Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nucleic-acid therapeutics: basic principles and recent applications

Key Points

  • Although conceptually elegant, the prospect of using nucleic-acid molecules for treating human diseases remains tantalizing, but uncertain. The main cause of this uncertainty is the apparent randomness with which these materials modulate the expression of their intended targets.

  • Strategies for modulating gene expression can be directed towards perturbing the process of transcription, or post-transcriptional events, including mRNA processing and translation. Conveniently, these approaches can be categorized as 'anti-gene' or 'anti-mRNA.'

  • Gene targeting can be accomplished by homologous recombination, triple-helix-forming oligodeoxynucleotides (TFOs) and decoy molecules.

  • Targeting mRNA can be accomplished by various strategies as well, including the use of antisense DNA, antisense RNA and RNA-decoy molecules.

  • A new approach that has received a great deal of attention in the past year is called post-transcriptional gene silencing, or RNA interference (RNAi).

  • Molecule delivery to targeted cells specific compartments within cells, and identification of hybridization-accessible sequence within the genomic DNA or RNA remain core stumbling blocks that hold up progress in the field.

  • Nucleic acids that are used for experimental purposes and those designed for the clinic are now routinely modified to enhance their stability, as well as the strength of their hybridization with RNA.

  • Many successful uses of this strategy in the laboratory have been reported. Despite the fact that the mechanism whereby these molecules modulate gene expression is not always certain, clinical development of nucleic-acid compounds has proceeded to the point at which a number of these drugs have entered Phase I/II, and in a few cases, Phase III trials.

  • RNA-encoding proteins that are involved in key signal-transduction pathways and transcription factors are the primary targets. Some encouraging reports of the clinical usefulness of these molecules, either alone, or predominantly in combination with other treatment modalities, have been reported.

Abstract

The sequencing of the human genome and the elucidation of many molecular pathways that are important in disease have provided unprecedented opportunities for the development of new therapeutics. The types of molecule in development are increasingly varied, and include antisense oligonucleotides and ribozymes. Antisense technology and catalytic nucleic-acid enzymes are important tools for blocking the expression of abnormal genes. One FDA-approved antisense drug is already in the clinic for the treatment of cytomegalovirus retinitis, and other nucleic-acid therapies are undergoing clinical trials. This article reviews different strategies for modulating gene expression, and discusses the successes and problems that are associated with this type of therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Triple-helix formation at the nucleotide level.
Figure 2: Strategies for inhibiting translation.
Figure 3: Hypothetical RNAi mechanism.
Figure 4: Effect of c-MYB-targeted ODNs on c-MYB mRNA expression in marrow cells.

Similar content being viewed by others

References

  1. Vile, R. G., Russell, S. J. & Lemoine, N. R. Cancer gene therapy: hard lessons and new courses. Gene Ther. 7, 2–8 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Gewirtz, A. M., Sokol, D. L. & Ratajczak, M. Z. Nucleic acid therapeutics: state of the art and future prospects. Blood 92, 712–736 (1998).

    CAS  PubMed  Google Scholar 

  3. Mann, M. J. et al. Ex-vivo gene therapy of human vascular bypass grafts with E2F decoy: the PREVENT single-centre, randomised, controlled trial. Lancet 354, 1493–1498 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Ehsan, A., Mann, M. J., Dell'Acqua, G. & Dzau, V. J. Long-term stabilization of vein graft wall architecture and prolonged resistance to experimental atherosclerosis after E2F decoy oligonucleotide gene therapy. J. Thorac. Cardiovasc. Surg. 121, 714–722 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Dean, N. M., McKay, R., Condon, T. P. & Bennett, C. F. Inhibition of protein kinase C-α expression in human A549 cells by antisense oligonucleotides inhibits induction of intercellular adhesion molecule 1 (ICAM-1) mRNA by phorbol esters. J. Biol. Chem. 269, 16416–16424 (1994).

    CAS  PubMed  Google Scholar 

  6. Yacyshyn, B. R. et al. A placebo-controlled trial of ICAM-1 antisense oligonucleotide in the treatment of Crohn's disease. Gastroenterology 114, 1133–1142 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Macpherson, J. L., Ely, J. A., Sun, L. Q. & Symonds, G. P. Ribozymes in gene therapy of HIV-1. Front. Biosci. 4, D497–D505 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Welch, P. J., Yei, S. & Barber, J. R. Ribozyme gene therapy for hepatitis C virus infection. Clin. Diagn. Virol. 10, 163–171 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Zu Putlitz, J., Yu, Q., Burke, J. M. & Wands, J. R. Combinatorial screening and intracellular antiviral activity of hairpin ribozymes directed against hepatitis B virus. J. Virol. 73, 5381–5387 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Compagno, D. et al. Antisense oligonucleotides containing modified bases inhibit in vitro translation of Leishmania amazonensis mRNAs by invading the mini-exon hairpin. J. Biol. Chem. 274, 8191–8198 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Katz, S. M. et al. Effect of ICAM-1/LFA-1 blockade on pancreatic islet allograft survival, function, and early cytokine production. Transplant. Proc. 29, 748–749 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Gewirtz, A. M. Oligonucleotide therapeutics: a step forward. J. Clin. Oncol. 18, 1809–1811 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Paterson, B. M., Roberts, B. E. & Kuff, E. L. Structural gene identification and mapping by DNA–mRNA hybrid-arrested cell-free translation. Proc. Natl Acad. Sci. USA 74, 4370–4374 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stephenson, M. L. & Zamecnik, P. C. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc. Natl Acad. Sci. USA 75, 285–288 (1978).A classic reference that first suggested the possibility of using 'antisense' DNA for therapeutic purposes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Simons, R. W. & Kleckner, N. Translational control of IS10 transposition. Cell 34, 683–691 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Mizuno, T., Chou, M. Y. & Inouye, M. A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc. Natl Acad. Sci. USA 81, 1966–1970 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Melton, D. W. Gene targeting in the mouse. Bioessays 16, 633–638 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Stasiak, A. Getting down to the core of homologous recombination. Science 272, 828–829 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Helene, C. Control of oncogene expression by antisense nucleic acids. Eur. J. Cancer 30A, 1721–1726 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Knauert, M. P. & Glazer, P. M. Triplex forming oligonucleotides: sequence-specific tools for gene targeting. Hum. Mol. Genet. 10, 2243–2251 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Luo, Z., Macris, M. A., Faruqi, A. F. & Glazer, P. M. High-frequency intrachromosomal gene conversion induced by triplex-forming oligonucleotides microinjected into mouse cells. Proc. Natl Acad. Sci. USA 97, 9003–9008 (2000).An important study that shows the use of triple-helix-forming oligonucleotides to affect target-gene modification at frequencies > 50-fold higher than are usually reported.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gamper, H. B. et al. The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts. Nucleic Acids Res. 28, 4332–4339 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sharma, H. W., Perez, J. R., Higgins-Sochaski, K., Hsiao, R. & Narayanan, R. Transcription factor decoy approach to decipher the role of NF-κB in oncogenesis. Anticancer Res. 16, 61–69 (1996).

    CAS  PubMed  Google Scholar 

  24. Kielkopf, C. L., Baird, E. E., Dervan, P. B. & Rees, D. C. Structural basis for G·C recognition in the DNA minor groove. Nature Struct. Biol. 5, 104–109 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Kielkopf, C. L. et al. A structural basis for recognition of A·T and T·A base pairs in the minor groove of B-DNA. Science 282, 111–115 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Kielkopf, C. L. et al. Structural effects of DNA sequence on T·A recognition by hydroxypyrrole/pyrrole pairs in the minor groove. J. Mol. Biol. 295, 557–567 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Urbach, A. R. & Dervan, P. B. Toward rules for 1:1 polyamide:DNA recognition. Proc. Natl Acad. Sci. USA 98, 4343–4348 (2001).This paper discusses issues related to the development of polyamides for inhibiting transcription.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Beelman, C. A. & Parker, R. Degradation of mRNA in eukaryotes. Cell 81, 179–183 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Liebhaber, S. A. mRNA stability and the control of gene expression. Nucleic Acids Symp. Ser. 36, 29–32 (1997).

    CAS  Google Scholar 

  30. Weiss, I. M. & Liebhaber, S. A. Erythroid cell-specific mRNA stability elements in the α2-globin 3′ nontranslated region. Mol. Cell. Biol. 15, 2457–2465 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chkheidze, A. N. et al. Assembly of the α-globin mRNA stability complex reflects binary interaction between the pyrimidine-rich 3′ untranslated region determinant and poly(C) binding protein αCP. Mol. Cell. Biol. 19, 4572–4581 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scanlon, K. J. et al. Oligonucleotide-mediated modulation of mammalian gene expression. FASEB J. 9, 1288–1296 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Stein, C. A. How to design an antisense oligodeoxynucleotide experiment: a consensus approach. Antisense Nucleic Acid Drug Dev. 8, 129–132 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Kole, R. & Sazani, P. Antisense effects in the cell nucleus: modification of splicing. Curr. Opin. Mol. Ther. 3, 229–234 (2001).

    CAS  PubMed  Google Scholar 

  35. Dominski, Z. & Kole, R. Identification and characterization by antisense oligonucleotides of exon and intron sequences required for splicing. Mol. Cell. Biol. 14, 7445–7454 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Summerton, J. & Weller, D. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev. 7, 187–195 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Iversen, P. L. Phosphorodiamidate morpholino oligomers: favorable properties for sequence-specific gene inactivation. Curr. Opin. Mol. Ther. 3, 235–238 (2001).

    CAS  PubMed  Google Scholar 

  38. Zamaratski, E., Pradeepkumar, P. I. & Chattopadhyaya, J. A critical survey of the structure–function of the antisense oligo/RNA heteroduplex as substrate for RNase H. J. Biochem. Biophys. Methods 48, 189–208 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Crooke, S. T. Molecular mechanisms of antisense drugs: RNase H. Antisense Nucleic Acid Drug Dev. 8, 133–134 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Castanotto, D., Scherr, M. & Rossi, J. J. Intracellular expression and function of antisense catalytic RNAs. Methods Enzymol. 313, 401–420 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Rossi, J. J. Ribozymes, genomics and therapeutics. Chem. Biol. 6, R33–R37 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Santoro, S. W. & Joyce, G. F. A general purpose RNA-cleaving DNA enzyme. Proc. Natl Acad. Sci. USA 94, 4262–4266 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu, Y. et al. Inhibition of BCRABL oncogene expression by novel deoxyribozymes (DNAzymes). Hum. Gene Ther. 10, 2847–2857 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Earnshaw, D. J. & Gait, M. J. Progress toward the structure and therapeutic use of the hairpin ribozyme. Antisense Nucleic Acid Drug Dev. 7, 403–411 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Hampel, A. The hairpin ribozyme: discovery, two-dimensional model, and development for gene therapy. Prog. Nucleic Acid Res. Mol. Biol. 58, 1–39 (1998).

    CAS  PubMed  Google Scholar 

  46. Dahm, S. C. & Uhlenbeck, O. C. Role of divalent metal ions in the hammerhead RNA cleavage reaction. Biochemistry 30, 9464–9469 (1991).

    Article  CAS  PubMed  Google Scholar 

  47. Eckstein, F. The hammerhead ribozyme. Biochem. Soc. Trans. 24, 601–604 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Hegg, L. A. & Fedor, M. J. Kinetics and thermodynamics of intermolecular catalysis by hairpin ribozymes. Biochemistry 34, 15813–15828 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Hertel, K. J., Herschlag, D. & Uhlenbeck, O. C. A kinetic and thermodynamic framework for the hammerhead ribozyme reaction. Biochemistry 33, 3374–3385 (1994).A physical-chemical study of hammerhead-ribozyme binding and cleavage to an mRNA target.

    Article  CAS  PubMed  Google Scholar 

  50. Irie, A. et al. Anti-oncogene ribozymes for cancer gene therapy. Adv. Pharmacol. 40, 207–257 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Irie, A. et al. Therapeutic efficacy of an adenovirus-mediated anti-H-Ras ribozyme in experimental bladder cancer. Antisense Nucleic Acid Drug Dev. 9, 341–349 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Datta, H. J. & Glazer, P. M. Intracellular generation of single-stranded DNA for chromosomal triplex formation and induced recombination. Nucleic Acids Res. 29, 5140–5147 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Usman, N. & Blatt, L. M. Nuclease-resistant synthetic ribozymes: developing a new class of therapeutics. J. Clin. Invest. 106, 1197–1202 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Breaker, R. R. & Joyce, G. F. A DNA enzyme that cleaves RNA. Chem. Biol. 1, 223–229 (1994).The authors' hypothesis that DNA could have the same catalytic activity as RNA was shown in this interesting work, which used a novel in vitro selection method to identify a metal-dependent DNA enzyme.

    Article  CAS  PubMed  Google Scholar 

  55. Feldman, A. R. & Sen, D. A new and efficient DNA enzyme for the sequence-specific cleavage of RNA. J. Mol. Biol. 313, 283–294 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Sioud, M. Nucleic acid enzymes as a novel generation of anti-gene agents. Curr. Mol. Med. 1, 575–588 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Nishikura, K. A short primer on RNAi: RNA-directed RNA polymerase acts as a key catalyst. Cell 107, 415–418 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Tuschl, T. Expanding small RNA interference. Nature Biotechnol. 20, 446–448 (2002).

    Article  CAS  Google Scholar 

  59. Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. & Hannon, G. J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Ketting, R. F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang, S., Tutton, S., Pierce, E. & Yoon, K. Specific double-stranded RNA interference in undifferentiated mouse embryonic stem cells. Mol. Cell. Biol. 21, 7807–7816 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Paddison, P. J., Caudy, A. A. & Hannon, G. J. Stable suppression of gene expression by RNAi in mammalian cells. Proc. Natl Acad. Sci. USA 99, 1443–1448 (2002).An important study that supports the possibility that RNAi might be achieved in mammalian cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bernstein, E., Denli, A. M. & Hannon, G. J. The rest is silence. RNA 7, 1509–1521 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang, D., Lu, H. & Erickson, J. W. Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi in Drosophila embryos. Curr. Biol. 10, 1191–1200 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).An important observation, which shows that mediators of RNAi are short, 21–23-nt fragments that are cleaved from longer dsRNA.

    Article  CAS  PubMed  Google Scholar 

  68. Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W. & Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20, 6877–6888 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sierakowska, H., Sambade, M. J., Agrawal, S. & Kole, R. Repair of thalassemic humanβ-globin mRNA in mammalian cells by antisense oligonucleotides. Proc. Natl Acad. Sci. USA 93, 12840–12844 (1996).The use of antisense DNA to regulate mRNA splicing as opposed to its more usual use as an RNA blocker or destroyer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sierakowska, H., Agrawal, S. & Kole, R. Antisense oligonucleotides as modulators of pre-mRNA splicing. Methods Mol. Biol. 133, 223–233 (2000).

    CAS  PubMed  Google Scholar 

  71. Lacerra, G. et al. Restoration of hemoglobin A synthesis in erythroid cells from peripheral blood of thalassemic patients. Proc. Natl Acad. Sci. USA 97, 9591–9596 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mercatante, D. R., Bortner, C. D., Cidlowski, J. A. & Kole, R. Modification of alternative splicing of Bcl-x pre-mRNA in prostate and breast cancer cells. analysis of apoptosis and cell death. J. Biol. Chem. 276, 16411–16417 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Agrawal, S. & Zhao, Q. Mixed backbone oligonucleotides: improvement in oligonucleotide-induced toxicity in vivo. Antisense Nucleic Acid Drug Dev. 8, 135–139 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Crooke, S. T. Molecular mechanisms of action of antisense drugs. Biochim. Biophys. Acta 1489, 31–44 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Stein, C. A. Is irrelevant cleavage the price of antisense efficacy? Pharmacol. Ther. 85, 231–236 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Nielsen, P. E. DNA analogues with nonphosphodiester backbones. Annu. Rev. Biophys. Biomol. Struct. 24, 167–183 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Wong-Staal, F., Poeschla, E. M. & Looney, D. J. A controlled, Phase I clinical trial to evaluate the safety and effects in HIV-1 infected humans of autologous lymphocytes transduced with a ribozyme that cleaves HIV-1 RNA. Hum. Gene Ther. 9, 2407–2425 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Amado, R. G. et al. A Phase I trial of autologous CD34+ hematopoietic progenitor cells transduced with an anti-HIV ribozyme. Hum. Gene Ther. 10, 2255–2270 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Sereni, D. et al. Pharmacokinetics and tolerability of intravenous trecovirsen (GEM 91), an antisense phosphorothioate oligonucleotide, in HIV positive subjects. J. Clin. Pharmacol. 39, 47–54 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Bishop, M. R. et al. Phase I trial of an antisense oligonucleotide OL(1)p53 in hematologic malignancies. J. Clin. Oncol. 14, 1320–1326 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Galbraith, W. M., Hobson, W. C., Giclas, P. C., Schechter, P. J. & Agrawal, S. Complement activation and hemodynamic changes following intravenous administration of phosphorothioate oligonucleotides in the monkey. Antisense Res. Dev. 4, 201–206 (1994).

    Article  CAS  PubMed  Google Scholar 

  82. Nemunaitis, J. et al. Phase I evaluation of ISIS 3521, an antisense oligodeoxynucleotide to protein kinase C-α, in patients with advanced cancer. J. Clin. Oncol. 17, 3586–3595 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Waters, J. S. et al. Phase I clinical and pharmacokinetic study of BCL2 antisense oligonucleotide therapy in patients with non-Hodgkin's lymphoma. J. Clin. Oncol. 18, 1812–1823 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Chi, K. N. et al. A Phase I dose-finding study of combined treatment with an antisense Bcl2 oligonucleotide (Genasense) and mitoxantrone in patients with metastatic hormone-refractory prostate cancer. Clin. Cancer Res. 7, 3920–3927 (2001).

    CAS  PubMed  Google Scholar 

  85. Yuen, A. R. et al. Phase I study of an antisense oligonucleotide to protein kinase C-α (ISIS 3521/CGP 64128A) in patients with cancer. Clin. Cancer Res. 5, 3357–3363 (1999).

    CAS  PubMed  Google Scholar 

  86. Yang, E. & Korsmeyer, S. J. Molecular thanatopsis: a discourse on the BCL2 family and cell death. Blood 88, 386–401 (1996).

    CAS  PubMed  Google Scholar 

  87. Reed, J. C. Bcl2 family proteins: regulators of chemoresistance in cancer. Toxicol. Lett. 82–83, 155–158 (1995).

    Article  PubMed  Google Scholar 

  88. Gazitt, Y. et al. Bcl-2 overexpression is associated with resistance to paclitaxel, but not gemcitabine, in multiple myeloma cells. Int. J. Oncol. 13, 839–848 (1998).

    CAS  PubMed  Google Scholar 

  89. Reed, J. C. et al. Antisense-mediated inhibition of BCL2 protooncogene expression and leukemic cell growth and survival: comparisons of phosphodiester and phosphorothioate oligodeoxynucleotides. Cancer Res. 50, 6565–6570 (1990).

    CAS  PubMed  Google Scholar 

  90. Webb, A. et al. BCL-2 antisense therapy in patients with non-Hodgkin lymphoma. Lancet 349, 1137–1141 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Jansen, B. et al. Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 356, 1728–1733 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Tolcher, A. W. Preliminary phase I results of G3139 (Bcl2 antisense oligonucleotide) therapy in combination with docetaxel in hormone-refractory prostate cancer. Semin. Oncol. 28, 67–70 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Luger, S. M. et al. Oligodeoxynucleotide-mediated inhibition of c-myb gene expression in autografted bone marrow: a pilot study. Blood 99, 1150–1158 (2002).The clinical use of an antisense DNA with good activity against its mRNA target and pharmacodynamic correlates.

    Article  CAS  PubMed  Google Scholar 

  94. Dean, N. M. et al. Antisense oligonucleotides as inhibitors of signal transduction: development from research tools to therapeutic agents. Biochem. Soc. Trans. 24, 623–629 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Dean, N. et al. Inhibition of growth of human tumor cell lines in nude mice by an antisense of oligonucleotide inhibitor of protein kinase C-α expression. Cancer Res. 56, 3499–3507 (1996).

    CAS  PubMed  Google Scholar 

  96. Cunningham, C. C. et al. A Phase I trial of H-ras antisense oligonucleotide ISIS 2503 administered as a continuous intravenous infusion in patients with advanced carcinoma. Cancer 92, 1265–1271 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Brennscheidt, U. et al. Raf-1 is a necessary component of the mitogenic response of the human megakaryoblastic leukemia cell line MO7 to human stem cell factor, granulocyte-macrophage colony-stimulating factor, interleukin 3, and interleukin 9. Cell Growth Differ. 5, 367–372 (1994).

    CAS  PubMed  Google Scholar 

  98. Monia, B. P., Johnston, J. F., Geiger, T., Muller, M. & Fabbro, D. Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase. Nature Med. 2, 668–675 (1996).A useful mouse xenograft model for examining the usefulness of an oligodeoxynucleotide.

    Article  CAS  PubMed  Google Scholar 

  99. Rudin, C. M. et al. Phase I trial of ISIS 5132, an antisense oligonucleotide inhibitor of c-raf-1, administered by 24-hour weekly infusion to patients with advanced cancer. Clin. Cancer Res. 7, 1214–1220 (2001).

    CAS  PubMed  Google Scholar 

  100. Eckstein, F. Exogenous application of ribozymes for inhibiting gene expression. Ciba Found. Symp. 209, 207–212 (1997).

    CAS  PubMed  Google Scholar 

  101. Looney, D. & Yu, M. Clinical aspects of ribozymes as therapeutics in gene therapy. Methods Mol. Biol. 74, 469–486 (1997).

    CAS  PubMed  Google Scholar 

  102. Brower, V. et al. All clear for HIV-targeting ribozyme in Phase II. Nature Biotechnol. 16, 123 (1998).

    CAS  Google Scholar 

  103. Bennett, C. F., Condon, T. P., Grimm, S., Chan, H. & Chiang, M. Y. Inhibition of endothelial cell adhesion molecule expression with antisense oligonucleotides. J. Immunol. 152, 3530–3540 (1994).

    CAS  PubMed  Google Scholar 

  104. Nestle, F. O., Mitra, R. S., Bennett, C. F., Chan, H. & Nickoloff, B. J. Cationic lipid is not required for uptake and selective inhibitory activity of ICAM-1 phosphorothioate antisense oligonucleotides in keratinocytes. J. Invest. Dermatol. 103, 569–575 (1994).

    Article  CAS  PubMed  Google Scholar 

  105. Miele, M. E., Bennett, C. F., Miller, B. E. & Welch, D. R. Enhanced metastatic ability of TNF-α-treated malignant melanoma cells is reduced by intercellular adhesion molecule-1 (ICAM-1, CD54) antisense oligonucleotides. Exp. Cell Res. 214, 231–241 (1994).

    Article  CAS  PubMed  Google Scholar 

  106. Schreiber, S. et al. Absence of efficacy of subcutaneous antisense ICAM-1 treatment of chronic active Crohn's disease. Gastroenterology 120, 1339–1346 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Wraight, C. J. et al. Reversal of epidermal hyperproliferation in psoriasis by insulin-like growth factor I receptor antisense oligonucleotides. Nature Biotechnol. 18, 521–526 (2000).

    Article  CAS  Google Scholar 

  108. Roque, F. et al. Safety of intracoronary administration of c-myc antisense oligomers after percutaneous transluminal coronary angioplasty (PTCA). Antisense Nucleic Acid Drug Dev. 11, 99–106 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Kutryk, M. J. et al. Local intracoronary administration of antisense oligonucleotide against c-myc for the prevention of in-stent restenosis: results of the randomized investigation by the Thoraxcenter of antisense DNA using local delivery and IVUS after coronary stenting (ITALICS) trial. J. Am. Coll. Cardiol. 39, 281–287 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Krieg, A. M. et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546–549 (1995).A seminal report on the ability of vertebate immune cells to recognize unmethylated CpG dinucleotide motifs present in prokaryotes. These findings contribute to the hypothesis that synthetic ODN-containing CpG motifs might function as effective immunological adjuvants.

    Article  CAS  PubMed  Google Scholar 

  111. Krug, A. et al. Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur. J. Immunol. 31, 3026–3037 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Brazolot Millan, C. L., Weeratna, R., Krieg, A. M., Siegrist, C. A. & Davis, H. L. CpG DNA can induce strong TH1 humoral and cell-mediated immune responses against hepatitis B surface antigen in young mice. Proc. Natl Acad. Sci. USA 95, 15553–15558 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Krieg, A. M., Yi, A. K., Schorr, J. & Davis, H. L. The role of CpG dinucleotides in DNA vaccines. Trends Microbiol. 6, 23–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Jahrsdorfer, B. et al. CpG DNA increases primary malignant B cell expression of costimulatory molecules and target antigens. J. Leukoc. Biol. 69, 81–88 (2001).

    CAS  PubMed  Google Scholar 

  115. Methia, N., Louache, F., Vainchenker, W. & Wendling, F. Oligodeoxynucleotides antisense to the proto-oncogene c-mpl specifically inhibit in vitro megakaryocytopoiesis. Blood 82, 1395–1401 (1993).

    CAS  PubMed  Google Scholar 

  116. Good, L., Awasthi, S. K., Dryselius, R., Larsson, O. & Nielsen, P. E. Bactericidal antisense effects of peptide-PNA conjugates. Nature Biotechnol. 19, 360–364 (2001).

    Article  CAS  Google Scholar 

  117. Meshorer, E. et al. Alternative splicing and neuritic mRNA translocation under long-term neuronal hypersensitivity. Science 295, 508–512 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Andrews, D. W. et al. Results of a pilot study involving the use of an antisense oligodeoxynucleotide directed against the insulin-like growth factor type I receptor in malignant astrocytomas. J. Clin. Oncol. 19, 2189–2200 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Cunningham, C. C. et al. A Phase I trial of c-Raf kinase antisense oligonucleotide ISIS 5132 administered as a continuous intravenous infusion in patients with advanced cancer. Clin. Cancer Res. 6, 1626–1631 (2000).

    CAS  PubMed  Google Scholar 

  120. Gewirtz, A. M., Stein, C. A. & Glazer, P. M. Facilitating oligonucleotide delivery: helping antisense deliver on its promise. Proc. Natl Acad. Sci. USA 93, 3161–3163 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lebedeva, I. & Stein, C. A. Antisense oligonucleotides: promise and reality. Annu. Rev. Pharmacol. Toxicol. 41, 403–419 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Baskerville, S. & Ellington, A. D. RNA structure. Describing the elephant. Curr. Biol. 5, 120–123 (1995).

    Article  CAS  PubMed  Google Scholar 

  123. Monia, B. P. et al. Sequence-specific antitumor activity of a phosphorothioate oligodeoxyribonucleotide targeted to human C-raf kinase supports an antisense mechanism of action in vivo. Proc. Natl Acad. Sci. USA 93, 15481–15484 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sczakiel, G., Homann, M. & Rittner, K. Computer-aided search for effective antisense RNA target sequences of the human immunodeficiency virus type 1. Antisense Res. Dev. 3, 45–52 (1993).

    Article  CAS  PubMed  Google Scholar 

  125. Milner, N., Mir, K. U. & Southern, E. M. Selecting effective antisense reagents on combinatorial oligonucleotide arrays. Nature Biotechnol. 15, 537–541 (1997).

    Article  CAS  Google Scholar 

  126. Sohail, M. & Southern, E. M. Selecting optimal antisense reagents. Adv. Drug Deliv. Rev. 44, 23–34 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Ho, S. P. et al. Mapping of RNA accessible sites for antisense experiments with oligonucleotide libraries. Nature Biotechnol. 16, 59–63 (1998).

    Article  CAS  Google Scholar 

  128. Scherr, M., Rossi, J. J., Sczakiel, G. & Patzel, V. RNA accessibility prediction: a theoretical approach is consistent with experimental studies in cell extracts. Nucleic Acids Res. 28, 2455–2461 (2000).An interesting strategy for mapping hybridization-accessible sites in mRNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sokol, D. L., Zhang, X., Lu, P. & Gewirtz, A. M. Real time detection of DNA. RNA hybridization in living cells. Proc. Natl Acad. Sci. USA 95, 11538–11543 (1998).A new strategy for visualizing mRNA expression and hybridization-accessible sites in living cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yakubov, L. A. et al. Mechanism of oligonucleotide uptake by cells: involvement of specific receptors? Proc. Natl Acad. Sci. USA 86, 6454–6458 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Beltinger, C. et al. Binding, uptake, and intracellular trafficking of phosphorothioate-modified oligodeoxynucleotides. J. Clin. Invest. 95, 1814–1823 (1995).A study that examines the mechanism of oligodeoxynucleotide uptake.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Laktionov, P. et al. Uptake of oligonucleotides by keratinocytes. Nucleosides Nucleotides 18, 1697–1699 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Mechti, N., Leonetti, J. P., Clarenc, J. P., Degols, G. & Lebleu, B. Nuclear location of synthetic oligonucleotides microinjected somatic cells: its implication in an antisense strategy. Nucleic Acids Symp. Ser. 147–150 (1991).

  134. Clarenc, J. P., Lebleu, B. & Leonetti, J. P. Characterization of the nuclear binding sites of oligodeoxyribonucleotides and their analogs. J. Biol. Chem. 268, 5600–5604 (1993).

    CAS  PubMed  Google Scholar 

  135. Juliano, R. L., Alahari, S., Yoo, H., Kole, R. & Cho, M. Antisense pharmacodynamics: critical issues in the transport and delivery of antisense oligonucleotides. Pharm. Res. 16, 494–502 (1999).A useful review of oligonucleotide uptake and distribution in cells and whole animals.

    Article  CAS  PubMed  Google Scholar 

  136. DeLong, R. K. et al. Novel cationic amphiphiles as delivery agents for antisense oligonucleotides. Nucleic Acids Res. 27, 3334–3341 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Baer, M. R., Augustinos, P. & Kinniburgh, A. J. Defective c-myc and c-myb RNA turnover in acute myeloid leukemia cells. Blood 79, 1319–1326 (1992).

    CAS  PubMed  Google Scholar 

  138. Bies, J., Nazarov, V. & Wolff, L. Alteration of proteolytic processing of c-Myb as a consequence of its truncation in murine myeloid leukemia. Leukemia 13, S116–S117 (1999).

    Article  PubMed  Google Scholar 

  139. Kitada, S., Miyashita, T., Tanaka, S. & Reed, J. C. Investigations of antisense oligonucleotides targeted against Bcl2 RNAs. Antisense Res. Dev. 3, 157–169 (1993).

    Article  CAS  PubMed  Google Scholar 

  140. Mandiyan, S. et al. Molecular and cellular characterization of baboon c-Raf as a target for antiproliferative effects of antisense oligonucleotides. Antisense Nucleic Acid Drug Dev. 7, 539–548 (1997).

    Article  CAS  PubMed  Google Scholar 

  141. Haklai, R. et al. Dislodgment and accelerated degradation of Ras. Biochemistry 37, 1306–1314 (1998).

    Article  CAS  PubMed  Google Scholar 

  142. Basilion, J. P. et al. Selective killing of cancer cells based on loss of heterozygosity and normal variation in the human genome: a new paradigm for anticancer drug therapy. Mol. Pharmacol. 56, 359–369 (1999).

    Article  CAS  PubMed  Google Scholar 

  143. Stein, C. A. Does antisense exist? Nature Med. 1, 1119–1121 (1995).

    Article  CAS  PubMed  Google Scholar 

  144. De Smet, M. D., Meenken, C. J. & van den Horn, G. J. Fomivirsen — a phosphorothioate oligonucleotide for the treatment of CMV retinitis. Ocul. Immunol. Inflamm. 7, 189–198 (1999).

    Article  CAS  PubMed  Google Scholar 

  145. Mulamba, G. B., Hu, A., Azad, R. F., Anderson, K. P. & Coen, D. M. Human cytomegalovirus mutant with sequence-dependent resistance to the phosphorothioate oligonucleotide fomivirsen. Antimicrob. Agents Chemother. 42, 971–973 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Anderson, K. P., Fox, M. C., Brown-Driver, V., Martin, M. J. & Azad, R. F. Inhibition of human cytomegalovirus immediate-early gene expression by an antisense oligonucleotide complementary to immediate-early RNA. Antimicrob. Agents Chemother. 40, 2004–2011 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. The Vitravene Study Group. A randomized controlled clinical trial of intravitreous Fomiversen for treatment of newly diagnosed peripheral cytomegalovirus retinitis in patients with AIDs. Am. J. Opthalmol. 133, 467–474 (2002).

  148. Coudert, B. et al. Phase II with ISIS 5132 in patients with small-cell (SCLC) and non-small-cell (NSCLC) lung cancer. A European Organization for Research and Treatment of Cancer (EORTC) early clinical studies group report. Eur. J. Cancer 37, 2194–2198 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by a grant from the National Institutes of Health. A.M.G. is a Distinguished Clinical Scientist of the Doris Duke Charitable Foundation. The editorial assistance of E. R. Bien and M. Goodrum is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan M. Gewirtz.

Related links

Related links

DATABASES

Cancer.gov

breast cancer

chronic myelogenous leukaemia

colon cancer

non-Hodgkin's lymphoma

NSCLC

ovarian cancer

LocusLink

ABL

adenosine A1 receptor

BCL2

BCR

CD34

DICER

α-globin

β-globin

haemoglobin

HER2

ICAM-1

IGF1R

c-MYB

c-MYC

2′,5′-oligodenylate synthetase

PKA

PKC

PKCα

PKR

c-RAF

ribonucleotide reductase

RNase H

RNase L

VEGFR1

Medscape DrugInfo

cidofovir

foscarnet

ganciclovir

Gleevec

rituximab

Vitravene

OMIM

Crohn's disease

psoriasis

FURTHER INFORMATION

Encyclopedia of Life Sciences

antisense nucleic acids in biotechnology

American Society of Hematology

FDA

Glossary

EXOGENOUS NUCLEIC ACIDS

In this context, synthetic oligonucleotides of varying chemistry (typically 16–25 nucleotides), which are introduced into cells by various means, or simply (although inefficiently) by concentration-driven endocytosis.

ANTISENSE

Reverse complement of any DNA or RNA sequence.

TRIPLE-HELIX-FORMING OLIGODEOXYNUCLEOTIDE

(TFO). A synthetic, single-stranded oligodeoxynucleotide, which, through Hoogsten-bond formation, hybridizes to purine/pyrymidine-rich sequences in double-stranded DNA. Formation of stable triple helices can prevent the unwinding that is necessary for transcription of the targeted region or block the binding of transcription-factor complexes.

MAJOR GROOVE AND MINOR GROOVE

Channels formed by the twisting of two complementary DNA strands around each other to form a double helix. The major groove is 22 Å wide and the minor groove is 12 Å wide.

HOOGSTEEN BOND

Triple-helix-forming oligonucleotides hybridize with purine bases that comprise polypurine/polypyrimidine tracks in the DNA. The hydrogen bonds that are formed under these conditions are referred to as Hoogsteen bonds after the individual who first described them. They can form in parallel or antiparallel (reverse-Hoogsteen) orientations.

NUCLEOSOME

A packing unit for DNA within the cell nucleus, which gives the chromatin a 'beads-on-a-string' structure. The 'beads' consist of complexes of nuclear proteins (histones) and DNA, and the 'string' consists of DNA only. A histone octamer forms a core around which the double-stranded DNA helix is wound twice.

LEXITROPSIN

A molecule that extragenetically reads the base sequence of double-stranded DNA.

RIBOZYME

RNA molecule that contains one of a variety of catalytic motifs that cleave RNA to which it hybridizes.

DNAzyme

A DNA molecule that contains a catalytic motif that cleaves RNA to which it hybridizes.

MORPHOLINO OLIGODEOXYNUCLEOTIDE

(PMO). The base is attached to a morpholino instead of a ribofuranosyl ring, and the backbone is composed of a phosphorodiamidate linkage.

RESTENOSIS

A reduction in lumenal size after an inter-arterial coronary intervention.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Opalinska, J., Gewirtz, A. Nucleic-acid therapeutics: basic principles and recent applications. Nat Rev Drug Discov 1, 503–514 (2002). https://doi.org/10.1038/nrd837

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd837

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing