245–252 (2000).

    Article  CAS  Google Scholar 

  35. 35

    Izumo, S. et al. Neuropathology of HTLV-I-associated myelopathy—a report of two autopsy cases. Acta Paediatr. Jpn 34, 358–364 (1992).

    Article  CAS  Google Scholar 

  36. 36

    Izumo, S. Neuropathology of HTLV-1-associated myelopathy (HAM/TSP). Neuropathology 30, 480–485 (2010).

    PubMed  Google Scholar 

  37. 37

    Umehara, F. et al. Immunocytochemical analysis of the cellular infiltrate in the spinal cord lesions in HTLV-I-associated myelopathy. J. Neuropathol. Exp. Neurol. 52, 424–430 (1993).

    Article  CAS  Google Scholar 

  38. 38

    Alcindor, F. et al. Imaging of human T-lymphotropic virus type I-associated chronic progressive myeloneuropathies. Neuroradiology 35, 69–74 (1992).

    Article  CAS  Google Scholar 

  39. 39

    Shakudo, M., Inoue, Y. & Tsutada, T. HTLV-I-associated myelopathy: acute progression and atypical MR findings. AJNR Am. J. Neuroradiol. 20, 1417–1421 (1999).

    CAS  PubMed  Google Scholar 

  40. 40

    Mochizuki, M. et al. Uveitis associated with human T lymphotropic virus type I: seroepidemiologic, clinical, and virologic studies. J. Infect. Dis. 166, 943–944 (1992).

    Article  CAS  Google Scholar 

  41. 41

    Morgan, O. S., Rodgers-Johnson, P., Mora, C. & Char, G. HTLV-1 and polymyositis in Jamaica. Lancet 2, 1184–1187 (1989).

    Article  CAS  Google Scholar 

  42. 42

    Lee, R. & Schwartz, R. A. Human T-lymphotrophic virus type 1-associated infective dermatitis: a comprehensive review. J. Am. Acad. Dermatol. 64, 152–160 (2011).

    Article  Google Scholar 

  43. 43

    Nishioka, K. et al. Chronic inflammatory arthropathy associated with HTLV-I. Lancet 1, 441 (1989).

    Article  CAS  Google Scholar 

  44. 44

    Jeffery, K. J. et al. HLA alleles determine human T-lymphotropic virus-I (HTLV-I) proviral load and the risk of HTLV-I-associated myelopathy. Proc. Natl Acad. Sci. USA 96, 3848–3853 (1999). This paper identifies the protective effect of HLA class I alleles in HTLV-1 infection and provides the first description of population-level protection by a single MHC allele in a natural virus infection.

    Article  CAS  Google Scholar 

  45. 45

    Vine, A. M. et al. Polygenic control of human T lymphotropic virus type I (HTLV-I) provirus load and the risk of HTLV-I-associated myelopathy/tropical spastic paraparesis. J. Infect. Dis. 186, 932–939 (2002).

    Article  CAS  Google Scholar 

  46. 46

    Cook, L. B., Rowan, A. G., Melamed, A., Taylor, G. P. & Bangham, C. R. HTLV-1-infected T cells contain a single integrated provirus in natural infection. Blood 120, 3488–3490 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Bangham, C. R. CTL quality and the control of human retroviral infections. Eur. J. Immunol. 39, 1700–1712 (2009).

    Article  CAS  Google Scholar 

  48. 48

    Demontis, M. A., Hilburn, S. & Taylor, G. P. Human T cell lymphotropic virus type 1 viral load variability and long-term trends in asymptomatic carriers and in patients with human T cell lymphotropic virus type 1-related diseases. AIDS Res. Hum. Retroviruses 29, 359–364 (2013).

    Article  CAS  Google Scholar 

  49. 49

    Taylor, G. P. et al. Prospective study of HTLV-I infection in an initially asymptomatic cohort. J. Acquir. Immune Defic. Syndr. 22, 92–100 (1999).

    Article  CAS  Google Scholar 

  50. 50

    Lima, M. A., Harab, R. C., Schor, D., Andrada-Serpa, M. J. & Araujo, A. Q. Subacute progression of human T-lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis. J. Neurovirol. 13, 468–473 (2007).

    Article  CAS  Google Scholar 

  51. 51

    Martin, F., Fedina, A., Youshya, S. & Taylor, G. P. A. 15-year prospective longitudinal study of disease progression in patients with HTLV-1 associated myelopathy in the UK. J. Neurol. Neurosurg. Psychiatry 81, 1336–1340 (2010).

    Article  Google Scholar 

  52. 52

    Daenke, S., Nightingale, S., Cruickshank, J. K. & Bangham, C. R. Sequence variants of human T-cell lymphotropic virus type I from patients with tropical spastic paraparesis and adult T-cell leukemia do not distinguish neurological from leukemic isolates. J. Virol. 64, 1278–1282 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Komurian, F., Pelloquin, F. & de The, G. In vivo genomic variability of human T-cell leukemia virus type I depends more upon geography than upon pathologies. J. Virol. 65, 3770–3778 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Slattery, J. P., Franchini, G. & Gessain, A. Genomic evolution, patterns of global dissemination, and interspecies transmission of human and simian T-cell leukemia/lymphotropic viruses. Genome Res. 9, 525–540 (1999).

    CAS  PubMed  Google Scholar 

  55. 55

    Vandamme, A. M., Liu, H. F., Goubau, P. & Desmyter, J. Primate T-lymphotropic virus type I LTR sequence variation and its phylogenetic analysis: compatibility with an African origin of PTLV-I. Virology 202, 212–223 (1994).

    Article  CAS  Google Scholar 

  56. 56

    Furukawa, Y. et al. Phylogenetic subgroups of human T cell lymphotropic virus (HTLV) type I in the tax gene and their association with different risks for HTLV-I-associated myelopathy/tropical spastic paraparesis. J. Infect. Dis. 182, 1343–1349 (2000).

    Article  CAS  Google Scholar 

  57. 57

    Bangham, C. R. M. in Genetic Susceptibility to Infectious Diseases (eds Kaslow, R. A., McNicholl, J. M. & Hill, A. V. S.) 303–317 (Oxford Univ. Press, 2008).

    Google Scholar 

  58. 58

    Jeffery, K. J. et al. The influence of HLA class I alleles and heterozygosity on the outcome of human T cell lymphotropic virus type I infection. J. Immunol. 165, 7278–7284 (2000).

    Article  CAS  Google Scholar 

  59. 59

    Catalan-Soares, B. C. et al. HLA class I alleles in HTLV-1-associated myelopathy and asymptomatic carriers from the Brazilian cohort GIPH. Med. Microbiol. Immunol. 198, 1–3 (2009).

    Article  CAS  Google Scholar 

  60. 60

    Talledo, M. et al. Evaluation of host genetic and viral factors as surrogate markers for HTLV-1-associated myelopathy/tropical spastic paraparesis in Peruvian HTLV-1-infected patients. J. Med. Virol. 82, 460–466 (2010).

    Article  CAS  Google Scholar 

  61. 61

    Deschamps, R. et al. Absence of consistent association between human leukocyte antigen-I and -II alleles and human T-lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis risk in an HTLV-1 French Afro-Caribbean population. Int. J. Infect. Dis. 14, e986–e990 (2010).

    Article  Google Scholar 

  62. 62

    Trevino, A. et al. Association between HLA alleles and HAM/TSP in individuals infected with HTLV-1. J. Neurol. 260, 2551–2555 (2013).

    Article  Google Scholar 

  63. 63

    Gadelha, S. R. et al. Correlation between polymorphisms at interleukin-6 but not at interleukin-10 promoter and the risk of human T lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis in Brazilian individuals. J. Med. Virol. 80, 2141–2146 (2008).

    Article  CAS  Google Scholar 

  64. 64

    Sabouri, A. H. et al. Polymorphism in the interleukin-10 promoter affects both provirus load and the risk of human T lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis. J. Infect. Dis. 190, 1279–1285 (2004).

    Article  CAS  Google Scholar 

  65. 65

    Assone, T. et al. IL28B gene polymorphism SNP rs8099917 genotype GG is associated with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in HTLV-1 carriers. PLoS Negl. Trop. Dis. 8, e3199 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Nozuma, S. et al. Familial clusters of HTLV-1-associated myelopathy/tropical spastic paraparesis. PLoS ONE 9, e86144 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Lima, M. A., Bica, R. B. & Araujo, A. Q. Gender influence on the progression of HTLV-I associated myelopathy/tropical spastic paraparesis. J. Neurol. Neurosurg. Psychiatry 76, 294–296 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Toro, C., Rodes, B., Poveda, E. & Soriano, V. Rapid development of subacute myelopathy in three organ transplant recipients after transmission of human T-cell lymphotropic virus type I from a single donor. Transplantation 75, 102–104 (2003).

    Article  CAS  Google Scholar 

  69. 69

    Osame, M. et al. Nationwide survey of HTLV-I-associated myelopathy in Japan: association with blood transfusion. Ann. Neurol. 28, 50–56 (1990). This paper demonstrates that blood-donor screening can lead to a reduction in the incidence of HAM/TSP.

    Article  CAS  Google Scholar 

  70. 70

    Emmanouilides, C. E. & Territo, M. HTLV-I-associated myelopathy following allogeneic bone marrow transplantation. Bone Marrow Transplant. 24, 205–206 (1999).

    Article  CAS  Google Scholar 

  71. 71

    Kaplan, J. E. et al. HTLV-I-associated myelopathy associated with blood transfusion in the United States: epidemiologic and molecular evidence linking donor and recipient. Neurology 41, 192–197 (1991).

    Article  CAS  Google Scholar 

  72. 72

    Journo, C. & Mahieux, R. HTLV-1 and innate immunity. Viruses 3, 1374–1394 (2011). A review of recent evidence on the role of innate immunity in HTLV-1 infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Kannagi, M., Hasegawa, A., Takamori, A., Kinpara, S. & Utsunomiya, A. The roles of acquired and innate immunity in human T-cell leukemia virus type 1-mediated diseases. Front. Microbiol. 3, 323 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Tattermusch, S. et al. Systems biology approaches reveal a specific IFN-inducible signature in HTLV-1 associated myelopathy. PLoS Pathog. 8, e1002480 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Araya, N. et al. HTLV-1 induces a TH1-like state in CD4+CCR4+ T cells. J. Clin. Invest. 124, 3431–3442 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Hanon, E. et al. High production of interferon γ but not interleukin-2 by human T-lymphotropic virus type I-infected peripheral blood mononuclear cells. Blood 98, 721–726 (2001).

    Article  CAS  Google Scholar 

  77. 77

    Kinpara, S. et al. Stromal cell-mediated suppression of human T-cell leukemia virus type 1 expression in vitro and in vivo by type I interferon. J. Virol. 83, 5101–5108 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  78. 78

    Cachat, A. et al. Alpha interferon restricts human T-lymphotropic virus type 1 and 2 de novo infection through PKR activation. J. Virol. 87, 13386–13396 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Bangham, C. R. & Osame, M. Cellular immune response to HTLV-1. Oncogene 24, 6035–6046 (2005).

    Article  CAS  Google Scholar 

  80. 80

    Jacobson, S. Immunopathogenesis of human T cell lymphotropic virus type I-associated neurologic disease. J. Infect. Dis. 186 (Suppl. 2), S187–S192 (2002).

    Article  Google Scholar 

  81. 81

    Goon, P. K. et al. Human T cell lymphotropic virus (HTLV) type-1-specific CD8+ T cells: frequency and immunodominance hierarchy. J. Infect. Dis. 189, 2294–2298 (2004).

    Article  Google Scholar 

  82. 82

    Jacobson, S., Shida, H., McFarlin, D. E., Fauci, A. S. & Koenig, S. Circulating CD8+ cytotoxic T lymphocytes specific for HTLV-I pX in patients with HTLV-I associated neurological disease. Nature 348, 245–248 (1990).

    Article  CAS  Google Scholar 

  83. 83

    Kannagi, M. et al. Predominant recognition of human T cell leukemia virus type I (HTLV-I) pX gene products by human CD8+ cytotoxic T cells directed against HTLV-I-infected cells. Int. Immunol. 3, 761–767 (1991).

    Article  CAS  Google Scholar 

  84. 84

    Kagi, D., Ledermann, B., Burki, K., Zinkernagel, R. M. & Hengartner, H. Molecular mechanisms of lymphocyte-mediated cytotoxicity and their role in immunological protection and pathogenesis in vivo .. Annu. Rev. Immunol. 14, 207–232 (1996).

    Article  CAS  Google Scholar 

  85. 85

    Asquith, B. & Bangham, C. R. Quantifying HTLV-I dynamics. Immunol. Cell Biol. 85, 280–286 (2007).

    Article  CAS  Google Scholar 

  86. 86

    Nowak, M. A. & Bangham, C. R. Population dynamics of immune responses to persistent viruses. Science 272, 74–79 (1996).

    Article  CAS  Google Scholar 

  87. 87

    MacNamara, A. et al. HLA class I binding of HBZ determines outcome in HTLV-1 infection. PLoS Pathog. 6, e1001117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Seich al Basatena, N. K. et al. KIR2DL2 enhances protective and detrimental HLA class I-mediated immunity in chronic viral infection. PLoS Pathog. 7, e1002270 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Goon, P. K. et al. High frequencies of TH1-type CD4+ T cells specific to HTLV-1 Env and Tax proteins in patients with HTLV-1-associated myelopathy/tropical spastic paraparesis. Blood 99, 3335–3341 (2002).

    Article  CAS  Google Scholar 

  90. 90

    Ando, H. et al. Positive feedback loop via astrocytes causes chronic inflammation in virus-associated myelopathy. Brain 136, 2876–2887 (2013).

    Article  Google Scholar 

  91. 91

    Hashioka, S., Klegeris, A., Schwab, C., Yu, S. & McGeer, P. L. Differential expression of interferon-γ receptor on human glial cells in vivo and in vitro.. J. Neuroimmunol. 225, 91–99 (2010).

    Article  CAS  Google Scholar 

  92. 92

    Toulza, F., Heaps, A., Tanaka, Y., Taylor, G. P. & Bangham, C. R. High frequency of CD4+FoxP3+ cells in HTLV-1 infection: inverse correlation with HTLV-1-specific CTL response. Blood 111, 5047–5053 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Toulza, F. et al. FoxP3+ regulatory T cells are distinct from leukemia cells in HTLV-1-associated adult T-cell leukemia. Int. J. Cancer 125, 2375–2382 (2009).

    Article  CAS  Google Scholar 

  94. 94

    Toulza, F. et al. Human T-lymphotropic virus type 1-induced CC chemokine ligand 22 maintains a high frequency of functional FoxP3+ regulatory T cells. J. Immunol. 185, 183–189 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Yamauchi, J. et al. Mogamulizumab, an anti-CCR4 antibody, targets human T-lymphotropic virus type 1-infected CD8+ and CD4+ T cells to treat associated myelopathy. J. Infect. Dis. 211, 238–248 (2015).

    Article  CAS  Google Scholar 

  96. 96

    Tsukasaki, K. & Tobinai, K. Human T-cell lymphotropic virus type I-associated adult T-cell leukemia-lymphoma: new directions in clinical research. Clin. Cancer Res. 20, 5217–5225 (2014).

    Article  CAS  Google Scholar 

  97. 97

    Hieshima, K. et al. Tax-inducible production of CC chemokine ligand 22 by human T cell leukemia virus type 1 (HTLV-1)-infected T cells promotes preferential transmission of HTLV-1 to CCR4-expressing CD4+ T cells. J. Immunol. 180, 931–939 (2008).

    Article  CAS  Google Scholar 

  98. 98

    Yamano, Y. et al. Virus-induced dysfunction of CD4+CD25+ T cells in patients with HTLV-I-associated neuroimmunological disease. J. Clin. Invest. 115, 1361–1368 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Yamamoto-Taguchi, N. et al. HTLV-1 bZIP factor induces inflammation through labile Foxp3 expression. PLoS Pathog. 9, e1003630 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Fujihara, K., Itoyama, Y., Yu, F., Kubo, C. & Goto, I. Cellular immune surveillance against HTLV-I infected T lymphocytes in HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP). J. Neurol. Sci. 105, 99–107 (1991).

    Article  CAS  Google Scholar 

  101. 101

    Saito, M. et al. Low frequency of CD94/NKG2A+ T lymphocytes in patients with HTLV-1-associated myelopathy/tropical spastic paraparesis, but not in asymptomatic carriers. Blood 102, 577–584 (2003).

    Article  CAS  Google Scholar 

  102. 102

    Yu, F., Itoyama, Y., Fujihara, K. & Goto, I. Natural killer (NK) cells in HTLV-I-associated myelopathy/tropical spastic paraparesis-decrease in NK cell subset populations and activity in HTLV-I seropositive individuals. J. Neuroimmunol. 33, 121–128 (1991).

    Article  CAS  Google Scholar 

  103. 103

    Hisada, M. et al. Virus markers associated with vertical transmission of human T lymphotropic virus type 1 in Jamaica. Clin. Infect. Dis. 34, 1551–1557 (2002).

    Article  Google Scholar 

  104. 104

    Saito, M. et al. The neutralizing function of the anti-HTLV-1 antibody is essential in preventing in vivo transmission of HTLV-1 to human T cells in NOD-SCID/γcnull (NOG) mice. Retrovirology 11, 74 (2014).

    PubMed  PubMed Central  Google Scholar 

  105. 105

    Tanaka, Y. et al. Induction of antibody responses that neutralize human T-cell leukemia virus type I infection in vitro and in vivo by peptide immunization. J. Virol. 68, 6323–6331 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Overbaugh, J. & Bangham, C. R. Selection forces and constraints on retroviral sequence variation. Science 292, 1106–1109 (2001).

    Article  CAS  Google Scholar 

  107. 107

    Levin, M. C. et al. Autoimmunity due to molecular mimicry as a cause of neurological disease. Nat. Med. 8, 509–513 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Yukitake, M. et al. Significantly increased antibody response to heterogeneous nuclear ribonucleoproteins in cerebrospinal fluid of multiple sclerosis patients but not in patients with human T-lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis. J. Neurovirol. 14, 130–135 (2008).

    Article  CAS  Google Scholar 

  109. 109

    Furukawa, Y. et al. Frequent clonal proliferation of human T-cell leukemia virus type 1 (HTLV-1)-infected T cells in HTLV-1-associated myelopathy (HAM-TSP). Blood 80, 1012–1016 (1992).

    CAS  PubMed  Google Scholar 

  110. 110

    Bangham, C. R., Cook, L. B. & Melamed, A. HTLV-1 clonality in adult T-cell leukaemia and non-malignant HTLV-1 infection. Semin. Cancer Biol. 26, 89–98 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Ijichi, S. et al. An autoaggressive process against bystander tissues in HTLV-I-infected individuals: a possible pathomechanism of HAM/TSP. Med. Hypotheses 41, 542–547 (1993).

    Article  CAS  Google Scholar 

  112. 112

    Daenke, S. & Bangham, C. R. Do T cells cause HTLV-1-associated disease?: a taxing problem. Clin. Exp. Immunol. 96, 179–181 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    Nose, H. et al. Clinical symptoms and the odds of human T-cell lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in healthy virus carriers: application of best-fit logistic regression equation based on host genotype, age, and provirus load. J. Neurovirol. 12, 171–177 (2006).

    Article  CAS  Google Scholar 

  114. 114

    Hodson, A., Laydon, D. J., Bain, B. J., Fields, P. A. & Taylor, G. P. Pre-morbid human T-lymphotropic virus type I proviral load, rather than percentage of abnormal lymphocytes, is associated with an increased risk of aggressive adult T-cell leukemia/lymphoma. Haematologica 98, 385–388 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  115. 115

    Osame, M. in Human Retrovirology: HTLV (ed. Blattner, W. A.) 191–197 (Raven Press, 1990). This book chapter provides the WHO criteria for the diagnosis of HAM/TSP; see also reference 116.

    Google Scholar 

  116. 116

    De Castro-Costa, C. M. et al. Proposal for diagnostic criteria of tropical spastic paraparesis/HTLV-I-associated myelopathy (TSP/HAM). AIDS Res. Hum. Retroviruses 22, 931–935 (2006). This paper provides the staged criteria for the diagnosis of HAM/TSP; see also reference 115.

    Article  CAS  Google Scholar 

  117. 117

    Castillo, J. L., Cea, J. G., Verdugo, R. J. & Cartier, L. Sensory dysfunction in HTLV-I-associated myelopathy/tropical spastic paraparesis. A comprehensive neurophysiological study. Eur. Neurol. 42, 17–22 (1999).

    Article  CAS  Google Scholar 

  118. 118

    Oliveira, P. et al. Prevalence of erectile dysfunction in HTLV-1-infected patients and its association with overactive bladder. Urology 75, 1100–1103 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  119. 119

    World Health Organization. Weekly epidemiological record. Wkly Epidem. Rec. 49, 377–384 (1989).

    Google Scholar 

  120. 120

    Araujo, A. Q. & Silva, M. T. The HTLV-1 neurological complex. Lancet Neurol. 5, 1068–1076 (2006).

    Article  CAS  Google Scholar 

  121. 121

    Franzoi, A. C. & Araujo, A. Q. Disability profile of patients with HTLV-I-associated myelopathy/tropical spastic paraparesis using the Functional Independence Measure (FIM). Spinal Cord 43, 236–240 (2005).

    Article  CAS  Google Scholar 

  122. 122

    Silva, M. T., Mattos, P., Alfano, A. & Araujo, A. Q. Neuropsychological assessment in HTLV-1 infection: a comparative study among TSP/HAM, asymptomatic carriers, and healthy controls. J. Neurol. Neurosurg. Psychiatry 74, 1085–1089 (2003).

    Article  CAS  Google Scholar 

  123. 123

    Leon-Sarmiento, F. E., Calderon, A. & Hernandez, H. G. Two Babinski signs in seropositive (HAM) and seronegative tropical spastic paraparesis. Arq. Neuropsiquiatr. 66, 695–697 (2008).

    Article  Google Scholar 

  124. 124

    Lezin, A. et al. Human T lymphotropic virus type I (HTLV-I) proviral load in cerebrospinal fluid: a new criterion for the diagnosis of HTLV-I-associated myelopathy/tropical spastic paraparesis? J. Infect. Dis. 191, 1830–1834 (2005).

    Article  Google Scholar 

  125. 125

    Puccioni-Sohler, M. et al. Diagnosis of HAM/TSP based on CSF proviral HTLV-I DNA and HTLV-I antibody index. Neurology 57, 725–727 (2001).

    Article  CAS  Google Scholar 

  126. 126

    Narikawa, K. et al. CSF-chemokines in HTLV-I-associated myelopathy: CXCL10 up-regulation and therapeutic effect of interferon-α. J. Neuroimmunol. 159, 177–182 (2005). This paper proposes CXCL10 in CSF as a biomarker of HAM/TSP.

    Article  CAS  Google Scholar 

  127. 127

    Sato, T. et al. CSF CXCL10, CXCL9, and neopterin as candidate prognostic biomarkers for HTLV-1-associated myelopathy/tropical spastic paraparesis. PLoS Negl. Trop. Dis. 7, e2479 (2013).

    Article  CAS  Google Scholar 

  128. 128

    Guerreiro, J. B. et al. Levels of serum chemokines discriminate clinical myelopathy associated with human T lymphotropic virus type 1 (HTLV-1)/tropical spastic paraparesis (HAM/TSP) disease from HTLV-1 carrier state. Clin. Exp. Immunol. 145, 296–301 (2006).

    Article  CAS  Google Scholar 

  129. 129

    Kirk, P. D. W. et al. Plasma proteome analysis in HTLV-1-associated myelopathy/tropical spastic paraparesis. Retrovirology 8, 81 (2011). This paper identifies plasma biomarkers of HAM/TSP.

    Article  CAS  Google Scholar 

  130. 130

    Umehara, F. et al. Chronic progressive cervical myelopathy with HTLV-I infection: variant form of HAM/TSP? Neurology 63, 1276–1280 (2004).

    Article  CAS  Google Scholar 

  131. 131

    Umehara, F. et al. Abnormalities of spinal magnetic resonance images implicate clinical variability in human T-cell lymphotropic virus type I-associated myelopathy. J. Neurovirol. 13, 260–267 (2007).

    Article  Google Scholar 

  132. 132

    Yukitake, M. et al. Incidence and clinical significances of human T-cell lymphotropic virus type I-associated myelopathy with T2 hyperintensity on spinal magnetic resonance images. Intern. Med. 47, 1881–1886 (2008).

    Article  Google Scholar 

  133. 133

    Pennington, J. et al. Persistence of HTLV-I in blood components after leukocyte depletion. Blood 100, 677–681 (2002).

    Article  CAS  Google Scholar 

  134. 134

    Ozden, S., Seilhean, D., Gessain, A., Hauw, J. J. & Gout, O. Severe demyelinating myelopathy with low human T cell lymphotropic virus type 1 expression after transfusion in an immunosuppressed patient. Clin. Infect. Dis. 34, 855–860 (2002).

    Article  Google Scholar 

  135. 135

    Hino, S. Establishment of the milk-borne transmission as a key factor for the peculiar endemicity of human T-lymphotropic virus type 1 (HTLV-1): the ATL Prevention Program Nagasaki. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 87, 152–166 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  136. 136

    Oki, T. et al. A sero-epidemiological study on mother-to-child transmission of HTLV-I in southern Kyushu, Japan. Asia Oceania J. Obstet. Gynaecol. 18, 371–377 (1992).

    Article  CAS  Google Scholar 

  137. 137

    Takezaki, T. et al. Short-term breast-feeding may reduce the risk of vertical transmission of HTLV-I. The Tsushima ATL Study Group. Leukemia 11 (Suppl. 3), 60–62 (1997).

    PubMed  Google Scholar 

  138. 138

    Gotuzzo, E. et al. Clinical characteristics of patients in Peru with human T cell lymphotropic virus type 1-associated tropical spastic paraparesis. Clin. Infect. Dis. 39, 939–944 (2004).

    Article  CAS  Google Scholar 

  139. 139

    Nakagawa, M. et al. HTLV-I-associated myelopathy: analysis of 213 patients based on clinical features and laboratory findings. J. Neurovirol. 1, 50–61 (1995).

    Article  CAS  Google Scholar 

  140. 140

    Araujo, A. Q., Leite, A. C., Dultra, S. V. & Andrada-Serpa, M. J. Progression of neurological disability in HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). J. Neurol. Sci. 129, 147–151 (1995).

    Article  CAS  Google Scholar 

  141. 141

    Nakagawa, M. et al. Therapeutic trials in 200 patients with HTLV-I-associated myelopathy/ tropical spastic paraparesis. J. Neurovirol. 2, 345–355 (1996).

    Article  CAS  Google Scholar 

  142. 142

    Croda, M. G. et al. Corticosteroid therapy in TSP/HAM patients: the results from a 10 years open cohort. J. Neurol. Sci. 269, 133–137 (2008).

    Article  CAS  Google Scholar 

  143. 143

    Macchi, B. et al. Susceptibility of primary HTLV-1 isolates from patients with HTLV-1-associated myelopathy to reverse transcriptase inhibitors. Viruses 3, 469–483 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. 144

    Taylor, G. P. et al. Zidovudine plus lamivudine in human T-lymphotropic virus type-I-associated myelopathy: a randomised trial. Retrovirology 3, 63 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  145. 145

    Lezin, A. et al. Histone deacetylase mediated transcriptional activation reduces proviral loads in HTLV-1 associated myelopathy/tropical spastic paraparesis patients. Blood 110, 3722–3728 (2007).

    Article  CAS  Google Scholar 

  146. 146

    Kuroda, Y. et al. Systemic interferon-α in the treatment of HTLV-I-associated myelopathy. Acta Neurol. Scand. 86, 82–86 (1992).

    Article  CAS  Google Scholar 

  147. 147

    Yamasaki, K. et al. Long-term, high dose interferon-α treatment in HTLV-I-associated myelopathy/tropical spastic paraparesis: a combined clinical, virological and immunological study. J. Neurol. Sci. 147, 135–144 (1997).

    Article  CAS  Google Scholar 

  148. 148

    Martin, F. et al. Ciclosporin. A proof of concept study in patients with active, progressive HTLV-1 associated myelopathy/tropical spastic paraparesis. PLoS Negl. Trop. Dis. 6, e1675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. 149

    Ahmed, S. et al. Treatment of patients with HTLV-1-associated myelopathy with methotrexate. Retrovirology 11 (Suppl.1), 33 (2014).

    Article  Google Scholar 

  150. 150

    Shirabe, S. et al. Successful application of pentoxifylline in the treatment of HTLV-I associated myelopathy. J. Neurol. Sci. 151, 97–101 (1997).

    Article  CAS  Google Scholar 

  151. 151

    Harrington, W. J. Jr et al. Tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM): treatment with an anabolic steroid danazol. AIDS Res. Hum. Retroviruses 7, 1031–1034 (1991).

    Article  Google Scholar 

  152. 152

    Nakamura, T. et al. Efficacy of prosultiamine treatment in patients with human T lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis: results from an open-label clinical trial. BMC Med. 11, 182 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. 153

    Nakamura, T. et al. Pentosan polysulfate treatment ameliorates motor function with increased serum soluble vascular cell adhesion molecule-1 in HTLV-1-associated neurologic disease. J. Neurovirol. 20, 269–277 (2014).

    Article  CAS  Google Scholar 

  154. 154

    Araujo, A., Lima, M. A. & Silva, M. T. Human T-lymphotropic virus 1 neurologic disease. Curr. Treat. Opt. Neurol. 10, 193–200 (2008). A review of treatment regimens for HAM/TSP.

    Article  Google Scholar 

  155. 155

    Martin, F. & Taylor, G. P. Prospects for the management of human T-cell lymphotropic virus type 1-associated myelopathy. AIDS Rev. 13, 161–170 (2011).

    PubMed  Google Scholar 

  156. 156

    Mi, S., Pepinsky, R. B. & Cadavid, D. Blocking LINGO-1 as a therapy to promote CNS repair: from concept to the clinic. CNS Drugs 27, 493–503 (2013).

    Article  CAS  Google Scholar 

  157. 157

    Martins, J. V., Baptista, A. F. & Araujo Ade, Q. Quality of life in patients with HTLV-I associated myelopathy/tropical spastic paraparesis. Arq. Neuropsiquiatr. 70, 257–261 (2012).

    Article  Google Scholar 

  158. 158

    Shublaq, M., Orsini, M. & Puccioni-Sohler, M. Implications of HAM/TSP functional incapacity in the quality of life. Arq. Neuropsiquiatr. 69, 208–211 (2011).

    Article  Google Scholar 

  159. 159

    Strober, L. B. Fatigue in multiple sclerosis: a look at the role of poor sleep. Front. Neurol. 6, 21 (2015).

    Article  Google Scholar 

  160. 160

    Diniz, M. S., Feldner, P. C., Castro, R. A., Sartori, M. G. & Girao, M. J. Impact of HTLV-I in quality of life and urogynecologic parameters of women with urinary incontinence. Eur. J. Obstet. Gynecol. Reprod. Biol. 147, 230–233 (2009).

    Article  Google Scholar 

  161. 161

    Netto, E. C. & Brites, C. Characteristics of chronic pain and its impact on quality of life of patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Clin. J. Pain 27, 131–135 (2011).

    Article  Google Scholar 

  162. 162

    de Castro-Costa, C. M. et al. Pain in tropical spastic paraparesis/HTLV-I associated myelopathy patients. Arq. Neuropsiquiatr. 67, 866–870 (2009).

    Article  Google Scholar 

  163. 163

    Donnelly, E. M., Lamanna, J. & Boulis, N. M. Stem cell therapy for the spinal cord. Stem Cell Res. Ther. 3, 24 (2012).

    Article  CAS  Google Scholar 

  164. 164

    Hallbergson, A. F., Gnatenco, C. & Peterson, D. A. Neurogenesis and brain injury: managing a renewable resource for repair. J. Clin. Invest. 112, 1128–1133 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. 165

    Steward, M. M. Sridhar, A. & Meyer, J. S. Neural regeneration. Curr. Top. Microbiol. Immunol. 367, 163–191 (2013).

    CAS  PubMed  Google Scholar 

  166. 166

    Coffin, J., Hughes, S. E. & Varmus, H. E. (eds) Retroviruses (Cold Spring Harbor Laboratory Press, 1997).

    Google Scholar 

  167. 167

    Bai, X. T. & Nicot, C. Overview on HTLV-1 p12, p8, p30, p13: accomplices in persistent infection and viral pathogenesis. Front. Microbiol. 3, 400 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. 168

    Boxus, M. & Willems, L. Mechanisms of HTLV-1 persistence and transformation. Br. J. Cancer 101, 1497–1501 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. 169

    Matsuoka, M. & Jeang, K. T. Human T-cell leukemia virus type 1 (HTLV-1) and leukemic transformation: viral infectivity, Tax, HBZ and therapy. Oncogene 30, 1379–1389 (2011).

    Article  CAS  Google Scholar 

  170. 170

    Matsuoka, M. & Yasunaga, J. Human T-cell leukemia virus type 1: replication, proliferation and propagation by Tax and HTLV-1 bZIP factor. Curr. Opin. Virol. 3, 684–691 (2013). A review that emphasizes the complementary and sometimes opposing roles of Tax and HBZ.

    Article  CAS  Google Scholar 

  171. 171

    Yoshida, M. Multiple viral strategies of HTLV-1 for dysregulation of cell growth control. Annu. Rev. Immunol. 19, 475–496 (2001). A classic review of the molecular mechanisms of the effects of Tax and other HTLV-1 proteins on cell growth and transformation.

    Article  CAS  Google Scholar 

  172. 172

    Satou, Y., Yasunaga, J., Yoshida, M. & Matsuoka, M. HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc. Natl Acad. Sci. USA 103, 720–725 (2006). This paper shows that the HBZ gene of HTLV-1 is persistently expressed, even when the proviral plus-strand is silent; the HBZ gene products promote clonal persistence.

    Article  CAS  Google Scholar 

  173. 173

    Igakura, T. et al. Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 299, 1713–1716 (2003). This paper identifies the virological synapse: a specialized cell–cell contact, induced by HTLV-1, across which the virus spreads from cell to cell.

    Article  CAS  Google Scholar 

  174. 174

    Barnard, A. L., Igakura, T., Tanaka, Y., Taylor, G. P. & Bangham, C. R. Engagement of specific T-cell surface molecules regulates cytoskeletal polarization in HTLV-1-infected lymphocytes. Blood 106, 988–995 (2005).

    Article  CAS  Google Scholar 

  175. 175

    Nejmeddine, M., Barnard, A. L., Tanaka, Y., Taylor, G. P. & Bangham, C. R. Human T-lymphotropic virus, type 1, tax protein triggers microtubule reorientation in the virological synapse. J. Biol. Chem. 280, 29653–29660 (2005).

    Article  CAS  Google Scholar 

  176. 176

    Majorovits, E. et al. Human T-lymphotropic virus-1 visualized at the virological synapse by electron tomography. PLoS ONE 3, e2251 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. 177

    Pais-Correia, A. M. et al. Biofilm-like extracellular viral assemblies mediate HTLV-1 cell-to-cell transmission at virological synapses. Nat. Med. 16, 83–89 (2010).

    Article  CAS  Google Scholar 

  178. 178

    Maertens, G. N., Hare, S. & Cherepanov, P. The mechanism of retroviral integration from X-ray structures of its key intermediates. Nature 468, 326–329 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. 179

    Morgan, O. S. et al. Abnormal peripheral lymphocytes in tropical spastic paraparesis. Lancet 2, 403–404 (1987).

    Article  CAS  Google Scholar 

  180. 180

    Sacher, R. A. et al. Low prevalence of flower cells in U.S.A. blood donors infected with human T-lymphotrophic virus types I and II. Br. J. Haematol. 105, 758–763 (1999).

    Article  CAS  Google Scholar 

  181. 181

    [No authors listed.] Flower cells of leukemia. Blood 115, 1668 (2010).

  182. 182

    Izumo, S. et al. Interferon-α is effective in HTLV-I-associated myelopathy: a multicenter, randomized, double-blind, controlled trial. Neurology 46, 1016–1021 (1996).

    Article  CAS  Google Scholar 

  183. 183

    Arimura, K. et al. Safety and efficacy of interferon-α in 167 patients with human T-cell lymphotropic virus type 1-associated myelopathy. J. Neurovirol. 13, 364–372 (2007).

    Article  CAS  Google Scholar 

  184. 184

    Oh, U. et al. Interferon-β1a therapy in human T-lymphotropic virus type I-associated neurologic disease. Ann. Neurol. 57, 526–534 (2005).

    Article  CAS  Google Scholar 

  185. 185

    Andrada-Serpa, M. J., Schor, D., Araujo, A. Q. & Rumjanek, V. M. Immunological features of HTLV-I myelopathy in Rio de Janeiro, Brazil, and in vitro effects of cyclosporin A. J. Neurol. Sci. 139, 7–14 (1996).

    Article  CAS  Google Scholar 

  186. 186

    Melo, A., Moura, L., Meireles, A. & Costa, G. Danazol. A new perspective in the treatment of HTLV-1 associated myelopathy (preliminary report). Arq. Neuropsiquiatr. 50, 402–403 (1992).

    Article  CAS  Google Scholar 

  187. 187

    Kataoka, A., Imai, H., Inayoshi, S. & Tsuda, T. Intermittent high-dose vitamin C therapy in patients with HTLV-I associated myelopathy. J. Neurol. Neurosurg. Psychiatry 56, 1213–1216 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. 188

    Moens, B. et al. Ascorbic acid has superior ex vivo antiproliferative, cell death-inducing and immunomodulatory effects over IFN-α in HTLV-1-associated myelopathy. PLoS Negl. Trop. Dis. 6, e1729 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. 189

    Matsuo, H. et al. Plasmapheresis in treatment of human T-lymphotropic virus type-I associated myelopathy. Lancet 2, 1109–1113 (1988).

    Article  CAS  Google Scholar 

  190. 190

    Lehky, T. J. et al. Detection of human T-lymphotropic virus type I (HTLV-I) tax RNA in the central nervous system of HTLV-I-associated myelopathy/tropical spastic paraparesis patients by in situ hybridization. Ann. Neurol. 37, 167–175 (1995).

    Article  CAS  Google Scholar 

  191. 191

    Hill, S. A., Lloyd, P. A., McDonald, S., Wykoff, J. & Derse, D. Susceptibility of human T cell leukemia virus type I to nucleoside reverse transcriptase inhibitors. J. Infect. Dis. 188, 424–427 (2003).

    Article  CAS  Google Scholar 

  192. 192

    Olindo, S. et al. Safety of long-term treatment of HAM/TSP patients with valproic acid. Blood 118, 6306–6309 (2011).

    Article  CAS  Google Scholar 

  193. 193

    Sonoda, J. et al. HTLV-1 provirus load in peripheral blood lymphocytes of HTLV-1 carriers is diminished by green tea drinking. Cancer Sci. 95, 596–601 (2004).

    Article  CAS  Google Scholar 

  194. 194

    Matsuzaki, T. et al. A prospective uncontrolled trial of fermented milk drink containing viable Lactobacillus casei strain Shirota in the treatment of HTLV-1 associated myelopathy/tropical spastic paraparesis. J. Neurol. Sci. 237, 75–81 (2005).

    Article  Google Scholar 

  195. 195

    Nagasato, K. et al. Heparin treatment in patients with human T-lymphotropic virus type I (HTLV-I)-associated myelopathy: a preliminary study. J. Neurol. Sci. 115, 161–168 (1993).

    Article  CAS  Google Scholar 

  196. 196

    Yamano, Y. & Sato, T. Clinical pathophysiology of human T-lymphotropic virus-type 1-associated myelopathy/tropical spastic paraparesis. Front. Microbiol. 3, 389 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. 197

    Ghai, A., Garg, N., Hooda, S. & Gupta, T. Spasticity — pathogenesis, prevention and treatment strategies. Saudi J. Anaesth. 7, 453–460 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  198. 198

    Dorsher, P. T. & McIntosh, P. M. Neurogenic bladder. Adv. Urol. 2012, 816274 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  199. 199

    Bove, A. et al. Consensus statement AIGO/SICCR diagnosis and treatment of chronic constipation and obstructed defecation (part II: treatment). World J. Gastroenterol. 18, 4994–5013 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  200. 200

    Dworkin, R. H., Jensen, M. P., Gammaitoni, A. R., Olaleye, D. O. & Galer, B. S. Symptom profiles differ in patients with neuropathic versus non-neuropathic pain. J. Pain 8, 118–126 (2007).

    Article  Google Scholar 

  201. 201

    Moulin, D. E. et al. Pharmacological management of chronic neuropathic pain — consensus statement and guidelines from the Canadian Pain Society. Pain Res. Manag. 12, 13–21 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. 202

    White, A. P., Arnold, P. M., Norvell, D. C., Ecker, E. & Fehlings, M. G. Pharmacologic management of chronic low back pain: synthesis of the evidence. Spine 36, S131–S143 (2011).

    Article  Google Scholar 

  203. 203

    Britto, V. L., Correa, R. & Vincent, M. B. Proprioceptive neuromuscular facilitation in HTLV-I-associated myelopathy/tropical spastic paraparesis. Rev. Soc. Bras. Med. Trop. 47, 24–29 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank A. Coler-Reilly, A. Rowan and M. Bangham for comments on the manuscript. C.R.M.B. is a Wellcome Trust Senior Investigator and is supported by the Imperial College National Institute for Health Research Biomedical Research Centre, the Medical Research Council, and Leukaemia and Lymphoma Research. This work was partially supported by the project “Research on Measures for Intractable Disease” by a matching fund subsidy from the Ministry of Health, Labour and Welfare, Japan.

Author information

Affiliations

Authors

Contributions

Introduction (C.R.M.B.); Epidemiology (G.P.T.); Mechanisms/pathophysiology (C.R.M.B. and Y.Y.); Diagnosis, screening and prevention (G.P.T. and A.A.); Management (A.A. and Y.Y); Quality of life (Y.Y.); Outlook (C.R.M.B.); overview of Primer (C.R.M.B., G.P.T., Y.Y. and A.A.).

Corresponding author

Correspondence to Charles R. M. Bangham.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bangham, C., Araujo, A., Yamano, Y. et al. HTLV-1-associated myelopathy/tropical spastic paraparesis. Nat Rev Dis Primers 1, 15012 (2015). https://doi.org/10.1038/nrdp.2015.12

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing