Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting the sarcomere to correct muscle function

Key Points

  • The sarcomere is the most basic contractile unit in skeletal and cardiac muscle. Mutations in genes encoding sarcomeric proteins give rise to heritable myopathies, although muscle function is more commonly compromised by acquired neuromuscular or cardiac disease.

  • Sarcomeric modulators act on sarcomeric proteins to promote contraction or relaxation either by direct binding to specific sarcomeric proteins or by modulating signalling pathways.

  • Some phosphodiesterase 3 (PDE3) inhibitors increase cardiac contractility by acting as calcium mobilizers or calcium sensitizers, although the mechanisms underlying this difference are currently unclear. All PDE3 inhibitors are associated with arrhythmias and hypotension as side effects.

  • Myosin is the molecular motor that drives muscle contraction. Omecamtiv mecarbil (developed by Cytokinetics) is the first cardiac myosin activator to be tested in clinical trials for the treatment of heart failure with reduced ejection fraction.

  • The troponin complex switches muscle contraction on and off in response to calcium. There are several calcium-sensitizing compounds that act on the fast skeletal isoforms of troponin C and troponin I, which are currently in clinical and preclinical testing.

Abstract

Various human diseases can disrupt the balance between muscle contraction and relaxation. Sarcomeric modulators can be used to readjust this balance either indirectly by intervening in signalling pathways or directly through interaction with the muscle proteins that control contraction. Such agents represent a novel approach to treating any condition in which striated muscle function is compromised, including heart failure, cardiomyopathies, skeletal myopathies and a wide range of neuromuscular conditions. Here, we review agents that modulate the mechanical function of the sarcomere, focusing on emerging compounds that target myosin or the troponin complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic structure of the sarcomere.
Figure 2: The multi-domain structure of myosin as it relates to the actin–myosin crossbridging cycle.
Figure 3: Three-dimensional structure of the regulatory N-terminal domain of cardiac troponin C.

Similar content being viewed by others

References

  1. Huxley, H. & Hanson, J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173, 973–976 (1954).

    Article  CAS  PubMed  Google Scholar 

  2. Knoll, R. & Marston, S. On mechanosensation, acto/myosin interaction, and hypertrophy. Trends Cardiovasc. Med. 22, 17–22 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Kolb, S. J. & Kissel, J. T. Spinal muscular atrophy: a timely review. Arch. Neurol. 68, 979–984 (2011).

    Article  PubMed  Google Scholar 

  4. Rowland, L. P. & Shneider, N. A. Amyotrophic lateral sclerosis. N. Engl. J. Med. 344, 1688–1700 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Shefner, J. M., Wolff, A. A. & Meng, L. The relationship between tirasemtiv serum concentration and functional outcomes in patients with ALS. Amyotroph. Lateral Scler. Frontotemporal Degener. 14, 582–585 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Chou, R., Peterson, K. & Helfand, M. Comparative efficacy and safety of skeletal muscle relaxants for spasticity and musculoskeletal conditions: a systematic review. J. Pain Symptom Manage. 28, 140–175 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Desai, A. S. & Stevenson, L. W. Rehospitalization for heart failure: predict or prevent? Circulation 126, 501–506 (2012).

    Article  PubMed  Google Scholar 

  8. Curtis, J. P. et al. The association of left ventricular ejection fraction, mortality, and cause of death in stable outpatients with heart failure. J. Am. Coll. Cardiol. 42, 736–742 (2003).

    Article  PubMed  Google Scholar 

  9. Lam, C. S., Donal, E., Kraigher-Krainer, E. & Vasan, R. S. Epidemiology and clinical course of heart failure with preserved ejection fraction. Eur. J. Heart Fail. 13, 18–28 (2011).

    Article  PubMed  Google Scholar 

  10. Lovelock, J. D. et al. Ranolazine improves cardiac diastolic dysfunction through modulation of myofilament calcium sensitivity. Circ. Res. 110, 841–850 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boswell-Smith, V., Spina, D. & Page, C. P. Phosphodiesterase inhibitors. Br. J. Pharmacol. 14, S252–S257 (2006).

    Article  CAS  Google Scholar 

  12. Bers, D. M. Calcium fluxes involved in control of cardiac myocyte contraction. Circ. Res. 87, 275–281 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Marks, A. R. Calcium cycling proteins and heart failure: mechanisms and therapeutics. J. Clin. Invest. 123, 46–52 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gailly, P. New aspects of calcium signaling in skeletal muscle cells: implications in Duchenne muscular dystrophy. Biochim. Biophys. Acta 1600, 38–44 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Stanley, W. C., Recchia, F. A. & Lopaschuk, G. D. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 85, 1093–1129 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Egan, B. & Zierath, J. R. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell. Metab. 17, 162–184 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. McCarthy, J. J. & Esser, K. A. Anabolic and catabolic pathways regulating skeletal muscle mass. Curr. Opin. Clin. Nutr. Metab. Care 13, 230–235 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Frey, N. & Olson, E. N. Cardiac hypertrophy: the good, the bad, and the ugly. Annu. Rev. Physiol. 65, 45–79 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Barry, S. P., Davidson, S. M. & Townsend, P. A. Molecular regulation of cardiac hypertrophy. Int. J. Biochem. Cell Biol. 40, 2023–2039 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Endoh, M. Amrinone, forerunner of novel cardiotonic agents, caused paradigm shift of heart failure pharmacotherapy. Circ. Res. 113, 358–361 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Sato, S., Talukder, M. A., Sugawara, H., Sawada, H. & Endoh, M. Effects of levosimendan on myocardial contractility and Ca2+ transients in aequorin-loaded right-ventricular papillary muscles and indo-1-loaded single ventricular cardiomyocytes of the rabbit. J. Mol. Cell Cardiol 30, 1115–1128 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Kawabata, Y. & Endoh, M. Effects of the positive inotropic agent Org 30029 on developed force and aequorin light transients in intact canine ventricular myocardium. Circ. Res. 72, 597–606 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Miller, D. J. & Steele, D. S. The 'calcium sensitising' effects of ORG30029 in saponin- or Triton-skinned rat cardiac muscle. Br. J. Pharmacol. 100, 843–849 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Solaro, R. J., Pang, D. C. & Briggs, F. N. The purification of cardiac myofibrils with Triton X-100. Biochim. Biophys. Acta 245, 259–262 (1971).

    Article  CAS  PubMed  Google Scholar 

  25. Fiske, C. H. & Subbarow, Y. The colorimetric determination of phosphorus. J. Biol. Chem. 66, 375–400 (1925).

    Article  CAS  Google Scholar 

  26. Papp, Z. et al. Levosimendan: molecular mechanisms and clinical implications: consensus of experts on the mechanisms of action of levosimendan. Int. J. Cardiol. 159, 82–87 (2012).

    Article  PubMed  Google Scholar 

  27. Boyle, K. L. & Leech, E. A review of the pharmacology and clinical uses of pimobendan. J. Vet. Emerg. Crit. Care (San Antonio) 22, 398–408 (2012).

    Article  Google Scholar 

  28. van Meel, J. C., Zimmermann, R., Diederen, W., Erdman, E. & Mrwa, U. Increase in calcium sensitivity of cardiac myofibrils contributes to the cardiotonic action of sulmazole. Biochem. Pharmacol. 37, 213–220 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Bethke, T. et al. High selectivity for inhibition of phosphodiesterase III and positive inotropic effects of MCI-154 in guinea pig myocardium. J. Cardiovasc. Pharmacol. 21, 847–855 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Sugawara, H. et al. Investigation on SCH00013, a novel cardiotonic agent with Ca++ sensitizing action. 3rd communication: stereoselectivity of the enantiomers in cardiovascular effects. Arzneimittelforschung 49, 412–419 (1999).

    CAS  PubMed  Google Scholar 

  31. de Boer, J. et al. Human bronchial cyclic nucleotide phosphodiesterase isoenzymes: biochemical and pharmacological analysis using selective inhibitors. Br. J. Pharmacol. 106, 1028–1034 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Keravis, T. & Lugnier, C. Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br. J. Pharmacol. 165, 1288–1305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bethke, T. et al. Phosphodiesterase inhibition by enoximone in preparations from nonfailing and failing human hearts. Arzneimittelforschung 42, 437–445 (1992).

    CAS  PubMed  Google Scholar 

  34. Szilagyi, S. et al. The effects of levosimendan and OR-1896 on isolated hearts, myocyte-sized preparations and phosphodiesterase enzymes of the guinea pig. Eur. J. Pharmacol. 486, 67–74 (2004). A detailed study of the effective concentrations of levosimendan and its active metabolite, OR-1896, with respect to positive inotropic activity, calcium sensitization and inhibition of PDE3 and PDE4.

    Article  CAS  PubMed  Google Scholar 

  35. Mika, D. et al. Differential regulation of cardiac excitation–contraction coupling by cAMP phosphodiesterase subtypes. Cardiovasc. Res. 100, 336–346 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Roubille, F. & Tardif, J. C. New therapeutic targets in cardiology: heart failure and arrhythmia: HCN channels. Circulation 127, 1986–1996 (2013).

    Article  PubMed  Google Scholar 

  37. Perera, R. K. & Nikolaev, V. O. Compartmentation of cAMP signalling in cardiomyocytes in health and disease. Acta Physiol. (Oxf.) 207, 650–662 (2013).

    Article  CAS  Google Scholar 

  38. Cazorla, O., Lucas, A., Poirier, F., Lacampagne, A. & Lezoualc'h, F. The cAMP binding protein Epac regulates cardiac myofilament function. Proc. Natl Acad. Sci. USA 106, 14144–14149 (2009). A unique study showing that cardiac calcium sensitivity can be enhanced through a novel pathway involving EPAC, PKC, calcium/calmodulin kinase II, and an uncharacterized phosphorylation site on cardiac troponin I.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wendt, I. R. & Stephenson, D. G. Effects of caffeine on Ca-activated force production in skinned cardiac and skeletal muscle fibres of the rat. Pflugers Arch. 398, 210–216 (1983).

    Article  CAS  PubMed  Google Scholar 

  40. Parsons, W. J., Ramkumar, V. & Stiles, G. L. The new cardiotonic agent sulmazole is an A1 adenosine receptor antagonist and functionally blocks the inhibitory regulator, Gi. Mol. Pharmacol. 33, 441–448 (1988). This study uniquely describes the cross-reactivity between PDE3 inhibition and adenosine receptor antagonism of several compounds.

    CAS  PubMed  Google Scholar 

  41. Kitada, Y., Kobayashi, M., Narimatsu, A. & Ohizumi, Y. Potent stimulation of myofilament force and adenosine triphosphatase activity of canine cardiac muscle through a direct enhancement of troponin C Ca++ binding by MCI-154, a novel cardiotonic agent. J. Pharmacol. Exp. Ther. 250, 272–277 (1989).

    CAS  PubMed  Google Scholar 

  42. Haikala, H. et al. Cardiac troponin C as a target protein for a novel calcium sensitizing drug, levosimendan. J. Mol. Cell Cardiol. 27, 1859–1866 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Pollesello, P. et al. Binding of a new Ca2+ sensitizer, levosimendan, to recombinant human cardiac troponin C. A molecular modelling, fluorescence probe, and proton nuclear magnetic resonance study. J. Biol. Chem. 269, 28584–28590 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Kleerekoper, Q. & Putkey, J. A. Drug binding to cardiac troponin C. J. Biol. Chem. 274, 23932–23939 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Sorsa, T., Pollesello, P., Permi, P., Drakenberg, T. & Kilpelainen, I. Interaction of levosimendan with cardiac troponin C in the presence of cardiac troponin I peptides. J. Mol. Cell Cardiol. 35, 1055–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Robertson, I. M., Baryshnikova, O. K., Li, M. X. & Sykes, B. D. Defining the binding site of levosimendan and its analogues in a regulatory cardiac troponin C-troponin I complex. Biochemistry 47, 7485–7495 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Sorsa, T. et al. Binding of levosimendan, a calcium sensitizer, to cardiac troponin C. J. Biol. Chem. 276, 9337–9343 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Orstavik, O. et al. PDE3-inhibition by levosimendan is sufficient to account for its inotropic effect in failing human heart. Br. J. Pharmacol. 171, 5169–5181 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bodi, A., Szilagyi, S., Edes, I. & Papp, Z. The cardiotonic effects of levosimendan in guinea pig hearts are modulated by β-adrenergic stimulation. Gen. Physiol. Biophys. 22, 313–327 (2003).

    CAS  PubMed  Google Scholar 

  50. Erdei, N., Papp, Z., Pollesello, P., Edes, I. & Bagi, Z. The levosimendan metabolite OR-1896 elicits vasodilation by activating the KATP and BKCa channels in rat isolated arterioles. Br. J. Pharmacol. 148, 696–702 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yoshida, H. et al. A phosphodiesterase 3 inhibitor, K-134, improves hindlimb skeletal muscle circulation in rat models of peripheral arterial disease. Atherosclerosis 221, 84–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Nieminen, M. S. et al. Levosimendan: current data, clinical use and future development. Heart Lung Vessel 5, 227–245 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Landoni, G. et al. Effects of levosimendan on mortality and hospitalization. A meta-analysis of randomized controlled studies. Crit. Care Med. 40, 634–646 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Mebazaa, A. et al. Levosimendan versus dobutamine for patients with acute decompensated heart failure: the SURVIVE randomized trial. JAMA 297, 1883–1891 (2007). A report of one of the largest multi-centre trials involving the calcium sensitizer levosimendan, showing no mortality benefit, which is in contrast to several smaller trials.

    Article  CAS  PubMed  Google Scholar 

  55. Packer, M. et al. Effect of levosimendan on the short-term clinical course of patients with acutely decompensated heart failure. JACC Heart Fail. 1, 103–111 (2013). This study reports the REVIVE II trial results on levosimedan, which had a similar outcome to the SURVIVE trial. Publication of the REVIVE II results was delayed for many years.

    Article  PubMed  Google Scholar 

  56. Packer, M. et al. Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N. Engl. J. Med. 325, 1468–1475 (1991).

    Article  CAS  PubMed  Google Scholar 

  57. Amsallem, E., Kasparian, C., Haddour, G., Boissel, J. P. & Nony, P. Phosphodiesterase III inhibitors for heart failure. Cochrane Database Syst. Rev. 1, CD002230 (2005).

    Google Scholar 

  58. Yancy, C. W. et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol 62, e147–e239 (2013).

    Article  PubMed  Google Scholar 

  59. McMurray, J. J. et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 33, 1787–1847 (2012).

    Article  PubMed  Google Scholar 

  60. Baudenbacher, F. et al. Myofilament Ca2+ sensitization causes susceptibility to cardiac arrhythmia in mice. J. Clin. Invest. 118, 3893–3903 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Parry, D. A. & Squire, J. M. Structural role of tropomyosin in muscle regulation: analysis of the X-ray diffraction patterns from relaxed and contracting muscles. J. Mol. Biol. 75, 33–55 (1973).

    Article  CAS  PubMed  Google Scholar 

  62. Li, M. X., Spyracopoulos, L. & Sykes, B. D. Binding of cardiac troponin-I147-163 induces a structural opening in human cardiac troponin-C. Biochemistry 38, 8289–8298 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Rieck, D. C., Li, K. L., Ouyang, Y., Solaro, R. J. & Dong, W. J. Structural basis for the in situ Ca2+ sensitization of cardiac troponin C by positive feedback from force-generating myosin cross-bridges. Arch. Biochem. Biophys. 537, 198–209 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Sweeney, H. L. & Houdusse, A. Structural and functional insights into the myosin motor mechanism. Annu. Rev. Biophys. 39, 539–557 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Webb, M. et al. The myosin duty ratio tunes the calcium sensitivity and cooperative activation of the thin filament. Biochemistry 52, 6437–6444 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Margossian, S. S. & Lowey, S. Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods Enzymol. 85, 55–71 (1982).

    Article  CAS  PubMed  Google Scholar 

  67. Pardee, J. D. & Spudich, J. A. Purification of muscle actin. Methods Enzymol. 85, 164–181 (1982).

    Article  CAS  PubMed  Google Scholar 

  68. Smillie, L. B. Preparation and identification of α- and β-tropomyosins. Methods Enzymol. 85, 234–241 (1982).

    Article  CAS  PubMed  Google Scholar 

  69. Potter, J. D. Preparation of troponin and its subunits. Methods Enzymol. 85, 241–263 (1982).

    Article  CAS  PubMed  Google Scholar 

  70. Spudich, J. A. & Watt, S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin–troponin complex with actin and the proteolytic fragments of myosin. J. Biol. Chem. 246, 4866–4871 (1971). A classical paper describing the purification and reconstitution of myosin fragments, actin, troponin and tropomyosin.

    Article  CAS  PubMed  Google Scholar 

  71. Malik, F. I. & Morgan, B. P. Cardiac myosin activation part 1: from concept to clinic. J. Mol. Cell Cardiol 51, 454–461 (2011). A detailed description of the compound screening and development strategy that produced the cardiac myosin activator omecamtiv mecarbil.

    Article  CAS  PubMed  Google Scholar 

  72. Malik, F. I. et al. Cardiac myosin activation: a potential therapeutic approach for systolic heart failure. Science 331, 1439–1443 (2011). A comprehensive study of the binding of omecamtiv mecarbil to myosin, its effects on the actin–myosin crossbridging cycle, and its physiological effects on the heart.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang, Y., Ajtai, K. & Burghardt, T. P. Analytical comparison of natural and pharmaceutical ventricular myosin activators. Biochemistry 53, 5298–5306 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Wolska, B. M. et al. CGP-48506 increases contractility of ventricular myocytes and myofilaments by effects on actin–myosin reaction. Am. J. Physiol. 270, H24–H32 (1996).

    CAS  PubMed  Google Scholar 

  75. Palmer, S., Di Bello, S., Davenport, S. L. & Herzig, J. W. The novel inotropic agent CGP 48506 alters force primarily by Ca2+-independent mechanisms in porcine skinned trabeculae. Cardiovasc. Res. 32, 411–421 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Brixius, K., Mehlhorn, U., Bloch, W. & Schwinger, R. H. Different effect of the Ca2+ sensitizers EMD 57033 and CGP 48506 on cross-bridge cycling in human myocardium. J. Pharmacol. Exp. Ther. 295, 1284–1290 (2000). A study of the contrasting effects of two myosin activators, EMD 57033 and CGP 48506, and one myosin inhibitor, butanedione monoxime, on calcium sensitivity, actin–myosin crossbridge cycling, force generation and tension cost.

    CAS  PubMed  Google Scholar 

  77. Ferroni, C. et al. A novel positive inotropic substance enhances contractility without increasing the Ca2+ transient in rat myocardium. J. Mol. Cell Cardiol. 23, 325–331 (1991).

    Article  CAS  PubMed  Google Scholar 

  78. Solaro, R. J. et al. Stereoselective actions of thiadiazinones on canine cardiac myocytes and myofilaments. Circ. Res. 73, 981–990 (1993). These authors show that EMD 57033 acts directly on the actin–myosin crossbridging cycle, making it one of the earliest identified myosin activators. Its enantiomer, EMD 57439, does not share this activity and is a more potent PDE inhibitor.

    Article  CAS  PubMed  Google Scholar 

  79. Radke, M. B. et al. Small molecule-mediated refolding and activation of myosin motor function. Elife 3, e01603 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Bond, L. M., Tumbarello, D. A., Kendrick-Jones, J. & Buss, F. Small-molecule inhibitors of myosin proteins. Future Med. Chem. 5, 41–52 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Allingham, J. S., Smith, R. & Rayment, I. The structural basis of blebbistatin inhibition and specificity for myosin II. Nature Struct. Mol. Biol. 12, 378–379 (2005). This paper reports the atomic resolution structure of a sarcomeric myosin modulator, blebbistatin, bound to myosin. Other myosin modulators are believed to bind to different sites.

    Article  CAS  Google Scholar 

  82. Kovacs, M., Toth, J., Hetenyi, C., Malnasi-Csizmadia, A. & Sellers, J. R. Mechanism of blebbistatin inhibition of myosin II. J. Biol. Chem. 279, 35557–35563 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Rodriguez, H. M. et al. Modulation of the cardiac sarcomere by a small molecule agent MYK0000461: a potential therapeutic for the treatment of genetic hypertrophic cardiomyopathies. Biophys. J. 106, 562a (2015).

    Article  Google Scholar 

  84. Teerlink, J. R. et al. Dose-dependent augmentation of cardiac systolic function with the selective cardiac myosin activator, omecamtiv mecarbil: a first-in-man study. Lancet 378, 667–675 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Cleland, J. G. et al. The effects of the cardiac myosin activator, omecamtiv mecarbil, on cardiac function in systolic heart failure: a double-blind, placebo-controlled, crossover, dose-ranging phase 2 trial. Lancet 378, 676–683 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Teerlink, J. R. & McDonagh, T. ATOMIC-AHF: acute treatment with omecamtiv mecarbil to increase contractility in acute heart failure: results from ATOMIC-AHF. European Society of Cardiology [online], (2013).

  87. Li, M. X. et al. Kinetic studies of calcium and cardiac troponin I peptide binding to human cardiac troponin C using NMR spectroscopy. Eur. Biophys. J. 31, 245–256 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Takeda, S., Yamashita, A., Maeda, K. & Maeda, Y. Structure of the core domain of human cardiac troponin in the Ca2+-saturated form. Nature 424, 35–41 (2003). This important X-ray crystal structure remains the most comprehensive model of the cardiac troponin complex to date.

    Article  CAS  PubMed  Google Scholar 

  89. Davis, J. P. et al. Effects of thin and thick filament proteins on calcium binding and exchange with cardiac troponin C. Biophys. J. 92, 3195–3206 (2007). A fluorescently labelled cardiac troponin C effectively probes calcium affinity of the troponin complex in the presence of tropomyosin, actin and myosin, demonstrating how calcium sensitivity can be affected by all of these components.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pineda-Sanabria, S. E., Julien, O. & Sykes, B. D. Versatile cardiac troponin chimera for muscle protein structural biology and drug discovery. ACS Chem. Biol. 9, 2121–2130 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Itoh, H., Tanaka, T., Mitani, Y. & Hidaka, H. The binding of the calcium channel blocker, bepridil, to calmodulin. Biochem. Pharmacol. 35, 217–220 (1986).

    Article  CAS  PubMed  Google Scholar 

  92. Solaro, R. J., Bousquet, P. & Johnson, J. D. Stimulation of cardiac myofilament force, ATPase activity and troponin C Ca++ binding by bepridil. J. Pharmacol. Exp. Ther. 238, 502–507 (1986).

    CAS  PubMed  Google Scholar 

  93. Li, Y., Love, M. L., Putkey, J. A. & Cohen, C. Bepridil opens the regulatory N-terminal lobe of cardiac troponin C. Proc. Natl Acad. Sci. USA 97, 5140–5145 (2000). An X-ray crystal structure demonstrating how the calcium sensitizer bepridil stabilizes the calcium-bound open conformation of the regulatory N-terminal domain of troponin C.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, X., Li, M. X. & Sykes, B. D. Structure of the regulatory N-domain of human cardiac troponin C in complex with human cardiac troponin I147-163 and bepridil. J. Biol. Chem. 277, 31124–31133 (2002). NMR structures demonstrating how the calcium sensitizer bepridil binds in the interface between troponin C and the switch region of troponin I.

    Article  CAS  PubMed  Google Scholar 

  95. Vinogradova, M. V. et al. Ca2+-regulated structural changes in troponin. Proc. Natl Acad. Sci. USA 102, 5038–5043 (2005). This crystal structure of the fast skeletal muscle troponin complex serendipitously shows how anapoe detergent (used to enhance crystallization) binds to the interface between troponin C and troponin I to act as a calcium sensitizer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Silver, P. J., Pinto, P. B. & Dachiw, J. Modulation of vascular and cardiac contractile protein regulatory mechanisms by calmodulin inhibitors and related compounds. Biochem. Pharmacol. 35, 2545–2551 (1986).

    Article  CAS  PubMed  Google Scholar 

  97. Adhikari, B. B. & Wang, K. Interplay of troponin- and myosin-based pathways of calcium activation in skeletal and cardiac muscle: the use of W7 as an inhibitor of thin filament activation. Biophys. J. 86, 359–370 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li, M. X., Hoffman, R. M. & Sykes, B. D. Interaction of cardiac troponin C with calmodulin antagonist [corrected] W7 in the presence of three functional regions of cardiac troponin I. Biochemistry 45, 9833–9840 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Oleszczuk, M., Robertson, I. M., Li, M. X. & Sykes, B. D. Solution structure of the regulatory domain of human cardiac troponin C in complex with the switch region of cardiac troponin I and W7: the basis of W7 as an inhibitor of cardiac muscle contraction. J. Mol. Cell Cardiol. 48, 925–933 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Russell, A. J. et al. Activation of fast skeletal muscle troponin as a potential therapeutic approach for treating neuromuscular diseases. Nature Med. 18, 452–455 (2012). A demonstration of the troponin-binding properties and muscle-activating effects of tirasemtiv, the first high-affinity fast skeletal muscle troponin activator to be tested in clinical trials.

    Article  CAS  PubMed  Google Scholar 

  101. Bauer, T. A. et al. Effect of tirasemtiv, a selective activator of the fast skeletal muscle troponin complex, in patients with peripheral artery disease. Vasc. Med. 19, 297–306 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Shefner, J. M., Watson, M. L., Meng, L. & Wolff, A. A. A study to evaluate safety and tolerability of repeated doses of tirasemtiv in patients with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 14, 574–581 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. de Winter, J. M. et al. Troponin activator augments muscle force in nemaline myopathy patients with nebulin mutations. J. Med. Genet. 50, 383–392 (2013).

    Article  PubMed  Google Scholar 

  104. Spyracopoulos, L. et al. Calcium-induced structural transition in the regulatory domain of human cardiac troponin C. Biochemistry 36, 12138–12146 (1997).

    Article  CAS  PubMed  Google Scholar 

  105. Herron, T. J. et al. Ca2+-independent positive molecular inotropy for failing rabbit and human cardiac muscle by α-myosin motor gene transfer. FASEB J. 24, 415–424 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Day, S. M. et al. Histidine button engineered into cardiac troponin I protects the ischemic and failing heart. Nature Med. 12, 181–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Merkulov, S., Chen, X., Chandler, M. P. & Stelzer, J. E. In vivo cardiac myosin binding protein C gene transfer rescues myofilament contractile dysfunction in cardiac myosin binding protein C null mice. Circ. Heart Fail. 5, 635–644 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mearini, G. et al. Mybpc3 gene therapy for neonatal cardiomyopathy enables long-term disease prevention in mice. Nature Commun. 5, 5515 (2014).

    Article  CAS  Google Scholar 

  109. Mamidi, R., Li, J., Gresham, K. S. & Stelzer, J. E. Cardiac myosin binding protein-C: a novel sarcomeric target for gene therapy. Pflugers Arch. 466, 225–230 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Maron, B. J., Maron, M. S. & Semsarian, C. Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J. Am. Coll. Cardiol. 60, 705–715 (2012).

    Article  PubMed  Google Scholar 

  111. Sen-Chowdhry, S., Syrris, P. & McKenna, W. J. Genetics of restrictive cardiomyopathy. Heart Fail. Clin. 6, 179–186 (2010).

    Article  PubMed  Google Scholar 

  112. Sanbe, A. Dilated cardiomyopathy: a disease of the myocardium. Biol. Pharm. Bull. 36, 18–22 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. McNally, E. M., Golbus, J. R. & Puckelwartz, M. J. Genetic mutations and mechanisms in dilated cardiomyopathy. J. Clin. Invest. 123, 19–26 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Goldfarb, L. G. & Dalakas, M. C. Tragedy in a heartbeat: malfunctioning desmin causes skeletal and cardiac muscle disease. J. Clin. Invest. 119, 1806–1813 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Teekakirikul, P., Kelly, M. A., Rehm, H. L., Lakdawala, N. K. & Funke, B. H. Inherited cardiomyopathies: molecular genetics and clinical genetic testing in the postgenomic era. J. Mol. Diagn. 15, 158–170 (2013).

    Article  PubMed  Google Scholar 

  116. Laing, N. G. & Nowak, K. J. When contractile proteins go bad: the sarcomere and skeletal muscle disease. Bioessays 27, 809–822 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Tajsharghi, H. & Oldfors, A. Myosinopathies: pathology and mechanisms. Acta Neuropathol. 125, 3–18 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Wallgren-Pettersson, C., Sewry, C. A., Nowak, K. J. & Laing, N. G. Nemaline myopathies. Semin. Pediatr. Neurol. 18, 230–238 (2011).

    Article  PubMed  Google Scholar 

  119. Lehtokari, V. L. et al. Identification of 45 novel mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Hum. Mutat. 27, 946–956 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Lawlor, M. W. et al. Novel mutations in NEB cause abnormal nebulin expression and markedly impaired muscle force generation in severe nemaline myopathy. Skelet. Muscle 1, 23 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Claeys, K. G. & Fardeau, M. Myofibrillar myopathies. Handb. Clin. Neurol. 113, 1337–1342 (2013).

    Article  PubMed  Google Scholar 

  122. de Tombe, P. P. et al. Myofilament length dependent activation. J. Mol. Cell Cardiol. 48, 851–858 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kontrogianni-Konstantopoulos, A., Ackermann, M. A., Bowman, A. L., Yap, S. V. & Bloch, R. J. Muscle giants: molecular scaffolds in sarcomerogenesis. Physiol. Rev. 89, 1217–1267 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Mateja, R. D. & de Tombe, P. P. Myofilament length-dependent activation develops within 5 ms in guinea-pig myocardium. Biophys. J. 103, L13–L15 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang, Z. et al. Comparison of the Young–Laplace law and finite element based calculation of ventricular wall stress: implications for postinfarct and surgical ventricular remodeling. Ann. Thorac. Surg. 91, 150–156 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Rudolf, R. et al. Alterations of cAMP-dependent signaling in dystrophic skeletal muscle. Front. Physiol. 4, 290 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Lygren, B. & Tasken, K. Compartmentalized cAMP signalling is important in the regulation of Ca2+ cycling in the heart. Biochem. Soc. Trans. 34, 489–491 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Boontje, N. M. et al. Enhanced myofilament responsiveness upon β-adrenergic stimulation in post-infarct remodeled myocardium. J. Mol. Cell Cardiol. 50, 487–499 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Gautel, M., Zuffardi, O., Freiburg, A. & Labeit, S. Phosphorylation switches specific for the cardiac isoform of myosin binding protein-C: a modulator of cardiac contraction? EMBO J. 14, 1952–1960 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gruen, M. Prinz, H. & Gautel, M. cAPK-phosphorylation controls the interaction of the regulatory domain of cardiac myosin binding protein C with myosin-S2 in an on-off fashion. FEBS Lett. 453, 254–259 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Kruger, M. & Linke, W. A. Protein kinase-A phosphorylates titin in human heart muscle and reduces myofibrillar passive tension. J. Muscle Res. Cell. Motil. 27, 435–444 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Solaro, R. J., Moir, A. J. & Perry, S. V. Phosphorylation of troponin I and the inotropic effect of adrenaline in the perfused rabbit heart. Nature 262, 615–617 (1976).

    Article  CAS  PubMed  Google Scholar 

  133. Wijnker, P. J. et al. Impact of site-specific phosphorylation of protein kinase A sites Ser23 and Ser24 of cardiac troponin I in human cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 304, H260–H268 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Hamdani, N. et al. Distinct myocardial effects of beta-blocker therapy in heart failure with normal and reduced left ventricular ejection fraction. Eur. Heart J. 30, 1863–1872 (2009). This article shows that increased calcium sensitivity is observed in heart tissue from both HFrEF and HFpEF patients. This is attributed to decreased phosphorylation of troponin I, which is further enhanced by β 1 -adrenoceptor blockade.

    Article  CAS  PubMed  Google Scholar 

  135. van Dijk, S. J. et al. A piece of the human heart: variance of protein phosphorylation in left ventricular samples from end-stage primary cardiomyopathy patients. J. Muscle Res. Cell. Motil. 30, 299–302 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. MacIntosh, B. R., Holash, R. J. & Renaud, J. M. Skeletal muscle fatigue — regulation of excitation-contraction coupling to avoid metabolic catastrophe. J. Cell Sci. 125, 2105–2114 (2012).

    CAS  PubMed  Google Scholar 

  137. Kamm, K. E. & Stull, J. T. Signaling to myosin regulatory light chain in sarcomeres. J. Biol. Chem. 286, 9941–9947 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Scruggs, S. B. & Solaro, R. J. The significance of regulatory light chain phosphorylation in cardiac physiology. Arch. Biochem. Biophys. 510, 129–134 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Grimm, M. et al. Key role of myosin light chain (MLC) kinase-mediated MLC2a phosphorylation in the α1-adrenergic positive inotropic effect in human atrium. Cardiovasc. Res. 65, 211–220 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Flashman, E., Redwood, C., Moolman-Smook, J. & Watkins, H. Cardiac myosin binding protein C: its role in physiology and disease. Circ. Res. 94, 1279–1289 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Lowey, S., Slayter, H. S., Weeds, A. G. & Baker, H. Substructure of the myosin molecule. I. Subfragments of myosin by enzymic degradation. J. Mol. Biol. 42, 1–29 (1969).

    Article  CAS  PubMed  Google Scholar 

  142. Al-Khayat, H. A., Kensler, R. W., Squire, J. M., Marston, S. B. & Morris, E. P. Atomic model of the human cardiac muscle myosin filament. Proc. Natl Acad. Sci. USA 110, 318–323 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Craig, R. & Woodhead, J. L. Structure and function of myosin filaments. Curr. Opin. Struct. Biol. 16, 204–212 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Weeds, A. G. & Lowey, S. Substructure of the myosin molecule. II. The light chains of myosin. J. Mol. Biol. 61, 701–725 (1971).

    Article  CAS  PubMed  Google Scholar 

  145. Freiburg, A. & Gautel, M. A molecular map of the interactions between titin and myosin-binding protein C. Implications for sarcomeric assembly in familial hypertrophic cardiomyopathy. Eur. J. Biochem. 235, 317–323 (1996).

    Article  CAS  PubMed  Google Scholar 

  146. Miyamoto, C. A., Fischman, D. A. & Reinach, F. C. The interface between MyBP-C and myosin: site-directed mutagenesis of the CX myosin-binding domain of MyBP-C. J. Muscle Res. Cell. Motil. 20, 703–715 (1999).

    Article  CAS  PubMed  Google Scholar 

  147. Bhuiyan, M. S., Gulick, J., Osinska, H., Gupta, M. & Robbins, J. Determination of the critical residues responsible for cardiac myosin binding protein C's interactions. J. Mol. Cell Cardiol. 53, 838–847 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sousa, D. R., Stagg, S. M. & Stroupe, M. E. Cryo-EM structures of the actin:tropomyosin filament reveal the mechanism for the transition from C- to M-state. J. Mol. Biol. 425, 4544–4555 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. White, S. P., Cohen, C. & Phillips, G. N. J. Structure of co-crystals of tropomyosin and troponin. Nature 325, 826–828 (1987).

    Article  CAS  PubMed  Google Scholar 

  150. Gourinath, S. et al. Crystal structure of scallop myosin s1 in the pre-power stroke state to 2.6 Å resolution: flexibility and function in the head. Structure 11, 1621–1627 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. Behrmann, E. et al. Structure of the rigor actin–tropomyosin–myosin complex. Cell 150, 327–338 (2012). An 8 Å-resolution description of the actin–tropomyosin–myosin complex by cryo-electron microscopy, identifying key residues implicated in myopathies. The authors present a detailed model of how actin binding to myosin induces phosphate and nucleotide release and initiation of the power stroke.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sia, S. K. et al. Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain. J. Biol. Chem. 272, 18216–18221 (1997).

    Article  CAS  PubMed  Google Scholar 

  153. Eichmuller, C. & Skrynnikov, N. R. A new amide proton R1ρ experiment permits accurate characterization of microsecond time-scale conformational exchange. J. Biomol. NMR 32, 281–293 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Geisterfer-Lowrance, A. A. et al. A molecular basis for familial hypertrophic cardiomyopathy: a β cardiac myosin heavy chain gene missense mutation. Cell 62, 999–1006 (1990).

    Article  CAS  PubMed  Google Scholar 

  155. Hernandez, O. M., Jones, M., Guzman, G. & Szczesna-Cordary, D. Myosin essential light chain in health and disease. Am. J. Physiol. Heart Circ. Physiol. 292, H1643–H1654 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. Poetter, K. et al. Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nature Genet. 13, 63–69 (1996).

    Article  CAS  PubMed  Google Scholar 

  157. Ha, K. et al. MYBPC1 mutations impair skeletal muscle function in zebrafish models of arthrogryposis. Hum. Mol. Genet. 22, 4967–4977 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Schlossarek, S., Mearini, G. & Carrier, L. Cardiac myosin-binding protein C in hypertrophic cardiomyopathy: mechanisms and therapeutic opportunities. J. Mol. Cell Cardiol. 50, 613–620 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Marston, S., Copeland, O., Gehmlich, K., Schlossarek, S. & Carrier, L. How do MYBPC3 mutations cause hypertrophic cardiomyopathy? J. Muscle Res. Cell. Motil. 33, 75–80 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Watkins, H. et al. Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nature Genet. 11, 434–437 (1995).

    Article  CAS  PubMed  Google Scholar 

  161. Herman, D. S. et al. Truncations of titin causing dilated cardiomyopathy. N. Engl. J. Med. 366, 619–628 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Chauveau, C. et al. Recessive TTN truncating mutations define novel forms of core myopathy with heart disease. Hum. Mol. Genet. 23, 980–991 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Wang, K., McClure, J. & Tu, A. Titin: major myofibrillar components of striated muscle. Proc. Natl Acad. Sci. USA 76, 3698–3702 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Nowak, K. J. et al. Mutations in the skeletal muscle α-actin gene in patients with actin myopathy and nemaline myopathy. Nature Genet. 23, 208–212 (1999).

    Article  CAS  PubMed  Google Scholar 

  165. Mogensen, J. et al. Clinical and genetic characteristics of α cardiac actin gene mutations in hypertrophic cardiomyopathy. J. Med. Genet. 41, e10 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Watkins, H. et al. Mutations in the genes for cardiac troponin T and α-tropomyosin in hypertrophic cardiomyopathy. N. Engl. J. Med. 332, 1058–1064 (1995).

    Article  CAS  PubMed  Google Scholar 

  167. Donner, K. et al. Mutations in the β-tropomyosin (TPM2) gene—a rare cause of nemaline myopathy. Neuromuscul. Disord. 12, 151–158 (2002).

    Article  PubMed  Google Scholar 

  168. Sung, S. S. et al. Mutations in genes encoding fast-twitch contractile proteins cause distal arthrogryposis syndromes. Am. J. Hum. Genet. 72, 681–690 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kee, A. J. & Hardeman, E. C. Tropomyosins in skeletal muscle diseases. Adv. Exp. Med. Biol. 644, 143–157 (2008).

    Article  CAS  PubMed  Google Scholar 

  170. Laing, N. G. et al. A mutation in the α tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy. Nature Genet. 9, 75–79 (1995).

    Article  CAS  PubMed  Google Scholar 

  171. Johnston, J. J. et al. A novel nemaline myopathy in the Amish caused by a mutation in troponin T1. Am. J. Hum. Genet. 67, 814–821 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Sung, S. S. et al. Mutations in TNNT3 cause multiple congenital contractures: a second locus for distal arthrogryposis type 2B. Am. J. Hum. Genet. 73, 212–214 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Kimura, A. et al. Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nature Genet. 16, 379–382 (1997).

    Article  CAS  PubMed  Google Scholar 

  174. Landstrom, A. P. et al. Molecular and functional characterization of novel hypertrophic cardiomyopathy susceptibility mutations in TNNC1-encoded troponin C. J. Mol. Cell Cardiol 45, 281–288 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Purevjav, E. et al. Nebulette mutations are associated with dilated cardiomyopathy and endocardial fibroelastosis. J. Am. Coll. Cardiol 56, 1493–1502 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Pappas, C. T., Bliss, K. T., Zieseniss, A. & Gregorio, C. C. The nebulin family: an actin support group. Trends Cell Biol. 21, 29–37 (2011).

    Article  CAS  PubMed  Google Scholar 

  177. Millevoi, S. et al. Characterization of nebulette and nebulin and emerging concepts of their roles for vertebrate Z-discs. J. Mol. Biol. 282, 111–123 (1998).

    Article  CAS  PubMed  Google Scholar 

  178. Luther, P. K. The vertebrate muscle Z-disc: sarcomere anchor for structure and signalling. J. Muscle Res. Cell. Motil. 30, 171–185 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Chiu, C. et al. Mutations in α-actinin-2 cause hypertrophic cardiomyopathy: a genome-wide analysis. J. Am. Coll. Cardiol. 55, 1127–1135 (2010).

    Article  CAS  PubMed  Google Scholar 

  180. Moreira, E. S. et al. Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin. Nature Genet. 24, 163–166 (2000).

    Article  CAS  PubMed  Google Scholar 

  181. Hayashi, T. et al. Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J. Am. Coll. Cardiol. 44, 2192–2201 (2004).

    Article  CAS  PubMed  Google Scholar 

  182. Razinia, Z., Makela, T., Ylanne, J. & Calderwood, D. A. Filamins in mechanosensing and signaling. Annu. Rev. Biophys. 41, 227–246 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Vorgerd, M. et al. A mutation in the dimerization domain of filamin c causes a novel type of autosomal dominant myofibrillar myopathy. Am. J. Hum. Genet. 77, 297–304 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Faulkner, G. et al. FATZ, a filamin-, actinin-, and telethonin-binding protein of the Z-disc of skeletal muscle. J. Biol. Chem. 275, 41234–41242 (2000).

    Article  CAS  PubMed  Google Scholar 

  185. Osio, A. et al. Myozenin 2 is a novel gene for human hypertrophic cardiomyopathy. Circ. Res. 100, 766–768 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Purevjav, E. et al. Molecular basis for clinical heterogeneity in inherited cardiomyopathies due to myopalladin mutations. Hum. Mol. Genet. 21, 2039–2053 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Meyer, T. et al. Novel mutations in the sarcomeric protein myopalladin in patients with dilated cardiomyopathy. Eur. J. Hum. Genet. 21, 294–300 (2013).

    Article  CAS  PubMed  Google Scholar 

  188. Bang, M. L. et al. Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. J. Cell Biol. 153, 413–427 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Salmikangas, P. et al. Myotilin, the limb-girdle muscular dystrophy 1A (LGMD1A) protein, cross-links actin filaments and controls sarcomere assembly. Hum. Mol. Genet. 12, 189–203 (2003).

    Article  CAS  PubMed  Google Scholar 

  190. Hauser, M. A. et al. Myotilin is mutated in limb girdle muscular dystrophy 1A. Hum. Mol. Genet. 9, 2141–2147 (2000).

    Article  CAS  PubMed  Google Scholar 

  191. Selcen, D. & Engel, A. G. Mutations in myotilin cause myofibrillar myopathy. Neurology 62, 1363–1371 (2004).

    Article  CAS  PubMed  Google Scholar 

  192. von Nandelstadh, P. et al. A class III PDZ binding motif in the myotilin and FATZ families binds enigma family proteins: a common link for Z-disc myopathies. Mol. Cell. Biol. 29, 822–834 (2009).

    Article  CAS  PubMed  Google Scholar 

  193. Strach, K. et al. ZASPopathy with childhood-onset distal myopathy. J. Neurol. 259, 1494–1496 (2012).

    Article  PubMed  Google Scholar 

  194. Selcen, D. & Engel, A. G. Mutations in ZASP define a novel form of muscular dystrophy in humans. Ann. Neurol. 57, 269–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  195. Vatta, M. et al. Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J. Am. Coll. Cardiol. 42, 2014–2027 (2003).

    Article  CAS  PubMed  Google Scholar 

  196. Arimura, T. et al. A Cypher/ZASP mutation associated with dilated cardiomyopathy alters the binding affinity to protein kinase C. J. Biol. Chem. 279, 6746–6752 (2004).

    Article  CAS  PubMed  Google Scholar 

  197. Lin, C. et al. Cypher/ZASP is a novel A-kinase anchoring protein. J. Biol. Chem. 288, 29403–29413 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Limouze, J., Straight, A. F., Mitchison, T. & Sellers, J. R. Specificity of blebbistatin, an inhibitor of myosin II. J. Muscle Res. Cell. Motil. 25, 337–341 (2004).

    Article  CAS  PubMed  Google Scholar 

  199. Cheung, A. et al. A small-molecule inhibitor of skeletal muscle myosin II. Nature Cell Biol. 4, 83–88 (2002).

    Article  CAS  PubMed  Google Scholar 

  200. McKillop, D. F., Fortune, N. S., Ranatunga, K. W. & Geeves, M. A. The influence of 2,3-butanedione 2-monoxime (BDM) on the interaction between actin and myosin in solution and in skinned muscle fibres. J. Muscle Res. Cell. Motil. 15, 309–318 (1994).

    Article  CAS  PubMed  Google Scholar 

  201. Kischel, P., Stevens, L. & Mounier, Y. Differential effects of bepridil on functional properties of troponin C in slow and fast skeletal muscles. Br. J. Pharmacol. 128, 767–773 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Robertson, I. M., Sun, Y. B., Li, M. X. & Sykes, B. D. A structural and functional perspective into the mechanism of Ca2+-sensitizers that target the cardiac troponin complex. J. Mol. Cell Cardiol. 49, 1031–1041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' work is supported by Heart and Stroke Foundation of Canada, grant-in-aid G-14-0005884, and the Canadian Institutes of Health Research, operating grant 37769.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. Sykes.

Ethics declarations

Competing interests

B.D.S. has previously received a research grant from Cytokinetics for conducting structural biology studies.

Related links

PowerPoint slides

Glossary

Amyotrophic lateral sclerosis

(ALS). A neurodegenerative condition that leads to progressive loss of both upper and lower motor neurons.

Heart failure

The end stage of almost all heart disease, in which the heart is unable to pump sufficient blood to satisfy the metabolic needs of the body. Diagnosed by clinical signs and symptoms such as shortness of breath, elevated central venous pressure, and peripheral and pulmonary oedema.

Ejection fraction

The percent volume of blood ejected by the heart during systole; 60% or greater in healthy individuals, with a lower value (<45%) indicative of systolic dysfunction. Many medications have been shown to improve mortality in patients with a low ejection fraction.

Arrhythmias

Disturbances in the electrical conduction pathways of the heart causing abnormally fast or slow heart rate or inefficient contractions.

Hypotension

Low blood pressure that can lead to impaired perfusion of vital organs.

Positive inotropes

Compounds that increase the contractility of the heart to increase cardiac output.

K d

Drug Kd (dissociation constant) is the concentration at which 50% activity is achieved.

Peripheral vascular disease

A condition characterized by severe narrowing of arteries, typically in the legs, and is classically associated with smoking and diabetes. Impaired perfusion causes pain that is worsened with exertion and can progress to non-healing ulcers and amputation.

pCa50

The negative logarithm of the calcium concentration at which 50% activity is achieved.

Myasthenia gravis

An autoimmune disease that targets postsynaptic acetylcholine receptors of the neuromuscular junction, causing muscle weakness characterized by easy fatigability.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, P., Sykes, B. Targeting the sarcomere to correct muscle function. Nat Rev Drug Discov 14, 313–328 (2015). https://doi.org/10.1038/nrd4554

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4554

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research