Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Virtual screening using grid computing: the screensaver project

Abstract

Discovering small molecules that interact with protein targets identified by structural genomics, proteomics and bioinformatics will be a key part of future drug discovery efforts. Computational screening of drug-like molecules is likely to be valuable in this respect; however, the vast number of such molecules makes the potential size of this task enormous. Here, I describe how massively distributed computing using screensavers has allowed databases of billions of compounds to be screened against protein targets in a matter of days.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A view of the screensaver.
Figure 2: The multiscale approach.
Figure 3: Possible approach to the inhibition of the anthrax toxin.
Figure 4: Targeting anthrax.

Similar content being viewed by others

References

  1. Abagyan, R. & Totrov, M. High-throughput docking for lead generation. Curr. Opin. Chem. Biol. 5, 375–382 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. J. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1083–1092 (1953).

    Article  Google Scholar 

  3. Kirkpatrick, S., Gelatt, C. D. Jr & Vecchi, M. P. Optimization by simulated annealing. Science 220, 671–680 (1983).

    Article  CAS  PubMed  Google Scholar 

  4. Goodsell, D. S. & Olson, A. J. Automated docking of substrates to proteins by simulated annealing. Proteins 8, 195–202 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Osterberg, F., Morris, G. M., Sanner, M. F., Olson, A. J. & Goodsell, D. S. Automated docking to multiple target structures: incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins 46, 34–40 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Jones, G., Willett, P. & Glen, R. C. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol. 254, 43–53 (1995).

    Article  Google Scholar 

  7. Jones, G., Willett, P., Glen, R. C., Leach, A. R. & Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267, 727–748 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Morris, G. M., Goodsell, D. S., Huey, R. & Olson, A. J. Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J. Comput. Aided Mol. Des. 10, 293–304 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Morris, G. M. et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19, 1639–1662 (1998).

    Article  CAS  Google Scholar 

  10. Miranker, A. & Karplus, M. Functionality maps of binding sites — a multiple copy simultaneous search method. Proteins 11, 29–34 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Meng, E. C., Shoichet, B. K. & Kuntz, I. D. Automated docking with grid-based energy evaluation. J. Comput. Chem. 13, 505–524 (1992).

    Article  CAS  Google Scholar 

  12. Kuntz, I. D., Blaney, J. M., Oatley, S. J., Langridge, R. & Ferrin, T. E. A geometric approach to macromolecule– ligand interactions. J. Mol. Biol. 161, 269–288 (1982).

    Article  CAS  PubMed  Google Scholar 

  13. Shoichet, B. K. & Kuntz, I. D. Matching chemistry and shape in molecular docking. Protein Eng. 6, 723–732 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Miller, M. D., Kearsley, S. K., Underwood, D. J. & Sheridan, R. P. FLOG — a system to select quasi-flexible ligands complementary to a receptor of known three-dimensional structure. J. Comput. Aided Mol. Des. 8, 153–174 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Rarey, M., Kramer, B., Lengauer, T. & Klebe, G. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261, 470–479 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Dolle, R. E. Comprehensive survey of combinatorial library synthesis: 2000. J. Comb. Chem. 3, 477–517 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Dolle, R. E. Comprehensive survey of combinatorial library synthesis: 1999. J. Comb. Chem. 2, 383–433 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Dolle, R. E. & Nelson, K. H. Jr. Comprehensive survey of combinatorial library synthesis: 1998. J. Comb. Chem. 1, 235–282 (1999).

    Article  CAS  Google Scholar 

  19. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997).

    Article  CAS  Google Scholar 

  20. Clark, D. E. & Pickett, S. D. Computational methods for the prediction of 'drug-likeness'. Drug Discov. Today 5, 58–59 (2000).

    Article  Google Scholar 

  21. Goodford, P. J. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 28, 849–857 (1985).

    Article  CAS  PubMed  Google Scholar 

  22. Boobbyer, D. N. A., Goodford, P. J., McWhinnie, P. M. & Wade, R. C. New hydrogen-bond potentials for use in determining energetically favorable binding sites on molecules of known structure. J. Med. Chem. 32, 1083–1094 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Wade, R. C., Clark, K. J. & Goodford, P. J. Further development of hydrogen bond functions for use in determining energetically favorable binding sites on molecules of known structure. 1. Ligand probe groups with the ability to form two hydrogen bonds. J. Med. Chem. 36, 140–147 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Wade, R. C. & Goodford, P. J. Further development of hydrogen bond functions for use in determining energetically favorable binding sites on molecules of known structure. 2. Ligand probe groups with the ability to form more than two hydrogen bonds. J. Med. Chem. 36, 148–156 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Glick, M., Robinson, D. D., Grant, G. H. & Richards, W. G. Identification of ligand binding sites on proteins using a multi-scale approach. J. Am. Chem. Soc. 124, 2337–2344 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Glick, M., Grant, G. H. & Richards, W. G. Pinpointing anthrax toxin inhibitors. Nature Biotechnol. 20, 118–119 (2002).

    Article  CAS  Google Scholar 

  27. Leppla, S. H. in Comprehensive Sourcebook of Bacterial Protein Toxins 2nd edn (eds Alouf, J. A. & Freer, J.) 243–263 (Academic, London, 1999).

    Google Scholar 

  28. Dixon, T. C., Meselson, M., Guillemin, J. & Hanna, P. C. Medical progress: anthrax. N. Engl. J. Med. 341, 815–862 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Pezard, C., Berche, P. & Mock, M. Contribution of individual toxin components to virulence of Bacillus anthracis. Infect. Immun. 59, 3472–3477 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mourez, M. et al. Designing a polyvalent inhibitor of anthrax toxin. Nature Biotechnol. 19, 958–962 (2001).

    Article  CAS  Google Scholar 

  31. Petosa, C., Collier, R. J., Klimpel, K. R., Leppla, S. H. & Liddington, R. C. Crystal structure of the anthrax toxin protective antigen. Nature 385, 833–838 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported in part by the National Foundation for Cancer Research and The Wellcome Trust.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Cancer.gov

chronic myelogenous leukaemia

LocusLink

ABL

BCR

CDK2

COX-2

FGFR

FPT

insulin receptor

PTP1B

SOD

VEGF

VEGFR1

Medscape DrugInfo

nevirapine

FURTHER INFORMATION

Centre for Computational Drug Discovery

Department of Chemistry

Entropia

National Foundation for Cancer Research

Platform Computing

SETI@home

United Devices

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richards, W. Virtual screening using grid computing: the screensaver project. Nat Rev Drug Discov 1, 551–555 (2002). https://doi.org/10.1038/nrd841

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd841

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing