Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

SLC transporters as therapeutic targets: emerging opportunities

Key Points

  • Membrane transport proteins mediate the transport of molecules across cell membranes and have key roles in human health. More than 100 Mendelian diseases are caused by a defect in a single solute carrier (SLC) transporter.

  • Genetic studies have provided a wealth of information on the roles that SLC transporters play in human health, and in common and rare diseases, enhancing our understanding of the biology of these membrane transporters.

  • High-throughput screening technologies and computational methods may be used to discover novel inhibitors and activators of SLC transporters for therapeutic purposes.

  • Utilizing transporters as drug targets may require indirect methods, such as developing molecules that function as potentiators or correctors, or developing substrates that bypass the transporter.

  • Some currently marketed drugs, including diuretics, neuropsychiatric drugs and antidiabetic drugs, target SLC transporters.

  • Uric acid-, glycine- and bile acid-transport inhibitors are currently in various stages of clinical development for the treatment of various human diseases. First-in-class compounds that target SLC transporters are anticipated to be approved in the near future.

  • Positron emission tomography (PET)-imaging probes may utilize transporters for uptake into cells, enabling transporter function to be visualized in vivo.

Abstract

Solute carrier (SLC) transporters — a family of more than 300 membrane-bound proteins that facilitate the transport of a wide array of substrates across biological membranes — have important roles in physiological processes ranging from the cellular uptake of nutrients to the absorption of drugs and other xenobiotics. Several classes of marketed drugs target well-known SLC transporters, such as neurotransmitter transporters, and human genetic studies have provided powerful insight into the roles of more-recently characterized SLC transporters in both rare and common diseases, indicating a wealth of new therapeutic opportunities. This Review summarizes knowledge on the roles of SLC transporters in human disease, describes strategies to target such transporters, and highlights current and investigational drugs that modulate SLC transporters, as well as promising drug targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the different types of mutations in SLC transporter genes, and their effects.
Figure 2: SLC transporters implicated in Mendelian diseases, grouped by substrate type.

Similar content being viewed by others

References

  1. Giacomini, K. M. et al. Membrane transporters in drug development. Nat. Rev. Drug Discov. 9, 215–236 (2010). This white paper by the International Transporter Consortium provides guidance on which transporters may be clinically relevant and the types of in vitro and in vivo studies needed to study drug–transporter interactions.

    Article  CAS  PubMed  Google Scholar 

  2. Ng, S. B. et al. Exome sequencing identifies the cause of a Mendelian disorder. Nat. Genet. 42, 30–35 (2010). This is the first study to use exome sequencing to identify a gene associated with Miller syndrome.

    Article  CAS  PubMed  Google Scholar 

  3. Schlessinger, A., Yee, S. W., Sali, A. & Giacomini, K. M. SLC classification: an update. Clin. Pharmacol. Ther. 94, 19–23 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Hediger, M. A., Clémençon, B., Burrier, R. E. & Bruford, E. A. The ABCs of membrane transporters in health and disease (SLC series): introduction. Mol. Aspects Med. 34, 95–107 (2013). This review provides a comprehensive guide to the different families of SLC transporters.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Geier, E. G. et al. Structure-based ligand discovery for the large-neutral amino acid transporter 1, LAT-1. Proc. Natl Acad. Sci. USA 110, 5480–5485 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fotiadis, D., Kanai, Y. & Palacín, M. The SLC3 and SLC7 families of amino acid transporters. Mol. Aspects Med. 34, 139–158 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Izumi, S. et al. Substrate-dependent inhibition of organic anion transporting polypeptide 1B1: comparative analysis with prototypical probe substrates estradiol-17β-glucuronide, estrone-3-sulfate, and sulfobromophthalein. Drug Metab. Dispos. 41, 1859–1866 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Hagenbuch, B. & Stieger, B. The SLCO (former SLC21) superfamily of transporters. Mol. Aspects Med. 34, 396–412 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Koepsell, H. & Endou, H. The SLC22 drug transporter family. Pflugers Arch. 447, 666–676 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Schlessinger, A. et al. Comparison of human solute carriers. Protein Sci. 19, 412–428 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schlessinger, A. et al. Structure-based discovery of prescription drugs that interact with the norepinephrine transporter, NET. Proc. Natl Acad. Sci. USA 108, 15810–1 5815 (2011). This study uses virtual screening against a comparative model of an SLC transporter to identify prescription drugs that may interact with the transporter. This method is also used for other SLC transporters (for example, see references 5 and 64).

    Article  Google Scholar 

  12. Bröer, S. Apical transporters for neutral amino acids: physiology and pathophysiology. Physiology (Bethesda) 23, 95–103 (2008).

    Google Scholar 

  13. Mueckler, M. & Thorens, B. The SLC2 (GLUT) family of membrane transporters. Mol. Aspects Med. 34, 121–138 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wright, E. M. Glucose transport families SLC5 and SLC50. Mol. Aspects Med. 34, 183–196 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Jostins, L. et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kenny, E. E. et al. A genome-wide scan of Ashkenazi Jewish Crohn's disease suggests novel susceptibility loci. PLoS Genet. 8, e1002559 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat. Genet. 42, 1118–1125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kottgen, A. et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. Genet. 45, 145–154 (2013). This is the first GWAS to identify a genetic variant in SLC2A9 that is associated with serum uric acid levels.

    Article  CAS  PubMed  Google Scholar 

  19. Tin, A. et al. Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT1 loss-of-function allele. Hum. Mol. Genet. 20, 4056–4068 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, S. et al. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet. 3, e194 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Dai, X. et al. A genome-wide association study for serum bilirubin levels and gene–environment interaction in a Chinese population. Genet. Epidemiol. 37, 293–300 (2013).

    Article  PubMed  Google Scholar 

  22. Bielinski, S. J. et al. Mayo Genome Consortia: a genotype–phenotype resource for genome-wide association studies with an application to the analysis of circulating bilirubin levels. Mayo Clin. Proc. 86, 606–614 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sanna, S. et al. Common variants in the SLCO1B3 locus are associated with bilirubin levels and unconjugated hyperbilirubinemia. Hum. Mol. Genet. 18, 2711–2718 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Johnson, A. D. et al. Genome-wide association meta-analysis for total serum bilirubin levels. Hum. Mol. Genet. 18, 2700–2710 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nan, H. et al. Genome-wide association study of tanning phenotype in a population of European ancestry. J. Invest. Dermatol. 129, 2250–2257 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stokowski, R. P. et al. A genomewide association study of skin pigmentation in a South Asian population. Am. J. Hum. Genet. 81, 1119–1132 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dhumeaux, D. & Erlinger, S. Hereditary conjugated hyperbilirubinaemia: 37 years later. J. Hepatol. 58, 388–390 (2013).

    Article  PubMed  Google Scholar 

  28. Sladek, R. et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445, 881–885 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Scott, L. J. et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316, 1341–1345 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rafnar, T. et al. European genome-wide association study identifies SLC14A1 as a new urinary bladder cancer susceptibility gene. Hum. Mol. Genet. 20, 4268–4281 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ehret, G. B. et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Wain, L. V. et al. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat. Genet. 43, 1005–1011 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fletcher, O. et al. Novel breast cancer susceptibility locus at 9q31.2: results of a genome-wide association study. J. Natl Cancer Inst. 103, 425–435 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, K. et al. Genetic implication of a novel thiamine transporter in human hypertension. J. Am. Coll. Cardiol. 63, 1542–1555 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nicolson, T. J. et al. Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 58, 2070–2083 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ishihara, H., Maechler, P., Gjinovci, A., Herrera, P.-L. & Wollheim, C. B. Islet β-cell secretion determines glucagon release from neighbouring α-cells. Nat. Cell Biol. 5, 330–335 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Kim, B. J. et al. Zinc as a paracrine effector in pancreatic islet cell death. Diabetes 49, 367–372 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Tamaki, M. et al. The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance. J. Clin. Invest. 123, 4513–4524 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Flannick, J. et al. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat. Genet. 46, 357–363 (2014). This paper demonstrates that loss-of-function variants in SLC30A8 are protective against type 2 diabetes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hu, G. et al. New fluorescent substrate enables quantitative and high-throughput examination of vesicular monoamine transporter 2 (VMAT2). ACS Chem. Biol. 8, 1947–1954 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ulanovskaya, O. A., Cui, J. & Kron, S. J. & Kozmin, S. A. A pairwise chemical genetic screen identifies new inhibitors of glucose transport. Chem. Biol. 18, 222–230 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wittwer, M. B. et al. Discovery of potent, selective multidrug and toxin extrusion transporter 1 (MATE1, SLC47A1) inhibitors through prescription drug profiling and computational modeling. J. Med. Chem. 56, 781–795 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kido, Y., Matsson, P. & Giacomini, K. M. Profiling of a prescription drug library for potential renal drug–drug interactions mediated by the organic cation transporter 2. J. Med. Chem. 54, 4548–4558 (2011). This is one of the first HTS studies to use fluorescent probes as a transporter substrate to identify prescription drugs that inhibit SLC transporters, and its potential for transporter-mediated drug–drug interactions. This method is also used for other SLC transporters (for example, see references 42 and 44).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gui, C., Obaidat, A., Chaguturu, R. & Hagenbuch, B. Development of a cell-based high-throughput assay to screen for inhibitors of organic anion transporting polypeptides 1B1 and 1B3. Curr. Chem. Genom. 4, 1–8 (2010).

    Article  CAS  Google Scholar 

  45. Jani, M. & Krajcsi, P. In vitro methods in drug transporter interaction assessment. Drug Discov. Today. Technol. 12, e105–e112 (2014).

    Article  PubMed  Google Scholar 

  46. Pedersen, J. M. et al. Early identification of clinically relevant drug interactions with the human bile salt export pump (BSEP/ABCB11). Toxicol. Sci. 136, 328–343 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sodani, K. et al. Telatinib reverses chemotherapeutic multidrug resistance mediated by ABCG2 efflux transporter in vitro and in vivo. Biochem. Pharmacol. 89, 52–61 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pedersen, J. M. et al. Prediction and identification of drug interactions with the human ATP-binding cassette transporter multidrug-resistance associated protein 2 (MRP2; ABCC2). J. Med. Chem. 51, 3275–3287 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, J.-H., Chung, T. & Oldenburg, K. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67–73 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Thorne, N., Auld, D. S. & Inglese, J. Apparent activity in high-throughput screening: origins of compound-dependent assay interference. Curr. Opin. Chem. Biol. 14, 315–324 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Feng, B. Y. et al. A high-throughput screen for aggregation-based inhibition in a large compound library. J. Med. Chem. 50, 2385–2390 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Jadhav, A. et al. Quantitative analyses of aggregation, autofluorescence, and reactivity artifacts in a screen for inhibitors of a thiol protease. J. Med. Chem. 53, 37–51 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Caporuscio, F. & Tafi, A. Pharmacophore modelling: a forty year old approach and its modern synergies. Curr. Med. Chem. 18, 2543–2553 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Cumming, J. G., Davis, A. M., Muresan, S., Haeberlein, M. & Chen, H. Chemical predictive modelling to improve compound quality. Nat. Rev. Drug Discov. 12, 948–962 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Zheng, X., Ekins, S., Raufman, J. & Polli, J. E. Computational models for drug inhibition of the human apical sodium-dependent bile acid transporter. Mol. Pharm. 6, 1591–1603 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zheng, X., Pan, Y., Acharya, C., Swaan, P. W. & Polli, J. E. Structural requirements of the ASBT by 3D-QSAR analysis using aminopyridine conjugates of chenodeoxycholic acid. Bioconjug. Chem. 21, 2038–2048 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Esslinger, C. S. et al. The substituted aspartate analogue l-β-threo-benzyl-aspartate preferentially inhibits the neuronal excitatory amino acid transporter EAAT3. Neuropharmacology 49, 850–861 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Macdougall, I. J. A. & Griffith, R. Pharmacophore design and database searching for selective monoamine neurotransmitter transporter ligands. J. Mol. Graph. Model. 26, 1113–1124 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Sharma, H. et al. Flexible and biomimetic analogs of triple uptake inhibitor 4-((((3S,6S)-6-benzhydryltetrahydro-2H-pyran-3-yl)amino)methyl)phenol: synthesis, biological characterization, and development of a pharmacophore model. Bioorg. Med. Chem. 22, 311–324 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Santra, S. et al. Structural exploration of (3S,6S)-6-benzhydryl-N-benzyltetrahydro-2H-pyran-3-amine analogues: identification of potent triple monoamine reuptake inhibitors as potential antidepressants. ChemMedChem 7, 2093–2100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Thompson, C. M. et al. Inhibitor of the glutamate vesicular transporter (VGLUT). Curr. Med. Chem. 12, 2041–2056 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Ohtake, Y. et al. Discovery of tofogliflozin, a novel C-arylglucoside with an O-spiroketal ring system, as a highly selective sodium glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J. Med. Chem. 55, 7828–7840 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Schlessinger, A., Khuri, N., Giacomini, K. M. & Sali, A. Molecular modeling and ligand docking for solute carrier (SLC) transporters. Curr. Top. Med. Chem. 13, 843–856 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schlessinger, A. et al. High selectivity of the γ-aminobutyric acid transporter 2 (GAT-2, SLC6A13) revealed by structure-based approach. J. Biol. Chem. 287, 37745–37756 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Luethi, E. et al. Identification of selective norbornane-type aspartate analogue inhibitors of the glutamate transporter 1 (GLT-1) from the chemical universe generated database (GDB). J. Med. Chem. 53, 7236–7250 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Johnson, Z. L. et al. Structural basis of nucleoside and nucleoside drug selectivity by concentrative nucleoside transporters. eLife 3, e03604 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Johnson, Z. L., Cheong, C.-G. & Lee, S.-Y. Crystal structure of a concentrative nucleoside transporter from Vibrio cholerae at 2.4 Å. Nature 483, 489–493 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhou, Z. et al. LeuT-desipramine structure reveals how antidepressants block neurotransmitter reuptake. Science 317, 1390–1393 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Singh, S. K., Yamashita, A. & Gouaux, E. Antidepressant binding site in a bacterial homologue of neurotransmitter transporters. Nature 448, 952–956 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Penmatsa, A., Wang, K. H. & Gouaux, E. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503, 85–90 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cuboni, S. & Hausch, F. Snapshot of antidepressants at work: the structure of neurotransmitter transporter proteins. Angew. Chem. Int. Ed. Engl. 53, 5008–5009 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Cheah, B. C., Vucic, S., Krishnan, A. V. & Kiernan, M. C. Riluzole, neuroprotection and amyotrophic lateral sclerosis. Curr. Med. Chem. 17, 1942–1959 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Fumagalli, E., Funicello, M., Rauen, T., Gobbi, M. & Mennini, T. Riluzole enhances the activity of glutamate transporters GLAST, GLT1 and EAAC1. Eur. J. Pharmacol. 578, 171–176 (2008). This study is the first to show riluzole as an activator of SLC transporter function.

    Article  CAS  PubMed  Google Scholar 

  74. Carbone, M., Duty, S. & Rattray, M. Riluzole elevates GLT-1 activity and levels in striatal astrocytes. Neurochem. Int. 60, 31–38 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Dall'Igna, O. P., Bobermin, L. D., Souza, D. O. & Quincozes-Santos, A. Riluzole increases glutamate uptake by cultured C6 astroglial cells. Int. J. Dev. Neurosci. 31, 482–486 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Woltjer, R. L. et al. Aberrant detergent-insoluble excitatory amino acid transporter 2 accumulates in Alzheimer disease. J. Neuropathol. Exp. Neurol. 69, 667–676 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Guo, H. et al. Increased expression of the glial glutamate transporter EAAT2 modulates excitotoxicity and delays the onset but not the outcome of ALS in mice. Hum. Mol. Genet. 12, 2519–2532 (2003). This paper describes the function of ivacaftor as a CFTR potentiator.

    Article  CAS  PubMed  Google Scholar 

  78. Kong, Q. et al. Small-molecule activator of glutamate transporter EAAT2 translation provides neuroprotection. J. Clin. Invest. 124, 1255–1267 (2014). This study demonstrates that an EAAT2 activator can provide neuroprotection in an animal model of amyotrophic lateral sclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lin, C.-L. G., Kong, Q., Cuny, G. D. & Glicksman, M. A. Glutamate transporter EAAT2: a new target for the treatment of neurodegenerative diseases. Future Med. Chem. 4, 1689–1700 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Su, Z. et al. Insights into glutamate transport regulation in human astrocytes: cloning of the promoter for excitatory amino acid transporter 2 (EAAT2). Proc. Natl Acad. Sci. USA 100, 1955–1960 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Colton, C. K. et al. Identification of translational activators of glial glutamate transporter EAAT2 through cell-based high-throughput screening: an approach to prevent excitotoxicity. J. Biomol. Screen. 15, 653–662 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Van Goor, F. et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc. Natl Acad. Sci. USA 106, 18825–18830 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hoffman, L. R. & Ramsey, B. W. Cystic fibrosis therapeutics: the road ahead. Chest 143, 207–213 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Manzardo, A. M. et al. Double-blind, randomized placebo-controlled clinical trial of benfotiamine for severe alcohol dependence. Drug Alcohol Depend. 133, 562–570 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Yiu, W. H., Pan, C. J., Allamarvdasht, M., Kim, S. Y. & Chou, J. Y. Glucose-6-phosphate transporter gene therapy corrects metabolic and myeloid abnormalities in glycogen storage disease type Ib mice. Gene Ther. 14, 219–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Hopkins, A. L. & Groom, C. R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Rask-Andersen, M., Masuram, S., Fredriksson, R. & Schiöth, H. B. Solute carriers as drug targets: current use, clinical trials and prospective. Mol. Aspects Med. 34, 702–710 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. El-Gebali, S., Bentz, S., Hediger, M. A. & Anderle, P. Solute carriers (SLCs) in cancer. Mol. Aspects Med. 34, 719–734 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Sophic Alliance. White paper. The integrated druggable genome database. Sophic [online] (2010).

  90. Zhu, F. et al. Therapeutic target database update 2012: a resource for facilitating target-oriented drug discovery. Nucleic Acids Res. 40, D1128–D1136 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Knox, C. et al. DrugBank 3.0: a comprehensive resource for 'omics' research on drugs. Nucleic Acids Res. 39, D1035–D1041 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Rask-Andersen, M., Masuram, S. & Schiöth, H. B. The druggable genome: evaluation of drug targets in clinical trials suggests major shifts in molecular class and indication. Annu. Rev. Pharmacol. Toxicol. 54, 9–26 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Wiley, J. S. & Cooper, R. A. A furosemide-sensitive cotransport of sodium plus potassium in the human red cell. J. Clin. Invest. 53, 745–755 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Burg, M., Stoner, L., Cardinal, J. & Green, N. Furosemide effect on isolated perfused tubules. Am. J. Physiol. 225, 119–124 (1973).

    Article  CAS  PubMed  Google Scholar 

  95. Markadieu, N. & Delpire, E. Physiology and pathophysiology of SLC12A1/2 transporters. Pflugers Arch. 466, 91–105 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Xu, J. C. et al. Molecular cloning and functional expression of the bumetanide-sensitive Na–K–Cl cotransporter. Proc. Natl Acad. Sci. USA 91, 2201–2205 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Simon, D. B. et al. Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na–K–2Cl cotransporter NKCC2. Nat. Genet. 13, 183–188 (1996). This study uses linkage analysis to determine that mutations in SLC12A1 cause Bartter syndrome.

    Article  CAS  PubMed  Google Scholar 

  98. Simon, D. B. et al. Gitelman's variant of Bartter's syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na–Cl cotransporter. Nat. Genet. 12, 24–30 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. Cha, S. H. et al. Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol. Pharmacol. 59, 1277–1286 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Jutabha, P. et al. Human sodium phosphate transporter 4 (hNPT4/SLC17A3) as a common renal secretory pathway for drugs and urate. J. Biol. Chem. 285, 35123–35132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kristensen, A. S. et al. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol. Rev. 63, 585–640 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Haase, J. & Brown, E. Integrating the monoamine, neurotrophin and cytokine hypotheses of depression — a central role for the serotonin transporter? Pharmacol. Ther. 147, 1–11 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Wong, D. T., Horng, J. S., Bymaster, F. P., Hauser, K. L. & Molloy, B. B. A selective inhibitor of serotonin uptake: Lilly 110140, 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenylpropylamine. Life Sci. 15, 471–479 (1974).

    Article  CAS  PubMed  Google Scholar 

  104. Wong, D. T., Bymaster, F. P., Horng, J. S. & Molloy, B. B. A new selective inhibitor for uptake of serotonin into synaptosomes of rat brain: 3-(p-trifluoromethylphenoxy). N-methyl-3- phenylpropylamine. J. Pharmacol. Exp. Ther. 193, 804–811 (1975). This is the first study to demonstrate the ability of fluoxetine to inhibit serotonin uptake in rat synaptosomes.

    CAS  PubMed  Google Scholar 

  105. Jankovic, J. & Clarence-Smith, K. Tetrabenazine for the treatment of chorea and other hyperkinetic movement disorders. Expert Rev. Neurother. 11, 1509–1523 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Nickell, J. R., Siripurapu, K. B., Vartak, A., Crooks, P. A. & Dwoskin, L. P. The vesicular monoamine transporter-2: an important pharmacological target for the discovery of novel therapeutics to treat methamphetamine abuse. Adv. Pharmacol. 69, 71–106 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shibazaki, T. et al. KGA-2727, a novel selective inhibitor of a high-affinity sodium glucose cotransporter (SGLT1), exhibits antidiabetic efficacy in rodent models. J. Pharmacol. Exp. Ther. 342, 288–296 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Katsuno, K. et al. Sergliflozin, a novel selective inhibitor of low-affinity sodium glucose cotransporter (SGLT2), validates the critical role of SGLT2 in renal glucose reabsorption and modulates plasma glucose level. J. Pharmacol. Exp. Ther. 320, 323–330 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Fujimori, Y. et al. Remogliflozin etabonate, in a novel category of selective low-affinity sodium glucose cotransporter (SGLT2) inhibitors, exhibits antidiabetic efficacy in rodent models. J. Pharmacol. Exp. Ther. 327, 268–276 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Fujimori, Y. et al. Sergliflozin etabonate, a selective SGLT2 inhibitor, improves glycemic control in streptozotocin-induced diabetic rats and Zucker fatty rats. Eur. J. Pharmacol. 609, 148–154 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Ferrannini, E. et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J. Clin. Invest. 124, 499–508 (2014). This paper shows that patients with type 2 diabetes who are treated with SGLT2 inhibitors have improved β-cell function and insulin sensitivity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Plosker, G. L. Canagliflozin: a review of its use in patients with type 2 diabetes mellitus. Drugs 74, 807–824 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Forst, T. et al. Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes on background metformin and pioglitazone. Diabetes Obes. Metab. 16, 467–477 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cefalu, W. T. et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet 382, 941–950 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Lapuerta, P. et al. Study design and rationale of a dose-ranging trial of LX4211, a dual inhibitor of SGLT1 and SGLT2, in type 2 diabetes inadequately controlled on metformin monotherapy. Clin. Cardiol. 36, 367–371 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Oliva, R. V. & Bakris, G. L. Blood pressure effects of sodium–glucose co-transport 2 (SGLT2) inhibitors. J. Am. Soc. Hypertens. 8, 330–339 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. George, R. L. & Keenan, R. T. Genetics of hyperuricemia and gout: implications for the present and future. Curr. Rheumatol. Rep. 15, 309 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Terkeltaub, R. Update on gout: new therapeutic strategies and options. Nat. Rev. Rheumatol. 6, 30–38 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Anzai, N. & Endou, H. Urate transporters: an evolving field. Semin. Nephrol. 31, 400–409 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Crittenden, D. B. & Pillinger, M. H. New therapies for gout. Annu. Rev. Med. 64, 325–337 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Harvey, R. J. & Yee, B. K. Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain. Nat. Rev. Drug Discov. 12, 866–885 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Goff, D. C. Bitopertin: the good news and bad news. JAMA Psychiatry 71, 621–622 (2014).

    Article  PubMed  Google Scholar 

  123. Vandenberg, R. J., Ryan, R. M., Carland, J. E., Imlach, W. L. & Christie, M. J. Glycine transport inhibitors for the treatment of pain. Trends Pharmacol. Sci. 35, 423–430 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Claro da Silva, T., Polli, J. E. & Swaan, P. W. The solute carrier family 10 (SLC10): beyond bile acid transport. Mol. Aspects Med. 34, 252–269 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Staels, B. & Fonseca, V. A. Bile acids and metabolic regulation: mechanisms and clinical responses to bile acid sequestration. Diabetes Care 32, S237–S245 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Dawson, P. A. Role of the intestinal bile acid transporters in bile acid and drug disposition. Handb. Exp. Pharmacol. 201, 169–203 (2011).

    Article  CAS  Google Scholar 

  127. Sakamoto, S. et al. Glucuronidation converting methyl 1-(3,4-dimethoxyphenyl)-3-(3-ethylvaleryl)-4-hydroxy-6,7,8-trimethoxy-2-naphthoate (S-8921) to a potent apical sodium-dependent bile acid transporter inhibitor, resulting in a hypocholesterolemic action. J. Pharmacol. Exp. Ther. 322, 610–618 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Oelkers, P., Kirby, L. C., Heubi, J. E. & Dawson, P. A. Primary bile acid malabsorption caused by mutations in the ileal sodium-dependent bile acid transporter gene (SLC10A2). J. Clin. Invest. 99, 1880–1887 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lundasen, T. et al. Inhibition of intestinal bile acid transporter Slc10a2 improves triglyceride metabolism and normalizes elevated plasma glucose levels in mice. PLoS ONE 7, e37787 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Wu, Y. et al. Discovery of a highly potent, nonabsorbable apical sodium-dependent bile acid transporter inhibitor (GSK2330672) for treatment of type 2 diabetes. J. Med. Chem. 56, 5094–5114 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Balakrishnan, A. & Polli, J. E. Apical sodium dependent bile acid transporter (ASBT, SLC10A2): a potential prodrug target. Mol. Pharm. 3, 223–230 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. McCracken, A. N. & Edinger, A. L. Nutrient transporters: the Achilles' heel of anabolism. Trends Endocrinol. Metab. 24, 200–208 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ganapathy, V., Thangaraju, M. & Prasad, P. D. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol. Ther. 121, 29–40 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Chan, D. A. et al. Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci. Transl. Med. 3, 94ra70 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Airley, R. E. & Mobasheri, A. Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: novel pathways and targets for anticancer therapeutics. Chemotherapy 53, 233–256 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Miranda-Goncalves, V. et al. Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets. Neuro Oncol. 15, 172–188 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Le Floch, R. et al. CD147 subunit of lactate/H+ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors. Proc. Natl Acad. Sci. USA 108, 16663–16668 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Provost, J. J. & Wallert, M. A. Inside out: targeting NHE1 as an intracellular and extracellular regulator of cancer progression. Chem. Biol. Drug Des. 81, 85–101 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Loo, S. Y. et al. NHE-1: a promising target for novel anti-cancer therapeutics. Curr. Pharm. Des. 18, 1372–1382 (2012).

    Article  PubMed  Google Scholar 

  140. Imai, H. et al. Inhibition of L-type amino acid transporter 1 has antitumor activity in non-small cell lung cancer. Anticancer Res. 30, 4819–4828 (2010).

    CAS  PubMed  Google Scholar 

  141. Nawashiro, H. et al. L-type amino acid transporter 1 as a potential molecular target in human astrocytic tumors. Int. J. Cancer 119, 484–492 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Hassanein, M. et al. SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival. Clin. Cancer Res. 19, 560–570 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Timmerman, L. A. et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell 24, 450–465 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gout, P. W., Buckley, A. R., Simms, C. R. & Bruchovsky, N. Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the xc cystine transporter: a new action for an old drug. Leukemia 15, 1633–1640 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Kong, F.-L. & Yang, D. J. Amino acid transporter-targeted radiotracers for molecular imaging in oncology. Curr. Med. Chem. 19, 3271–3281 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Guan, Z., Xu, B., Wang, R., Sun, L. & Tian, J. Hyperaccumulation of 18F-FDG in order to differentiate solid pseudopapillary tumors from adenocarcinomas and from neuroendocrine pancreatic tumors and review of the literature. Hell. J. Nucl. Med. 16, 97–102 (2013).

    PubMed  Google Scholar 

  147. Kaira, K., Sunaga, N., Ishizuka, T., Shimizu, K. & Yamamoto, N. The role of [18F]fluorodeoxyglucose positron emission tomography in thymic epithelial tumors. Cancer Imag. 11, 195–201 (2011).

    Google Scholar 

  148. Nogami, T. et al. Occupancy of serotonin and norepinephrine transporter by milnacipran in patients with major depressive disorder: a positron emission tomography study with [11C]DASB and (S,S)-[18F]FMeNER-D2 . Int. J. Neuropsychopharmacol. 16, 937–943 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Takano, A., Halldin, C. & Farde, L. SERT and NET occupancy by venlafaxine and milnacipran in nonhuman primates: a PET study. Psychopharmacology (Berl.) 226, 147–153 (2013).

    Article  CAS  Google Scholar 

  150. Comley, R. A. et al. Monoamine transporter occupancy of a novel triple reuptake inhibitor in baboons and humans using positron emission tomography. J. Pharmacol. Exp. Ther. 346, 311–317 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Lin, S.-C. et al. In vivo detection of monoaminergic degeneration in early Parkinson disease by 18F-9-fluoropropyl-(+)-dihydrotetrabenzazine PET. J. Nucl. Med. 55, 73–79 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Giboureau, N., Som, I. M., Boucher-Arnold, A., Guilloteau, D. & Kassiou, M. PET radioligands for the vesicular acetylcholine transporter (VAChT). Curr. Top. Med. Chem. 10, 1569–1583 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Wulkersdorfer, B. et al. Using positron emission tomography to study transporter-mediated drug-drug interactions in tissues. Clin. Pharmacol. Ther. 96, 206–213 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hume, W. E. et al. The synthesis and biodistribution of [11C]metformin as a PET probe to study hepatobiliary transport mediated by the multi-drug and toxin extrusion transporter 1 (MATE1) in vivo. Bioorg. Med. Chem. 21, 7584–7590 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Bamshad, M. J. et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet. 12, 745–755 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Seitz, S. et al. Pharmacological estrogen administration causes a FSH-independent osteo-anabolic effect requiring ER alpha in osteoblasts. PLoS ONE 7, e50301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Smith, E. P. et al. Impact on bone of an estrogen receptor-α gene loss of function mutation. J. Clin. Endocrinol. Metab. 93, 3088–3096 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Brunham, L. R. & Hayden, M. R. Hunting human disease genes: lessons from the past, challenges for the future. Hum. Genet. 132, 603–617 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Stefanutti, C., Morozzi, C. & Di Giacomo, S. New clinical perspectives of hypolipidemic drug therapy in severe hypercholesterolemia. Curr. Med. Chem. 19, 4861–4868 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Kelley, R. I., Robinson, D., Puffenberger, E. G., Strauss, K. A. & Morton, D. H. Amish lethal microcephaly: a new metabolic disorder with severe congenital microcephaly and 2-ketoglutaric aciduria. Am. J. Med. Genet. 112, 318–326 (2002).

    Article  PubMed  Google Scholar 

  161. Rosenberg, M. J. et al. Mutant deoxynucleotide carrier is associated with congenital microcephaly. Nat. Genet. 32, 175–179 (2002).

    Article  CAS  PubMed  Google Scholar 

  162. Lindhurst, M. J. et al. Knockout of Slc25a19 causes mitochondrial thiamine pyrophosphate depletion, embryonic lethality, CNS malformations, and anemia. Proc. Natl Acad. Sci. USA 103, 15927–15932 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Vallon, V. et al. A role for the organic anion transporter OAT3 in renal creatinine secretion in mice. Am. J. Physiol. Ren. Physiol. 302, F1293–F1299 (2012).

    Article  CAS  Google Scholar 

  164. Chen, J. J. et al. Maintenance of serotonin in the intestinal mucosa and ganglia of mice that lack the high-affinity serotonin transporter: abnormal intestinal motility and the expression of cation transporters. J. Neurosci. 21, 6348–6361 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Schmitt, A. et al. Organic cation transporter capable of transporting serotonin is up-regulated in serotonin transporter-deficient mice. J. Neurosci. Res. 71, 701–709 (2003).

    Article  CAS  PubMed  Google Scholar 

  166. Reidling, J. C., Lambrecht, N., Kassir, M. & Said, H. M. Impaired intestinal vitamin B1 (thiamin) uptake in thiamin transporter-2-deficient mice. Gastroenterology 138, 1802–1809 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Kono, S. et al. Mutations in a thiamine-transporter gene and Wernicke's-like encephalopathy. N. Engl. J. Med. 360, 1792–1794 (2009).

    Article  CAS  PubMed  Google Scholar 

  168. Debs, R. et al. Biotin-responsive basal ganglia disease in ethnic Europeans with novel SLC19A3 mutations. Arch. Neurol. 67, 126–130 (2010).

    Article  PubMed  Google Scholar 

  169. Paulusma, C. C. et al. A mutation in the human canalicular multispecific organic anion transporter gene causes the Dubin–Johnson syndrome. Hepatology 25, 1539–1542 (1997).

    Article  CAS  PubMed  Google Scholar 

  170. Van de Steeg, E. et al. Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver. J. Clin. Invest. 122, 519–528 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Gong, I. Y. & Kim, R. B. Impact of genetic variation in OATP transporters to drug disposition and response. Drug Metab. Pharmacokinet. 28, 4–18 (2013).

    Article  CAS  PubMed  Google Scholar 

  172. Guan, J. et al. The xc cystine/glutamate antiporter as a potential therapeutic target for small-cell lung cancer: use of sulfasalazine. Cancer Chemother. Pharmacol. 64, 463–472 (2009).

    Article  CAS  PubMed  Google Scholar 

  173. Reshkin, S. J., Cardone, R. A. & Harguindey, S. Na+-H+ exchanger, pH regulation and cancer. Recent Pat. Anticancer Drug Discov. 8, 85–99 (2013).

    Article  CAS  PubMed  Google Scholar 

  174. Sundman-Eriksson, I., Blennow, K., Davidsson, P., Dandenell, A.-K. & Marcusson, J. Increased [3H]tiagabine binding to GAT-1 in the cingulate cortex in schizophrenia. Neuropsychobiology 45, 7–11 (2002).

    Article  CAS  PubMed  Google Scholar 

  175. Chue, P. Glycine reuptake inhibition as a new therapeutic approach in schizophrenia: focus on the glycine transporter 1 (GlyT1). Curr. Pharm. Des. 19, 1311–1320 (2013).

    CAS  PubMed  Google Scholar 

  176. Daniels, R. W., Miller, B. R. & DiAntonio, A. Increased vesicular glutamate transporter expression causes excitotoxic neurodegeneration. Neurobiol. Dis. 41, 415–420 (2011).

    Article  CAS  PubMed  Google Scholar 

  177. Hinoi, E., Takarada, T., Tsuchihashi, Y. & Yoneda, Y. Glutamate transporters as drug targets. Curr. Drug Targets CNS Neurol. Disord. 4, 211–220 (2005).

    Article  CAS  PubMed  Google Scholar 

  178. Lehenkari, P. P. et al. Further insight into mechanism of action of clodronate: inhibition of mitochondrial ADP/ATP translocase by a nonhydrolyzable, adenine-containing metabolite. Mol. Pharmacol. 61, 1255–1262 (2002).

    Article  CAS  PubMed  Google Scholar 

  179. Lin, C. L. G. et al. Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron 20, 589–602 (1998).

    Article  CAS  PubMed  Google Scholar 

  180. Yatomi, Y. et al. Chronic brain ischemia induces the expression of glial glutamate transporter EAAT2 in subcortical white matter. Neuroscience 244, 113–121 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Abrahamsen, B. et al. Allosteric modulation of an excitatory amino acid transporter: the subtype-selective inhibitor UCPH-101 exerts sustained inhibition of EAAT1 through an intramonomeric site in the trimerization domain. J. Neurosci. 33, 1068–1087 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Huynh, T. H. et al. Structure–activity relationship study of selective excitatory amino acid transporter subtype 1 (EAAT1) inhibitor 2-amino-4-(4-methoxyphenyl)-7-(naphthalen-1-yl)-5-oxo-5,6,7,8-tetrahydro-4H-chrom ene-3-carbonitrile (UCPH-101) and absolute configurational assignment using infrared and vibrational circular dichroism spectroscopy in combination with ab initio Hartree–Fock calculations. J. Med. Chem. 55, 5403–5412 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Kanai, Y. et al. The SLC1 high-affinity glutamate and neutral amino acid transporter family. Mol. Asp. Med. 34, 108–120 (2013).

    Article  CAS  Google Scholar 

  184. Takebayashi, R. et al. [18F] Fluorodeoxyglucose accumulation as a biological marker of hypoxic status but not glucose transport ability in gastric cancer. J. Exp. Clin. Cancer Res. 32, 34 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Mertens, K., Mees, G., Lambert, B., Van de Wiele, C. & Goethals, I. In vitro 2-deoxy-2-[18F]fluoro-D-glucose uptake: practical considerations. Cancer Biother. Radiopharm. 27, 183–188 (2012).

    Article  CAS  PubMed  Google Scholar 

  186. Liu, Y. et al. A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol. Cancer Ther. 11, 1672–1682 (2012).

    Article  CAS  PubMed  Google Scholar 

  187. Zambrowicz, B. et al. LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control in patients with type 2 diabetes in a randomized, placebo-controlled trial. Clin. Pharmacol. Ther. 92, 158–169 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Gorboulev, V. et al. Na+–d-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61, 187–196 (2012).

    Article  CAS  PubMed  Google Scholar 

  189. Feld, L. G. Renal glycosuria. Dayton Children's [online], (2003).

    Google Scholar 

  190. Weeks, A. J. et al. Evaluation of [18F]-tetrafluoroborate as a potential PET imaging agent for the human sodium/iodide symporter in a new colon carcinoma cell line, HCT116, expressing hNIS. Nucl. Med. Commun. 32, 98–105 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Jauregui-Osoro, M. et al. Synthesis and biological evaluation of [18F]tetrafluoroborate: a PET imaging agent for thyroid disease and reporter gene imaging of the sodium/iodide symporter. Eur. J. Nucl. Med. Mol. Imag. 37, 2108–2116 (2010).

    Article  CAS  Google Scholar 

  192. Jeon, B. et al. Dopamine transporter imaging with [123I]-β-CIT demonstrates presynaptic nigrostriatal dopaminergic damage in Wilson's disease. J. Neurol. Neurosurg. Psychiatry 65, 60–64 (1997).

    Article  Google Scholar 

  193. Jeon, B. S. et al. Dopamine transporter density measured by [123I]β-CIT single-photon emission computed tomography is normal in dopa-responsive dystonia. Ann. Neurol. 43, 792–800 (1998).

    Article  CAS  PubMed  Google Scholar 

  194. Morita, K. et al. Spinal antiallodynia action of glycine transporter inhibitors in neuropathic pain models in mice. J. Pharmacol. Exp. Ther. 326, 633–645 (2008).

    Article  CAS  PubMed  Google Scholar 

  195. Yoshikawa, S., Oguchi, T., Funahashi, Y., de Groat, W. C. & Yoshimura, N. Glycine transporter type 2 (GlyT2) inhibitor ameliorates bladder overactivity and nociceptive behavior in rats. Eur. Urol. 62, 704–712 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Kurosawa, Y. et al. Cyclocreatine treatment improves cognition in mice with creatine transporter deficiency. J. Clin. Invest. 122, 2837–2846 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Trotier-Faurion, A. et al. Synthesis and biological evaluation of new creatine fatty esters revealed dodecyl creatine ester as a promising drug candidate for the treatment of the creatine transporter deficiency. J. Med. Chem. 56, 5173–5181 (2013).

    Article  CAS  PubMed  Google Scholar 

  198. Mercimek-Mahmutoglu, S. et al. Treatment of intractable epilepsy in a female with SLC6A8 deficiency. Mol. Genet. Metab. 101, 409–412 (2010).

    Article  CAS  PubMed  Google Scholar 

  199. Sakamoto, S. et al. Identification of the transporters involved in the hepatobiliary transport and intestinal efflux of methyl 1-(3,4-dimethoxyphenyl)-3-(3-ethylvaleryl)-4-hydroxy-6,7,8-trimethoxy-2-naphthoate (S-8921) glucuronide, a pharmacologically active metabolite of S-8921. Drug Metab. Dispos. 36, 1553–1561 (2008).

    Article  CAS  PubMed  Google Scholar 

  200. Rais, R., Fletcher, S. & Polli, J. E. Synthesis and in vitro evaluation of gabapentin prodrugs that target the human apical sodium-dependent bile acid transporter (hASBT). J. Pharm. Sci. 100, 1184–1195 (2011).

    Article  CAS  PubMed  Google Scholar 

  201. Pinheiro, C. et al. Monocarboxylate transporter 1 is up-regulated in basal-like breast carcinoma. Histopathology 56, 860–867 (2010).

    Article  PubMed  Google Scholar 

  202. Kennedy, K. M. & Dewhirst, M. W. Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Futur. Oncol. 6, 127–148 (2010).

    Article  CAS  Google Scholar 

  203. Murray, C. M. et al. Monocarboxylate transporter MCT1 is a target for immunosuppression. Nat. Chem. Biol. 1, 371–376 (2005).

    Article  CAS  PubMed  Google Scholar 

  204. Polanski, R. et al. Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in small cell lung cancer. Clin. Cancer Res. 20, 926–937 (2014).

    Article  CAS  PubMed  Google Scholar 

  205. Patel, S. A., Nagy, J. O., Bolstad, E. D., Gerdes, J. M. & Thompson, C. M. Tetrapeptide inhibitors of the glutamate vesicular transporter (VGLUT). Bioorg. Med. Chem. Lett. 17, 5125–5128 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Carrigan, C. N. et al. Synthesis and in vitro pharmacology of substituted quinoline-2,4-dicarboxylic acids as inhibitors of vesicular glutamate transport. J. Med. Chem. 45, 2260–2276 (2002).

    Article  CAS  PubMed  Google Scholar 

  207. Zhang, Q. et al. The Janus kinase 2 inhibitor fedratinib inhibits thiamine uptake: a putative mechanism for the onset of Wernicke's encephalopathy. Drug Metab. Dispos. 42, 1656–1662 (2014).

    Article  CAS  PubMed  Google Scholar 

  208. Iwai, N. et al. A high prevalence of renal hypouricemia caused by inactive SLC22A12 in Japanese. Kidney Int. 66, 935–944 (2004).

    Article  CAS  PubMed  Google Scholar 

  209. Iacobazzi, V. et al. Statins, fibrates and retinoic acid upregulate mitochondrial acylcarnitine carrier gene expression. Biochem. Biophys. Res. Commun. 388, 643–647 (2009).

    Article  CAS  PubMed  Google Scholar 

  210. Alasti, F., Van Camp, G. & Smith, R. J. Pendred syndrome/DFNB4. GeneReviews [online], (2014).

    Google Scholar 

  211. Soleimani, M. A novel target for diuretic therapy. Iran. J. Kidney Dis. 6, 419–425 (2012).

    PubMed  Google Scholar 

  212. Bali, D. S., Chen, Y.-T. & Goldstein, J. L. Glycogen storage disease type I. GeneReviews [online], (2013).

    Google Scholar 

  213. Yiu, W. H. et al. Normoglycemia alone is insufficient to prevent long-term complications of hepatocellular adenoma in glycogen storage disease type Ib mice. J. Hepatol 51, 909–917 (2009) (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Lee, Y. M. et al. Prevention of hepatocellular adenoma and correction of metabolic abnormalities in murine glycogen storage disease type Ia by gene therapy. Hepatology 56, 1719–1729 (2012).

    Article  CAS  PubMed  Google Scholar 

  215. Yang, Z. et al. Kinetics and specificity of feline leukemia virus subgroup C receptor (FLVCR) export function and its dependence on hemopexin. J. Biol. Chem. 285, 28874–28882 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the following funding sources: a US National Institutes of Health (NIH) Training Grant (T32 GM007175) to L.L; an NIH grant (GM61390) to S.W.Y.; an NIH Pharmacogenomics Research Network grant (GM61390) and a Burroughs Wellcome Fund Innovation in Regulatory Sciences grant (1012485, DK103729) to K.M.G.; and a Canadian Institutes of Health Research grant (MOP-89753, DSEN-PREVENT FRN-117588), the Ontario Institutes for Cancer Research, Cancer Care Ontario, and the Program of Experimental Medicine in the Department of Medicine at Western University, in Ontario, Canada, to R.B.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen M. Giacomini.

Ethics declarations

Competing interests

K.M.G. is a co-founder of Apricity Therapeutics and has received grants from Pfizer, Sanofi–Aventis, AstraZeneca and GlaxoSmithKline, and has a patent pending. S.W.Y. is a co-founder of Apricity Therapeutics and has a patent pending. R.B.K. has a patent pending.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

SLC transporter-associated Mendelian diseases. The transporters associated with Mendelian diseases and prevalence data on each disease are provided. (PDF 363 kb)

Supplementary information S2 (table)

SLC transporter genes and associated Mendelian diseases. (PDF 1152 kb)

Glossary

Mendelian diseases

Disorders that are caused by mutations in a single gene and follow Mendelian inheritance patterns.

Genome-wide association studies

(GWASs). Studies of multiple genetic variants across the genome in many individuals, looking for association with a given trait. In most GWASs, more than 500,000 genetic variants across the genome are examined for association with a certain trait of some individuals that does not appear in others.

Z′ assay sensitivity factor

A measure of statistical effect size that takes into account the mean and standard deviation of both the positive and the negative controls.

Pharmacophore modelling

Use of a geometric description of the chemical functions of a target protein to generate and use 3D structural information to search for novel active compounds. Models may be generated by either ligand-based or structure-based methods.

Quantitative structure–activity relationship (QSAR) modelling

Use of a regression model to find relationships between the physical or chemical properties and the biological activity of a molecule, based on the assumption that these features are related.

Docking

A computational method used to predict the orientation of molecules during interactions with a target protein.

Homology models

Molecular models of a target protein created from its amino acid sequence and the 3D structure of a homologous protein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Yee, S., Kim, R. et al. SLC transporters as therapeutic targets: emerging opportunities. Nat Rev Drug Discov 14, 543–560 (2015). https://doi.org/10.1038/nrd4626

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4626

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing