Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Allosteric binding sites on cell-surface receptors: novel targets for drug discovery

Key Points

  • Allosteric ligands interact with binding sites on the receptor molecule that are topographically distinct from the binding site for the endogenous agonist (the orthosteric site).

  • Allosteric modulators have at least three general advantages over standard orthosteric drugs:

  • First, there is a 'ceiling' to their effect; once the allosteric sites are completely occupied, no further allosteric effect is observed.

  • Second, they have the ability to selectively modify responses only in tissues in which the endogenous agonist is active.

  • Third, they offer the potential for greater subtype selectivity, owing to greater variation in allosteric sites relative to orthosteric sites, and/or different degrees of allosteric modulation at each receptor subtype.

  • Traditional radioligand binding assays, which use a radiolabelled 'probe' ligand to directly monitor occupancy of the orthosteric site on the receptor, are biased towards the detection of orthosteric effects. This could explain the current paucity of clinically available allosteric drugs.

  • As radioligand binding assays are inherently probe dependent, discovery programmes that are specifically aimed at identifying allosteric modulators using such assays should, if possible, use the endogenous orthosteric ligand as a probe. Radioligand concentrations might need to be optimized to maximize the chance of detecting allosteric effects, and additional validation assays to monitor radioligand dissociation rates are also useful.

  • Functional assays directly determine the desired physiological end point, and so are highly suitable for the detection of allosteric modulators. Potential disadvantages, such as a higher hit rate owing to activation of non-target receptors, could be offset by using radioligand binding as a secondary screen.

Abstract

Cell-surface receptors are the targets for more than 60% of current drugs. Traditionally, optimizing the interaction of lead molecules with the binding site for the endogenous agonist (orthosteric site) has been viewed as the best means of achieving selectivity of action. However, recent developments have highlighted the fact that drugs can interact with binding sites on the receptor molecule that are distinct from the orthosteric site, known as allosteric sites. Allosteric modulators could offer several advantages over orthosteric ligands, including greater selectivity and saturability of their effect.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Models of orthosteric and allosteric binding.
Figure 2: Allosteric sites as receptor-selective drug targets.
Figure 3: Detection of allosteric effects on orthosteric ligand binding.
Figure 4: Detection of allosteric effects on orthosteric ligand function.
Figure 5: An example of the semi-quantitative 'affinity-ratio' assay for the detection of allosteric modulator effects.

References

  1. Ehrlich, P. The Croonian Lecture: on immunity, with special reference to cell life. Proc. R. Soc. Lond. B 66, 424–448 (1900).

    Article  CAS  Google Scholar 

  2. Langley, J. N. The Croonian Lecture — on nerve endings and excitable substances in cells. J. Physiol. (Lond.) 34, 170–194 (1906).

    Google Scholar 

  3. Drews, J. Drug discovery: a historical perspective. Science 287, 1960–1964 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Kenakin, T. Inverse, protean, and ligand-selective agonism: matters of receptor conformation. FASEB J. 15, 598–611 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Kenakin, T. P. Pharmacologic Analysis of Drug–Receptor Interaction (Lippincott-Raven, Philadelphia, 1997).

    Google Scholar 

  6. Frauenfelder, H., Parak, F. & Young, R. D. Conformational substates in proteins. Annu. Rev. Biophys. Biophys. Chem. 17, 451–479 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. The energy landscapes and motions of proteins. Science 254, 1598–1603 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Frauenfelder, H. Proteins — paradigms of complex systems. Experientia 51, 200–203 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Colquhoun, D. Binding, gating, affinity and efficacy: the interpretation of structure–activity relationships for agonists and of the effects of mutating receptors. Br. J. Pharmacol. 125, 924–947 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Hall, D. A. Modeling the functional effects of allosteric modulators at pharmacological receptors: an extension of the two-state model of receptor activation. Mol. Pharmacol. 58, 1412–1423 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Christopoulos, A. & Kenakin, T. G protein-coupled receptor allosterism and complexing. Pharmacol. Rev. (in the press).

  12. Ehlert, F. J., Roeske, W. R., Gee, K. W. & Yamamura, H. I. An allosteric model for benzodiazepine receptor function. Biochem. Pharmacol. 32, 2375–2383 (1983).

    Article  CAS  PubMed  Google Scholar 

  13. Ehlert, F. J. Estimation of the affinities of allosteric ligands using radioligand binding and pharmacological null methods. Mol. Pharmacol. 33, 187–194 (1988).A useful introduction to the theory that underlies the TCM for allosteric interactions.

    CAS  PubMed  Google Scholar 

  14. Lazareno, S. & Birdsall, N. J. M. Detection, quantitation, and verification of allosteric interactions of agents with labeled and unlabeled ligands at G protein-coupled receptors: interactions of strychnine and acetylcholine at muscarinic receptors. Mol. Pharmacol. 48, 362–378 (1995).This paper describes rigorous methodology for the detection and analysis of allosteric interactions at GPCRs.

    CAS  PubMed  Google Scholar 

  15. Lanzafame, A., Christopoulos, A. & Mitchelson, F. Interactions of agonists with an allosteric antagonist at muscarinic acetylcholine M2 receptors. Eur. J. Pharmacol. 316, 27–32 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Leppik, R. A., Lazareno, S., Mynett, A. & Birdsall, N. J. M. Characterization of the allosteric interactions between antagonists and amiloride analogues at the human α2A-adrenergic receptor. Mol. Pharmacol. 53, 916–925 (1998).

    CAS  PubMed  Google Scholar 

  17. Ehlert, F. J. Gallamine allosterically antagonizes muscarinic receptor-mediated inhibition of adenylate cyclase activity in the rat myocardium. J. Pharmacol. Exp. Ther. 247, 596–602 (1988).

    CAS  PubMed  Google Scholar 

  18. Christopoulos, A. in Current Protocols in Pharmacology (ed. Enna, S. J.) 1.22.1–1.22.40 (John Wiley & Sons, New York, 2000).

    Google Scholar 

  19. Birdsall, N. J. M. et al. Subtype-selective positive cooperative interactions between brucine analogs and acetylcholine at muscarinic receptors: functional studies. Mol. Pharmacol. 55, 778–786 (1999).

    CAS  PubMed  Google Scholar 

  20. Birdsall, N. J. M., Lazareno, S. & Matsui, H. Allosteric regulation of muscarinic receptors. Prog. Brain Res. 109, 147–151 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Galzi, J.-L. & Changeux, J.-P. Neurotransmitter-gated ion channels as unconventional allosteric proteins. Curr. Opin. Struct. Biol. 4, 554–565 (1994).An analysis of the structural properties of allosteric sites across ligand-gated ion channels.

    Article  CAS  Google Scholar 

  22. Smith, G. B. & Olsen, R. W. Functional domains of GABAA receptors. Trends Pharmacol. Sci. 16, 162–168 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Changeux, J. P. & Edelstein, S. J. Allosteric receptors after 30 years. Neuron 21, 959–980 (1998).A comprehensive overview of cell-surface receptor allosterism, with an emphasis on LGICs.

    Article  CAS  PubMed  Google Scholar 

  24. Costa, E. From GABAA receptor diversity emerges a unified vision of GABAergic inhibition. Annu. Rev. Pharmacol. Toxicol. 38, 321–350 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Rudolph, U. et al. Benzodiazepine actions mediated by specific γ-aminobutyric acidA receptor subtypes. Nature 401, 796–800 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Sigel, E. & Buhr, A. The benzodiazepine binding site of GABAA receptors. Trends Pharmacol. Sci. 18, 425–429 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Costa, E. & Guidotti, A. Benzodiazepines on trial: a research strategy for their rehabilitation. Trends Pharmacol. Sci. 17, 192–199 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Rudolph, U., Crestani, F. & Mohler, H. GABAA receptor subtypes: dissecting their pharmacological functions. Trends Pharmacol. Sci. 22, 188–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Hebert, T. E. & Bouvier, M. Structural and functional aspects of G protein-coupled receptor oligomerization. Biochem. Cell Biol. 76, 1–10 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Devi, L. A. Heterodimerization of G-protein-coupled receptors: pharmacology, signaling and trafficking. Trends Pharmacol. Sci. 22, 532–537 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Matsui, H., Lazareno, S. & Birdsall, N. J. Probing of the location of the allosteric site on M1 muscarinic receptors by site-directed mutagenesis. Mol. Pharmacol. 47, 88–98 (1995).

    CAS  PubMed  Google Scholar 

  32. Leppik, R. A., Miller, R. C., Eck, M. & Paquet, J. L. Role of acidic amino acids in the allosteric modulation by gallamine of antagonist binding at the M2 muscarinic acetylcholine receptor. Mol. Pharmacol. 45, 983–990 (1994).

    CAS  PubMed  Google Scholar 

  33. Ellis, J. Allosteric binding sites on muscarinic receptors. Drug Dev. Res. 40, 193–204 (1997).

    Article  CAS  Google Scholar 

  34. Gnagey, A. L., Seidenberg, M. & Ellis, J. Site-directed mutagenesis reveals two epitopes involved in the subtype selectivity of the allosteric interactions of gallamine at muscarinic acetylcholine receptors. Mol. Pharmacol. 56, 1245–1253 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Ellis, J. & Seidenberg, M. Interactions of alcuronium, TMB-8, and other allosteric ligands with muscarinic acetylcholine receptors: studies with chimeric receptors. Mol. Pharmacol. 58, 1451–1460 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Buller, S., Zlotos, D. P., Mohr, K. & Ellis, J. Allosteric site on muscarinic acetylcholine receptors: a single amino acid in transmembrane region 7 is critical to the subtype selectivities of caracurine V derivatives and alkane-bisammonium ligands. Mol. Pharmacol. 61, 160–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Pagano, A. et al. The non-competitive antagonists 2-methyl-6-(phenylethynyl)pyridine and 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester interact with overlapping binding pockets in the transmembrane region of group I metabotropic glutamate receptors. J. Biol. Chem. 275, 33750–33758 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Knoflach, F. et al. Positive allosteric modulators of metabotropic glutamate 1 receptor: characterization, mechanism of action, and binding site. Proc Natl Acad Sci U S A 98, 13402–13407 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Christopoulos, A., Lanzafame, A. & Mitchelson, F. Allosteric interactions at muscarinic cholinoceptors. Clin. Exp. Pharmacol. Physiol. 25, 185–194 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Christopoulos, A., Sorman, J. L., Mitchelson, F. & El-Fakahany, E. E. Characterization of the subtype selectivity of the allosteric modulator heptane-1,7-bis-(dimethyl-3′-pthalimidopropyl) ammonium bromide (C7/3-phth) at cloned muscarinic acetylcholine receptors. Biochem. Pharmacol. 57, 171–179 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Lazareno, S., Gharagozloo, P., Kuonen, D., Popham, A. & Birdsall, N. J. M. Subtype-selective positive cooperative interactions between brucine analogues and acetylcholine at muscarinic recptors: radioligand binding studies. Mol. Pharmacol. 53, 573–589 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Gao, Z. & Ijzerman, A. P. Allosteric modulation of A2A adenosine receptors by amiloride analogues and sodium ions. Biochem. Pharmacol. 60, 669–676 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Urwyler, S. et al. Positive allosteric modulation of native and recombinant γ-aminobutyric acidB receptors by 2,6-di-tert-butyl-4-(3-hydroxy-2,2- dimethyl-propyl)-phenol (CGP7930) and its aldehyde analog CGP13501. Mol. Pharmacol. 60, 963–971 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Carroll, F. Y. et al. BAY36-7620: a potent non-competitive mGlu1 receptor antagonist with inverse agonist activity. Mol. Pharmacol. 59, 965–973 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Conigrave, A. D., Quinn, S. J. & Brown, E. M. Cooperative multi-modal sensing and therapeutic implications of the extracellular Ca2+-sensing receptor. Trends Pharmacol. Sci. 21, 401–407 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Kollias-Baker, C. et al. Allosteric enhancer PD 81,723 acts by novel mechanism to potentiate cardiac actions of adenosine. Circ. Res. 75, 961–971 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Christopoulos, A. & Mitchelson, F. Use of a spreadsheet to quantitate the equilibrium binding of an allosteric modulator. Eur. J. Pharmacol. 355, 103–111 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Kostenis, E. & Mohr, K. Composite action of allosteric modulators on ligand binding. Trends Pharmacol. Sci. 17, 443–444 (1996).

    Article  CAS  Google Scholar 

  49. Christopoulos, A. in Current Protocols in Pharmacology (ed. Enna, S. J.) 1.21.1–1.21.45 (John Wiley & Sons, New York, 2000).A detailed step-by-step protocol for studying allosterism at G-protein-coupled receptors.

    Google Scholar 

  50. Litschig, S. et al. CPCCOEt, a noncompetitive metabotropic glutamate receptor 1 antagonist, inhibits receptor signaling without affecting glutamate binding. Mol. Pharmacol. 55, 453–461 (1999).

    CAS  PubMed  Google Scholar 

  51. Thomas, E. A., Carson, M. J., Neal, M. J. & Sutcliffe, J. G. Unique allosteric regulation of 5-hydroxytryptamine receptor-mediated signal transduction by oleamide. Proc. Natl Acad. Sci. USA 94, 14115–14119 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hedlund, P. B., Carson, M. J., Sutcliffe, J. G. & Thomas, E. A. Allosteric regulation by oleamide of the binding properties of 5-hydroxytryptamine7 receptors. Biochem. Pharmacol. 58, 1807–1813 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Lutz, M. & Kenakin, T. Quantitative Molecular Pharmacology and Informatics in Drug Discovery (John Wiley & Sons, New York, 1999).

    Google Scholar 

  54. Lazareno, S. in Receptor-Based Drug Design (ed. Leff, P.) 49–77 (Marcel Dekker, New York, 1998).

    Google Scholar 

  55. Arunlakshana, O. & Schild, H. O. Some quantitative uses of drug antagonists. Br. J. Pharmacol. 14, 48–57 (1959).

    CAS  Google Scholar 

  56. Kenakin, T. P. & Boselli, C. Pharmacologic discrimination between receptor heterogeneity and allosteric interaction: resultant analysis of gallamine and pirenzepine antagonism of muscarinic response in rat trachea. J. Pharmacol. Exp. Ther. 250, 944–952 (1989).

    CAS  PubMed  Google Scholar 

  57. Christopoulos, A. & Mitchelson, F. Assessment of the allosteric interactions of the bisquaternary heptane-1,7-bis(dimethyl-3′-pthalimidopropyl)ammonium bromide at M1 and M2 muscarine receptors. Mol. Pharmacol. 46, 105–114 (1994).

    CAS  PubMed  Google Scholar 

  58. Christopoulos, A. & Mitchelson, F. Application of an allosteric ternary complex model to the technique of pharmacological resultant analysis. J. Pharm. Pharmacol. 49, 781–786 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Nunnari, J. M., Repaske, M. G., Brandon, S., Cragoe, E. J. Jr & Limbird, L. E. Regulation of porcine brain α2-adrenergic receptors by Na+, H+ and inhibitors of Na+/H+ exchange. J. Biol. Chem. 262, 12387–12392 (1987).

    Article  CAS  PubMed  Google Scholar 

  60. Bruns, R. F. & Fergus, J. H. Allosteric enhancement of adenosine A1 receptor binding and function by 2-amino-3-benzoylthiophenes. Mol. Pharmacol. 38, 939–949 (1990).

    CAS  PubMed  Google Scholar 

  61. Tränkle, C. & Mohr, K. Divergent modes of action among cationic allosteric modulators of muscarinic M2 receptors. Mol. Pharmacol. 51, 674–682 (1997).

    Article  PubMed  Google Scholar 

  62. Kostenis, E. & Mohr, K. Two-point kinetic experiments to quantify allosteric effects on radioligand dissociation. Trends Pharmacol. Sci. 17, 280–283 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Monod, J. & Jacob, F. General conclusions: teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb. Symp. Quant. Biol. 26, 389–401 (1961).

    Article  CAS  PubMed  Google Scholar 

  64. Monod, J., Changeux, J.-P. & Jacob, F. Allosteric proteins and cellular control systems. J. Mol. Biol. 6, 306–329 (1963).An introduction to the allosteric concept in enzymology.

    Article  CAS  PubMed  Google Scholar 

  65. Monod, J., Wyman, J. & Changeux, J.-P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965).The first detailed allosteric model for oligomeric proteins.

    Article  CAS  PubMed  Google Scholar 

  66. Del Castillo, J. & Katz, B. Interaction at end-plate receptors between different choline derivatives. Proc. R. Soc. Lond. B 146, 369–381 (1957).

    Article  CAS  PubMed  Google Scholar 

  67. Katz, B. & Thesleff, S. A study of the 'desensitization' produced by acetylcholine at the motor end-plate. J. Physiol. (Lond.) 138, 63–80 (1957).

    Article  CAS  Google Scholar 

  68. Colquhoun, D. in Drug Receptors (ed. Rang, H. P.) 149–182 (Macmillan, London, 1973).

    Book  Google Scholar 

  69. Karlin, A. On the application of 'a plausible model' of allosteric proteins to the receptor for acetylcholine. J. Theor. Biol. 16, 306–320 (1967).

    Article  CAS  PubMed  Google Scholar 

  70. Thron, C. D. On the analysis of pharmacological experiments in terms of an allosteric receptor model. Mol. Pharmacol. 9, 1–9 (1973).

    CAS  PubMed  Google Scholar 

  71. Leff, P. The two-state model of receptor activation. Trends Pharmacol. Sci. 16, 89–97 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Cuatrecasas, P. Membrane receptors. Annu. Rev. Biochem. 43, 169–214 (1974).

    Article  CAS  PubMed  Google Scholar 

  73. De Lean, A., Stadel, J. M. & Lefkowitz, R. J. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled β-adrenergic receptor. J. Biol. Chem. 255, 7108–7117 (1980).The first application of the TCM to GPCRs.

    Article  CAS  PubMed  Google Scholar 

  74. Wregget, K. A. & De Lean, A. The ternary complex model. Its properties and application to ligand interactions with the D2-dopamine receptor of the anterior pituitary gland. Mol. Pharmacol. 26, 214–227 (1984).

    Google Scholar 

  75. Ehlert, F. J. The relationship between muscarinic receptor occupancy and adenylate cyclase inhibition in the rabbit myocardium. Mol. Pharmacol. 28, 410–421 (1985).

    CAS  PubMed  Google Scholar 

  76. Stockton, J. M., Birdsall, N. J. M., Burgen, A. S. V. & Hulme, E. C. Modification of the binding properties of muscarinic receptors by gallamine. Mol. Pharmacol. 23, 551–557 (1983).

    CAS  PubMed  Google Scholar 

  77. Lüllman, H., Ohnesorge, F. K., Schauwecker, G.-C. & Wasserman, O. Inhibition of the actions of carbachol and DFP on guinea pig isolated atria by alkane-bis-ammonium compounds. Eur. J. Pharmacol. 6, 241–247 (1969).

    Article  Google Scholar 

  78. Clark, A. L. & Mitchelson, F. The inhibitory effects of gallamine on muscarinic receptors. Br. J. Pharmacol. 58, 323–331 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Costa, T. & Herz, A. Antagonists with negative intrinsic activity at δ-opioid receptors coupled to GTP-binding proteins. Proc. Natl Acad. Sci. USA 86, 7321–7325 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Samama, P., Cotecchia, S., Costa, T. & Lefkowitz, R. J. A mutation-induced activated state of the β2-adrenergic receptor. Extending the ternary complex model. J. Biol. Chem. 268, 4625–4636 (1993).

    Article  CAS  PubMed  Google Scholar 

  81. Weiss, J. M., Morgan, P. H., Lutz, M. W. & Kenakin, T. P. The cubic ternary complex receptor-occupancy model. I. Model description. J. Theor. Biol. 178, 151–167 (1996).

    Article  CAS  Google Scholar 

  82. Jacoby, D. B., Gleich, G. J. & Fryer, A. D. Human eosinophil major basic protein is an endogenous allosteric antagonist at the inhibitory muscarinic M2 receptor. J. Clin. Invest. 91, 1314–1318 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kumamoto, E. The pharmacology of amino-acid responses in septal neurons. Prog. Neurobiol. 52, 197–259 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Mennerick, S. et al. Effects on γ-aminobutyric acid (GABAA) receptors of a neuroactive steroid that negatively modulates glutamate neurotransmission and augments GABA neurotransmission. Mol. Pharmacol. 60, 732–741 (2001).

    CAS  PubMed  Google Scholar 

  85. Rabow, L. E., Russek, S. J. & Farb, D. H. From ion currents to genomic analysis: recent advances in GABAA receptor research. Synapse 21, 189–274 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Belelli, I., Pistis, I., Peters, J. A. & Lambert, J. J. General anaesthetic action at transmitter-gated inhibitory amino acid receptors. Trends Pharmacol. Sci. 20, 496–502 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Gasior, M., Carter, R. B. & Witkin, J. M. Neuroactive steroids: potential therapeutic use in neurological and psychiatric disorders. Trends Pharmacol. Sci. 20, 107–112 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Ehlert, F. J., Roeske, W. R., Braestrup, C., Yamamura, S. H. & Yamamura, H. I. γ-Aminobutyric acid regulation of the benzodiazepine receptor: biochemical evidence for pharmacologically different effects of benzodiazepines and propyl β-carboline-3-carboxylate. Eur. J. Pharmacol. 70, 593–595 (1981).

    Article  CAS  PubMed  Google Scholar 

  89. Braestrup, C., Schmiechen, R., Neef, G., Nielsen, M. & Petersen, E. N. Interaction of convulsive ligands with benzodiazepine receptors. Science 216, 1241–1243 (1982).

    Article  CAS  PubMed  Google Scholar 

  90. Maelicke, A. & Albuquerque, E. X. New approach to drug therapy in Alzheimer's dementia. Drug Discov. Today 1, 53–59 (1996).

    Article  CAS  Google Scholar 

  91. Albuquerque, E. X. et al. Properties of neuronal nicotinic acetylcholine recpeptors: pharmacological characterization and modulation of synaptic function. J. Pharmacol. Exp. Ther. 280, 1117–1136 (1997).

    CAS  PubMed  Google Scholar 

  92. Bouzat, C. & Barrantes, F. J. Modulation of muscle nicotinic acetylcholine receptors by the glucocorticoid hydrocortisone. Possible allosteric mechanism of channel blockade. J. Biol. Chem. 271, 25835–25841 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Schrattenholz, A. et al. Agonist responses of neuronal nicotinic acetylcholine receptors are potentiated by a novel class of allosterically acting ligands. Mol. Pharmacol. 49, 1–6 (1996).

    CAS  PubMed  Google Scholar 

  94. Changeux, J.-P. The TiPS Lecture. The nicotinic acetylcholine receptor: an allosteric protein prototype of ligand-gated ion channels. Trends Pharmacol. Sci. 11, 485–492 (1990).

    Article  CAS  PubMed  Google Scholar 

  95. Changeaux, J.-P. & Revah, F. The acetylcholine receptor molecule: allosteric sites and the ion channel. Trends Neurosci. 10, 245–249 (1987).

    Article  Google Scholar 

  96. Pagan, O. R. et al. Cembranoid and long-chain alkanol sites on the nicotinic acetylcholine receptor and their allosteric interaction. Biochemistry 40, 11121–11130 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Krause, R. M. et al. Ivermectin: a positive allosteric effector of the α7 neuronal nicotinic acetylcholine receptor. Mol. Pharmacol. 53, 283–294 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Yamakura, T. & Shimoji, K. Subunit- and site-specific pharmacology of the NMDA receptor channel. Prog. Neurobiol. 59, 279–298 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Mothet, J. P. et al. d-Serine is an endogenous ligand for the glycine site of the N-methyl-d-aspartate receptor. Proc. Natl Acad. Sci. USA 97, 4926–4931 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Leeson, P. D. & Iversen, L. L. The glycine site on the NMDA receptor: structure–activity relationships and therapeutic potential. J. Med. Chem. 37, 4053–4067 (1994).

    Article  CAS  PubMed  Google Scholar 

  101. Marvizón, J.-C. & Baudry, M. Allosteric interactions and modulator requirement for NMDA receptor function. Eur. J. Pharmacol. Mol. Pharmacol. Sect. 269, 165–175 (1994).

    Article  Google Scholar 

  102. Grimwood, S., Struthers, L. & Foster, A. C. Polyamines modulate [3H]L-689,560 binding to the glycine site of the NMDA receptor from rat brain. Eur. J. Pharmacol. Mol. Pharmacol. Sect. 266, 43–50 (1994).

    Article  CAS  Google Scholar 

  103. Michel, A. D., Miller, K. J., Lundström, K., Buell, G. N. & Humphrey, P. P. A. Radiolabeling of the rat P2X4 purinoceptor: evidence for allosteric interactions of purinoceptor antagonists and monovalent cations with P2X purinoceptors. Mol. Pharmacol. 51, 524–532 (1997).

    CAS  PubMed  Google Scholar 

  104. Bhattacharya, S. & Linden, J. The allosteric enhancer, PD 81,723, stabilizes human A1 adenosine receptor coupling to G proteins. Biochim. Biophys. Acta 1265, 15–21 (1995).

    Article  PubMed  Google Scholar 

  105. Kollias-Baker, C. A. et al. Agonist-independent effect of an allosteric enhancer of the A1 adenosine receptor in CHO cells stably expressing the recombinant human A1 receptor. J. Pharmacol. Exp. Ther. 281, 761–768 (1997).

    CAS  PubMed  Google Scholar 

  106. Kourounakis, A., Visser, C., de Goote, M. & Ijzerman, A. P. Differential effects of the allosteric enhancer (2-amino-4,5-dimethyl-trienyl) [3-(trifluoromethyl) pheynl] methanone (PD81,723) on agonist and antagonist binding and function at the human wild-type and a mutant (T277A) adenosine A1 receptor. Biochem. Pharmacol. 61, 137–144 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Musser, B., Mudumbi, R. V., Liu, J., Olson, R. D. & Vestal, R. E. Adenosine A1 receptor-dependent and -independent effects of the allosteric enhancer PD81,723. J. Pharmacol. Exp. Ther. 288, 446–454 (1999).

    CAS  PubMed  Google Scholar 

  108. Gao, Z. G. et al. Allosteric modulation of A3 adenosine receptors by a series of 3-(2-pyridinyl)isoquinoline derivatives. Mol. Pharmacol. 60, 1057–1063 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Leppik, R. A., Mynett, A., Lazareno, S. & Birdsall, N. J. M. Allosteric interactions between the antagonist prazosin and amiloride analogs at the human α1A-adrenergic receptor. Mol. Pharmacol. 57, 436–445 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Waugh, D. J., Gaivin, R. J., Damron, D. S., Murray, P. A. & Perez, D. M. Binding, partial agonism, and potentiation of α1-adrenergic receptor function by benzodiazepines: a potential site of allosteric modulation. J. Pharmacol. Exp. Ther. 291, 1164–1171 (1999).

    CAS  PubMed  Google Scholar 

  111. Leppik, R. A. & Birdsall, N. J. Agonist binding and function at the human α2A-adrenoceptor: allosteric modulation by amilorides. Mol. Pharmacol. 58, 1091–1099 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Wilson, A. L., Seibert, K., Brandon, S., Cragoe, E. J. Jr & Limbird, L. E. Monovalent cation and amiloride analog modulation of adrenergic ligand binding to the unglycosylated α2B-adrenergic receptor subtype. Mol. Pharmacol. 39, 481–486 (1991).

    CAS  PubMed  Google Scholar 

  113. Molderings, G. J., Menzel, S., Kathmann, M., Schlicker, E. & Gothert, M. Dual interaction of agmatine with the rat α2D-adrenoceptor: competitive antagonism and allosteric activation. Br. J. Pharmacol. 130, 1706–1712 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Swaminath, G., Steenhuis, J., Kobilka, B. & Lee, T. W. Allosteric modulation of β2-adrenergic receptor by Zn2+. Mol. Pharmacol. 61, 65–72 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Hammerland, L. G., Garrett, J. E., Hung, B. C., Levinthal, C. & Nemeth, E. F. Allosteric activation of the Ca2+ receptor expressed in Xenopus laevis oocytes by NPS 467 or NPS 568. Mol. Pharmacol. 53, 1083–1088 (1998).

    CAS  PubMed  Google Scholar 

  116. Conigrave, A. D., Quinn, S. J. & Brown, E. M. l-Amino acid sensing by the extracellular Ca2+-sensing receptor. Proc. Natl Acad. Sci. USA 97, 4814–4819 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cox, M. A. et al. Human interferon-inducible 10-kDa protein and human interferon-inducible T cell-α chemoattractant are allotopic ligands for human CXCR3: differential binding to receptor states. Mol. Pharmacol. 59, 707–715 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Zhao, J. et al. Anti-HIV agent trichosanthin enhances the capabilities of chemokines to stimulate chemotaxis and G protein activation, and this is mediated through interaction of trichosanthin and chemokine receptors. J. Exp. Med. 190, 101–111 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sabroe, I. et al. A small molecule antagonist of chemokine receptors CCR1 and CCR3. Potent inhibition of eosinophil function and CCR3-mediated HIV-1 entry. J. Biol. Chem. 275, 25985–25992 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Schetz, J. A. & Sibley, D. R. Zinc allosterically modulates antagonist binding to cloned D1 and D2 dopamine recpetors. J. Neurochem. 68, 1990–1997 (1997).

    Article  CAS  PubMed  Google Scholar 

  121. Hoare, S. R. J. & Strange, P. G. Regulation of D2 dopamine receptors by amiloride and amiloride analogs. Mol. Pharmacol. 50, 1295–1308 (1996).

    CAS  PubMed  Google Scholar 

  122. Schetz, J. A., Chu, A. & Sibley, D. R. Zinc modulates antagonist interactions with D2-like dopamine receptors through distinct molecular mechanisms. J. Pharmacol. Exp. Ther. 289, 956–964 (1999).

    CAS  PubMed  Google Scholar 

  123. Blandin, V., Vigne, P., Breittmayer, J. P. & Frelin, C. Allosteric inhibition of endothelin ETA receptors by 3,5-dibromosalicylic acid. Mol. Pharmacol. 58, 1461–1469 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Talbodec, A. et al. Aspirin and sodium salicylate inhibit endothelin ETA receptors by an allosteric type of mechanism. Mol. Pharmacol. 57, 797–804 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Spooren, W. P., Gasparini, F., Salt, T. E. & Kuhn, R. Novel allosteric antagonists shed light on mGlu5 receptors and CNS disorders. Trends Pharmacol. Sci. 22, 331–337 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Proska, J. & Tucek, S. Mechanisms of steric and cooperative actions of alcuronium on cardiac muscarinic acetylcholine receptors. Mol. Pharmacol. 45, 709–717 (1994).

    CAS  PubMed  Google Scholar 

  127. Knaus, G. A., Knaus, H. G. & Saria, A. Complex allosteric interaction of heparin with neurokinin-1 receptors. Eur. J. Pharmacol. 207, 267–270 (1991).

    Article  CAS  PubMed  Google Scholar 

  128. Spedding, M., Sweetman, A. J. & Weetman, D. F. Antagonism of adenosine 5′-triphosphate-induced relaxation by 2-2′-pyridylisatogen in the taenia of guinea-pig caecum. Br. J. Pharmacol. 53, 575–583 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. King, B. F. et al. Potentiation by 2,2′-pyridylisatogen tosylate of ATP-responses at a recombinant P2Y1 purinoceptor. Br. J. Pharmacol. 117, 1111–1118 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fillion, G. et al. A new peptide, 5-HT-moduline, isolated and purified from mammalian brain specifically interacts with 5-HT1B/1D receptors. Behav. Brain Res. 73, 313–317 (1996).

    Article  CAS  PubMed  Google Scholar 

  131. Massot, O. et al. Molecular, cellular and physiological characteristics of 5-HT-moduline, a novel endogenous modulator of 5–HT1B receptor subtype. Ann. NY Acad. Sci. 861, 174–182 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.C. is grateful to F. Mitchelson and M. J. Lew for critical review of the manuscript. Work in A.C.'s laboratory is funded by grants from the National Health and Medical Research Council of Australia and by Amrad Australia. A.C. is a C. R. Roper Research Fellow of the Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Australia.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

adenosine A1 receptor

adenosine A2A receptor

adenosine A3 receptor

α1-adrenoceptor

α2A-adrenoceptor

α2B-adrenoceptor

β2-adrenoceptor

calcium-sensing receptor

CCR1

CCR3

CCR5

CXCR3

CXCR4

dopamine D1 receptor

dopamine D2 receptor

endothelin receptor

eosinophil major basic protein

GABAA receptor

GABAA-receptor α-subunits

GABAA-receptor β-subunits

GABAA-receptor δ-subunit

GABAA-receptor ɛ-subunit

GABAA-receptor γ-subunit

GABAA-receptor γ2-subunit

GABAA-receptor θ-subunit

GABAA-receptor ρ-subunit

GABAB receptor

glycine receptor

5-HT1B receptor

5-HT1D receptor

5-HT2A receptor

5-HT7 receptor

M2 receptor

M3 receptor

M4 receptor

mGlu1

mGlu5

nicotinic acetylcholine receptor

NK1 receptor

NMDA receptors

P2X receptor

P2Y1 receptor

GABAA receptors

muscarinic acetylcholine receptors

 OMIM

hyperparathyroidism

FURTHER INFORMATION

G-protein coupled receptors

Glycine receptors

Glossary

ORTHOSTERIC SITE

The endogenous agonist binding site on a receptor. This domain is also recognized by classic competitive antagonists and inverse agonists.

ALLOSTERIC SITE

A modulatory binding site on a receptor that is topographically distinct from the agonist binding site.

ALLOSTERIC INTERACTION

An interaction between two topographically distinct binding sites on the same receptor complex.

ALLOSTERIC TRANSITION

The isomerization of a receptor protein between multiple conformational states.

COOPERATIVE BINDING

The binding of two or more molecules of the same ligand to a receptor complex. Sometimes used in a less strict sense to describe the concomitant binding of more than one molecule of any chemical type to a receptor complex.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Christopoulos, A. Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nat Rev Drug Discov 1, 198–210 (2002). https://doi.org/10.1038/nrd746

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd746

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing