Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Unleashing the therapeutic potential of human kallikrein-related serine proteases

A Corrigendum to this article was published on 28 August 2015

This article has been updated

Key Points

  • Tissue kallikreins (KLKs) constitute a family of 15 secreted serine proteases that are encoded by the largest protease gene cluster in the human genome.

  • KLKs were traditionally known for their clinical applicability as cancer markers — for instance, KLK3 (also known as prostate-specific antigen) is a marker for prostate cancer.

  • The field of KLK research has recently blossomed with the development of KLK-knockout models and the elucidation of the 3D structures of several KLKs.

  • Novel pathophysiological roles for these proteases have recently been assigned in various tissues, such as the airway, cardiovascular system, tooth, skin and brain tissues.

  • The promise of KLKs as therapeutic targets in various pathologies — including skin diseases, hereditary angioedema, neurodegeneration, inflammation and cancer — is emerging.

  • Systematic efforts for the development of the first generation of KLK-based inhibitors as candidate therapeutics have already been initiated.

Abstract

Tissue kallikreins are a family of fifteen secreted serine proteases encoded by the largest protease gene cluster in the human genome. In the past decade, substantial progress has been made in characterizing the natural substrates, endogenous inhibitors and in vivo functions of kallikreins, and studies have delineated important pathophysiological roles for these proteases in a variety of tissues. Thus, kallikreins are now considered attractive targets for the development of novel therapeutics for airway, cardiovascular, tooth, brain, skin and neoplastic diseases. In this Review, we discuss recent advances in our understanding of the physiological functions and pathological implications of kallikrein proteases, and highlight progress in the identification of kallikrein inhibitors, which together are bringing us closer to therapeutically targeting kallikreins in selected disease settings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The 101 of kallikrein serine proteases.
Figure 2: The kallikrein proteolytic cascade in skin epidermis.
Figure 3: The kallikrein proteolytic cascade in the prostate.
Figure 4: Kinin-dependent and kinin-independent roles of kallikrein 1 in the airway.
Figure 5: Kallikrein 4 in tooth development.
Figure 6: Kallikreins in brain biology and pathobiology.
Figure 7: Side-by-side comparison of six human kallikrein structures.

Similar content being viewed by others

Change history

  • 28 August 2015

    The references for compound 1 and compound 8 were incorrectly cited. The authors apologize for this unintended error, and the online version of the article has been corrected.

  • 16 September 2015

    The classes of compounds developed as KLK1 inhibitors mentioned on page 194 were modified.

References

  1. Drag, M. & Salvesen, G. S. Emerging principles in protease-based drug discovery. Nature Rev. Drug Discov. 9, 690–701 (2010).

    Article  CAS  Google Scholar 

  2. Borgono, C. A. & Diamandis, E. P. The emerging roles of human tissue kallikreins in cancer. Nature Rev. Cancer 4, 876–890 (2004).

    Article  CAS  Google Scholar 

  3. Yousef, G. M., Chang, A., Scorilas, A. & Diamandis, E. P. Genomic organization of the human kallikrein gene family on chromosome 19q13.3–q13.4. Biochem. Biophys. Res. Commun. 276, 125–133 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Marceau, F. & Regoli, D. Bradykinin receptor ligands: therapeutic perspectives. Nature Rev. Drug Discov. 3, 845–852 (2004).

    Article  CAS  Google Scholar 

  5. Lilja, H., Ulmert, D. & Vickers, A. J. Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nature Rev. Cancer 8, 268–278 (2008).

    Article  CAS  Google Scholar 

  6. Sotiropoulou, G. & Pampalakis, G. Kallikrein-related peptidases: bridges between immune functions and extracellular matrix degradation. Biol. Chem. 391, 321–331 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Pampalakis, G. & Sotiropoulou, G. Tissue kallikrein proteolytic cascade pathways in normal physiology and cancer. Biochim. Biophys. Acta 1776, 22–31 (2007).

    CAS  PubMed  Google Scholar 

  8. Emami, N. & Diamandis, E. P. New insights into the functional mechanisms and clinical applications of the kallikrein-related peptidase family. Mol. Oncol. 1, 269–287 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lundwall, A. & Brattsand, M. Kallikrein-related peptidases. Cell. Mol. Life Sci. 65, 2019–2038 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Goettig, P., Magdolen, V. & Brandstetter, H. Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs). Biochimie 92, 1546–1567 (2010). This is a thorough review on the structural basis of KLK inhibition by endogenous inhibitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sotiropoulou, G. & Pampalakis, G. Targeting the kallikrein-related peptidases for drug development. Trends Pharmacol. Sci. 33, 623–634 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Swedberg, J. E., de Veer, S. J. & Harris, J. M. Natural and engineered kallikrein inhibitors: an emerging pharmacopoeia. Biol. Chem. 391, 357–374 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Yousef, G. M. & Diamandis, E. P. The new human tissue kallikrein gene family: structure, function, and association to disease. Endocr. Rev. 22, 184–204 (2001).

    CAS  PubMed  Google Scholar 

  14. Bjorkqvist, J., Jamsa, A. & Renne, T. Plasma kallikrein: the bradykinin-producing enzyme. Thromb. Haemost. 110, 399–407 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Moreau, M. E. et al. The kallikrein-kinin system: current and future pharmacological targets. J. Pharmacol. Sci. 99, 6–38 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Pathak, M., Wong, S. S., Dreveny, I. & Emsley, J. Structure of plasma and tissue kallikreins. Thromb. Haemost. 110, 423–433 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Cicardi, M. et al. Ecallantide for the treatment of acute attacks in hereditary angioedema. N. Engl. J. Med. 363, 523–531 (2010). This is the first evaluation of ecallantide in a double-blind, placebo control trial against hereditary angioedema.

    Article  CAS  PubMed  Google Scholar 

  18. Zuraw, B., Yasothan, U. & Kirkpatrick, P. Ecallantide. Nature Rev. Drug Discov. 9, 189–190 (2010).

    Article  CAS  Google Scholar 

  19. Marcondes, S. & Antunes, E. The plasma and tissue kininogen-kallikrein-kinin system: role in the cardiovascular system. Curr. Med. Chem. Cardiovasc. Hematol. Agents 3, 33–44 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Costa-Neto, C. M. et al. Participation of kallikrein-kinin system in different pathologies. Int. Immunopharmacol. 8, 135–142 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Page, M. J. & Di Cera, E. Serine peptidases: classification, structure and function. Cell. Mol. Life Sci. 65, 1220–1236 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Rawlings, N. D., Waller, M., Barrett, A. J. & Bateman, A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 42, D503–D509 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Yoon, H. et al. A completed KLK activome profile: investigation of activation profiles of KLK9, 10, and 15. Biol. Chem. 390, 373–377 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yoon, H. et al. Activation profiles and regulatory cascades of the human kallikrein-related peptidases. J. Biol. Chem. 282, 31852–31864 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Cloutier, S. M. et al. Substrate specificity of human kallikrein 2 (hK2) as determined by phage display technology. Eur. J. Biochem. 269, 2747–2754 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Coombs, G. S. et al. Substrate specificity of prostate-specific antigen (PSA). Chem. Biol. 5, 475–488 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Felber, L. M. et al. Enzymatic profiling of human kallikrein 14 using phage-display substrate technology. Biol. Chem. 386, 291–298 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Li, H. X. et al. Substrate specificity of human kallikreins 1 and 6 determined by phage display. Protein Sci. 17, 664–672 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sharma, N. et al. Substrate specificity determination of mouse implantation serine proteinase and human kallikrein-related peptidase 6 by phage display. Biol. Chem. 389, 1097–1105 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Borgono, C. A. et al. Defining the extended substrate specificity of kallikrein 1-related peptidases. Biol. Chem. 388, 1215–1225 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. de Veer, S. J., Swedberg, J. E., Parker, E. A. & Harris, J. M. Non-combinatorial library screening reveals subsite cooperativity and identifies new high-efficiency substrates for kallikrein-related peptidase 14. Biol. Chem. 393, 331–341 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Debela, M. et al. Specificity profiling of seven human tissue kallikreins reveals individual subsite preferences. J. Biol. Chem. 281, 25678–25688 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Matsumura, M. et al. Substrates of the prostate-specific serine protease prostase/KLK4 defined by positional-scanning peptide libraries. Prostate 62, 1–13 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Bourgeois, L. et al. Serpin-derived peptide substrates for investigating the substrate specificity of human tissue kallikreins hK1 and hK2. J. Biol. Chem. 272, 29590–29595 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Rehault, S. et al. Design of new and sensitive fluorogenic substrates for human kallikrein hK3 (prostate-specific antigen) derived from semenogelin sequences. Biochim. Biophys. Acta 1596, 55–62 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Yang, C. F. et al. Design of synthetic hexapeptide substrates for prostate-specific antigen using single-position minilibraries. J. Pept. Res. 54, 444–448 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Rajapakse, S., Ogiwara, K., Takano, N., Moriyama, A. & Takahashi, T. Biochemical characterization of human kallikrein 8 and its possible involvement in the degradation of extracellular matrix proteins. FEBS Lett. 579, 6879–6884 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Rajapakse, S. & Takahashi, T. Expression and enzymatic characterization of recombinant human kallikrein 14. Zoolog Sci. 24, 774–780 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Memari, N., Jiang, W., Diamandis, E. P. & Luo, L. Y. Enzymatic properties of human kallikrein-related peptidase 12 (KLK12). Biol. Chem. 388, 427–435 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Kapadia, C., Ghosh, M. C., Grass, L. & Diamandis, E. P. Human kallikrein 13 involvement in extracellular matrix degradation. Biochem. Biophys. Res. Commun. 323, 1084–1090 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Magklara, A. et al. Characterization of the enzymatic activity of human kallikrein 6: autoactivation, substrate specificity, and regulation by inhibitors. Biochem. Biophys. Res. Commun. 307, 948–955 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Debela, M. et al. Structures and specificity of the human kallikrein-related peptidases KLK 4, 5, 6, and 7. Biol. Chem. 389, 623–632 (2008). This is the first report on the characterization of the crystal structure of four KLKs.

    Article  CAS  PubMed  Google Scholar 

  43. Debela, M. et al. Structural basis of the zinc inhibition of human tissue kallikrein 5. J. Mol. Biol. 373, 1017–1031 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Debela, M. et al. Chymotryptic specificity determinants in the 1.0Å structure of the zinc-inhibited human tissue kallikrein 7. Proc. Natl Acad. Sci. USA 104, 16086–16091 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Debela, M. et al. Crystal structures of human tissue kallikrein 4: activity modulation by a specific zinc binding site. J. Mol. Biol. 362, 1094–1107 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Katz, B. A., Liu, B., Barnes, M. & Springman, E. B. Crystal structure of recombinant human tissue kallikrein at 2.0Å resolution. Protein Sci. 7, 875–885 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kishi, T. et al. Crystal structure of neuropsin, a hippocampal protease involved in kindling epileptogenesis. J. Biol. Chem. 274, 4220–4224 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Bernett, M. J. et al. Crystal structure and biochemical characterization of human kallikrein 6 reveals that a trypsin-like kallikrein is expressed in the central nervous system. J. Biol. Chem. 277, 24562–24570 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Laxmikanthan, G. et al. 1.70Å X-ray structure of human apo kallikrein 1: structural changes upon peptide inhibitor/substrate binding. Proteins 58, 802–814 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Polgar, L. The catalytic triad of serine peptidases. Cell. Mol. Life Sci. 62, 2161–2172 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Shaw, J. L. & Diamandis, E. P. Distribution of 15 human kallikreins in tissues and biological fluids. Clin. Chem. 53, 1423–1432 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Borgono, C. A. et al. A potential role for multiple tissue kallikrein serine proteases in epidermal desquamation. J. Biol. Chem. 282, 3640–3652 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Komatsu, N. et al. Quantification of human tissue kallikreins in the stratum corneum: dependence on age and gender. J. Invest. Dermatol. 125, 1182–1189 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Komatsu, N. et al. Multiple tissue kallikrein mRNA and protein expression in normal skin and skin diseases. Br. J. Dermatol. 153, 274–281 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Komatsu, N. et al. Quantification of eight tissue kallikreins in the stratum corneum and sweat. J. Invest. Dermatol. 126, 925–929 (2006).

    CAS  PubMed  Google Scholar 

  56. Brattsand, M. & Egelrud, T. Purification, molecular cloning, and expression of a human stratum corneum trypsin-like serine protease with possible function in desquamation. J. Biol. Chem. 274, 30033–30040 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Hansson, L. et al. Cloning, expression, and characterization of stratum corneum chymotryptic enzyme. A skin-specific human serine proteinase. J. Biol. Chem. 269, 19420–19426 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Brattsand, M., Stefansson, K., Lundh, C., Haasum, Y. & Egelrud, T. A proteolytic cascade of kallikreins in the stratum corneum. J. Invest. Dermatol. 124, 198–203 (2005). The paper elucidates the proteolytic interplay among active human KLK5, KLK7 and KLK14 in the epidermis.

    Article  CAS  PubMed  Google Scholar 

  59. Eissa, A., Amodeo, V., Smith, C. R. & Diamandis, E. P. Kallikrein-related peptidase-8 (KLK8) is an active serine protease in human epidermis and sweat and is involved in a skin barrier proteolytic cascade. J. Biol. Chem. 286, 687–706 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Stefansson, K., Brattsand, M., Ny, A., Glas, B. & Egelrud, T. Kallikrein-related peptidase 14 may be a major contributor to trypsin-like proteolytic activity in human stratum corneum. Biol. Chem. 387, 761–768 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Eissa, A. & Diamandis, E. P. Human tissue kallikreins as promiscuous modulators of homeostatic skin barrier functions. Biol. Chem. 389, 669–680 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Kirihara, T. et al. Prolonged recovery of ultraviolet B-irradiated skin in neuropsin (KLK8)-deficient mice. Br. J. Dermatol. 149, 700–706 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Hachem, J. P. et al. Sustained serine proteases activity by prolonged increase in pH leads to degradation of lipid processing enzymes and profound alterations of barrier function and stratum corneum integrity. J. Invest. Dermatol. 125, 510–520 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Hachem, J. P. et al. Serine protease activity and residual LEKTI expression determine phenotype in Netherton syndrome. J. Invest. Dermatol. 126, 1609–1621 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Yamasaki, K. et al. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nature Med. 13, 975–980 (2007). This paper reports the discovery of the active roles of KLK5 and KLK7 in the pathogenesis of rosacea.

    Article  CAS  PubMed  Google Scholar 

  66. Kanada, K. N., Nakatsuji, T. & Gallo, R. L. Doxycycline indirectly inhibits proteolytic activation of tryptic kallikrein-related peptidases and activation of cathelicidin. J. Invest. Dermatol. 132, 1435–1442 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Morizane, S., Yamasaki, K., Kabigting, F. D. & Gallo, R. L. Kallikrein expression and cathelicidin processing are independently controlled in keratinocytes by calcium, vitamin D3, and retinoic acid. J. Invest. Dermatol. 130, 1297–1306 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ekholm, E. & Egelrud, T. Stratum corneum chymotryptic enzyme in psoriasis. Arch. Dermatol. Res. 291, 195–200 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Descargues, P. et al. Spink5-deficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity. Nature Genet. 37, 56–65 (2005). This paper reports the identification of LEKTI as a key regulator of epidermal protease activity, and the degradation of DSG1 as the primary pathogenic event in Netherton syndrome.

    Article  CAS  PubMed  Google Scholar 

  70. Bin, L., Kim, B. E., Hall, C. F., Leach, S. M. & Leung, D. Y. Inhibition of transcription factor specificity protein 1 alters the gene expression profile of keratinocytes leading to upregulation of kallikrein-related peptidases and thymic stromal lymphopoietin. J. Invest. Dermatol. 131, 2213–2222 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lu, J. et al. Transcriptional profiling of keratinocytes reveals a vitamin D-regulated epidermal differentiation network. J. Invest. Dermatol. 124, 778–785 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Hovnanian, A. Netherton syndrome: skin inflammation and allergy by loss of protease inhibition. Cell Tissue Res. 351, 289–300 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Chavanas, S. et al. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nature Genet. 25, 141–142 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Komatsu, N. et al. Elevated stratum corneum hydrolytic activity in Netherton syndrome suggests an inhibitory regulation of desquamation by SPINK5-derived peptides. J. Invest. Dermatol. 118, 436–443 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Bitoun, E. et al. LEKTI proteolytic processing in human primary keratinocytes, tissue distribution and defective expression in Netherton syndrome. Hum. Mol. Genet. 12, 2417–2430 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Deraison, C. et al. LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol. Biol. Cell 18, 3607–3619 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fortugno, P. et al. The 420K LEKTI variant alters LEKTI proteolytic activation and results in protease deregulation: implications for atopic dermatitis. Hum. Mol. Genet. 21, 4187–4200 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Furio, L. & Hovnanian, A. When activity requires breaking up: LEKTI proteolytic activation cascade for specific proteinase inhibition. J. Invest. Dermatol. 131, 2169–2173 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Ishida-Yamamoto, A. et al. LEKTI is localized in lamellar granules, separated from KLK5 and KLK7, and is secreted in the extracellular spaces of the superficial stratum granulosum. J. Invest. Dermatol. 124, 360–366 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Wang, S. et al. SPINK5 knockdown in organotypic human skin culture as a model system for Netherton syndrome: effect of genetic inhibition of serine proteases kallikrein 5 and kallikrein 7. Exp. Dermatol. 23, 524–526 (2014).

    Article  PubMed  CAS  Google Scholar 

  81. Sales, K. U. et al. Matriptase initiates activation of epidermal pro-kallikrein and disease onset in a mouse model of Netherton syndrome. Nature Genet. 42, 676–683 (2010). The study implicated a crucial pathogenic matriptase–pro-KLK pathway in several inflammatory skin diseases.

    Article  CAS  PubMed  Google Scholar 

  82. Briot, A. et al. Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J. Exp. Med. 206, 1135–1147 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Briot, A. et al. Par2 inactivation inhibits early production of TSLP, but not cutaneous inflammation, in Netherton syndrome adult mouse model. J. Invest. Dermatol. 130, 2736–2742 (2010). This study supports the role of the KLK5–PAR2 cascade in TSLP-mediated early proallergic signalling, by using a Spink5−/− and Par2−/− double knockout mouse model.

    Article  CAS  PubMed  Google Scholar 

  84. Furio, L. et al. Transgenic kallikrein 5 mice reproduce major cutaneous and systemic hallmarks of Netherton syndrome. J. Exp. Med. 211, 499–513 (2014). The paper reports the generation of a new transgenic murine model expressing human KLK5 in the granular layer of the epidermis, and validates KLK5 as a major therapeutic target for Netherton Syndrome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Komatsu, N. et al. Human tissue kallikrein expression in the stratum corneum and serum of atopic dermatitis patients. Exp. Dermatol. 16, 513–519 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Tanaka, R. J., Ono, M. & Harrington, H. A. Skin barrier homeostasis in atopic dermatitis: feedback regulation of kallikrein activity. PLoS ONE 6, e19895 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vasilopoulos, Y. et al. The 3′-UTR AACCins5874 in the stratum corneum chymotryptic enzyme gene (SCCE/KLK7), associated with atopic dermatitis; causes an increased mRNA expression without altering its stability. J. Dermatol. Sci. 61, 131–133 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Voegeli, R. et al. Increased mass levels of certain serine proteases in the stratum corneum in acute eczematous atopic skin. Int. J. Cosmet. Sci. 33, 560–565 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Ny, A. & Egelrud, T. Epidermal hyperproliferation and decreased skin barrier function in mice overexpressing stratum corneum chymotryptic enzyme. Acta Derm. Venereol. 84, 18–22 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Stefansson, K. et al. Activation of proteinase-activated receptor-2 by human kallikrein-related peptidases. J. Invest. Dermatol. 128, 18–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Gottlieb, A. B. Psoriasis: emerging therapeutic strategies. Nature Rev. Drug Discov. 4, 19–34 (2005).

    Article  CAS  Google Scholar 

  92. Nestle, F. O., Kaplan, D. H. & Barker, J. Psoriasis. N. Engl. J. Med. 361, 496–509 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Eissa, A. et al. Serum kallikrein-8 correlates with skin activity, but not psoriatic arthritis, in patients with psoriatic disease. Clin. Chem. Lab. Med. 51, 317–325 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Komatsu, N. et al. Aberrant human tissue kallikrein levels in the stratum corneum and serum of patients with psoriasis: dependence on phenotype, severity and therapy. Br. J. Dermatol. 156, 875–883 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Ainali, C. et al. Transcriptome classification reveals molecular subtypes in psoriasis. BMC Genomics 13, 472 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kishibe, M. et al. Kallikrein-related peptidase 8-dependent skin wound healing is associated with upregulation of kallikrein-related peptidase 6 and PAR2. J. Invest. Dermatol. 132, 1717–1724 (2012). This is a critical study on the roles of KLK8 in wound healing.

    Article  CAS  PubMed  Google Scholar 

  97. Kishibe, M. et al. Kallikrein 8 is involved in skin desquamation in cooperation with other kallikreins. J. Biol. Chem. 282, 5834–5841 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Fischer, J. et al. Characterization of Spink6 in mouse skin: the conserved inhibitor of kallikrein-related peptidases is reduced by barrier injury. J. Invest. Dermatol. 134, 1305–1312 (2013).

    Article  PubMed  CAS  Google Scholar 

  99. Wang, X. et al. AP-2α: a regulator of EGF receptor signaling and proliferation in skin epidermis. J. Cell Biol. 172, 409–421 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shingaki, K. et al. Molecular mechanism of kallikrein-related peptidase 8/neuropsin-induced hyperkeratosis in inflamed skin. Br. J. Dermatol. 163, 466–475 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Nylander-Lundqvist, E. & Egelrud, T. Formation of active IL-1β from pro-IL-1β catalyzed by stratum corneum chymotryptic enzyme in vitro. Acta Derm. Venereol. 77, 203–206 (1997).

    CAS  PubMed  Google Scholar 

  102. Culp, B. & Scheinfeld, N. Rosacea: a review. P. T. 34, 38–45 (2009).

    PubMed  PubMed Central  Google Scholar 

  103. Coda, A. B. et al. Cathelicidin, kallikrein 5, and serine protease activity is inhibited during treatment of rosacea with azelaic acid 15% gel. J. Am. Acad. Dermatol. 69, 570–577 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Glukhen'kii, B. T. & Snitsarenko, O. V. The kallikrein-kinin system in rosacea patients. Vestn. Dermatol. Venerol. 6, 30–32 (in Russian) (1985).

    Google Scholar 

  105. Meyer-Hoffert, U. & Schroder, J. M. Epidermal proteases in the pathogenesis of rosacea. J. Investig. Dermatol. Symp. Proc. 15, 16–23 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Yamasaki, K. & Gallo, R. L. Rosacea as a disease of cathelicidins and skin innate immunity. J. Investig. Dermatol. Symp. Proc. 15, 12–15 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Yamasaki, K. et al. TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. J. Invest. Dermatol. 131, 688–697 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Kasetty, G. et al. The C-terminal sequence of several human serine proteases encodes host defense functions. J. Innate Immun. 3, 471–482 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Emami, N., Deperthes, D., Malm, J. & Diamandis, E. P. Major role of human KLK14 in seminal clot liquefaction. J. Biol. Chem. 283, 19561–19569 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Emami, N. & Diamandis, E. P. Potential role of multiple members of the kallikrein-related peptidase family of serine proteases in activating latent TGFβ1 in semen. Biol. Chem. 391, 85–95 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Emami, N. & Diamandis, E. P. Human kallikrein-related peptidase 14 (KLK14) is a new activator component of the KLK proteolytic cascade. Possible function in seminal plasma and skin. J. Biol. Chem. 283, 3031–3041 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Veveris-Lowe, T. L., Kruger, S. J., Walsh, T., Gardiner, R. A. & Clements, J. A. Seminal fluid characterization for male fertility and prostate cancer: kallikrein-related serine proteases and whole proteome approaches. Semin. Thromb. Hemost. 33, 87–99 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Michael, I. P. et al. Human tissue kallikrein 5 is a member of a proteolytic cascade pathway involved in seminal clot liquefaction and potentially in prostate cancer progression. J. Biol. Chem. 281, 12743–12750 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Costello, L. C., Feng, P., Milon, B., Tan, M. & Franklin, R. B. Role of zinc in the pathogenesis and treatment of prostate cancer: critical issues to resolve. Prostate Cancer Prostat. Dis. 7, 111–117 (2004).

    Article  CAS  Google Scholar 

  115. Mattsson, J. M. et al. Proteolytic activity of prostate-specific antigen (PSA) towards protein substrates and effect of peptides stimulating PSA activity. PLoS ONE 9, e107819 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Logothetis, C. J. & Lin, S. H. Osteoblasts in prostate cancer metastasis to bone. Nature Rev. Cancer 5, 21–28 (2005).

    Article  CAS  Google Scholar 

  117. Avgeris, M., Stravodimos, K. & Scorilas, A. Kallikrein-related peptidase 4 gene (KLK4) in prostate tumors: quantitative expression analysis and evaluation of its clinical significance. Prostate 71, 1780–1789 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Seiz, L. et al. Polyclonal antibodies against kallikrein-related peptidase 4 (KLK4): immunohistochemical assessment of KLK4 expression in healthy tissues and prostate cancer. Biol. Chem. 391, 391–401 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Veveris-Lowe, T. L. et al. Kallikrein 4 (hK4) and prostate-specific antigen (PSA) are associated with the loss of E-cadherin and an epithelial-mesenchymal transition (EMT)-like effect in prostate cancer cells. Endocr. Relat. Cancer 12, 631–643 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Ramsay, A. J. et al. Kallikrein-related peptidase 4 (KLK4) initiates intracellular signaling via protease-activated receptors (PARs). KLK4 and PAR-2 are co-expressed during prostate cancer progression. J. Biol. Chem. 283, 12293–12304 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Gratio, V. et al. Kallikrein-related peptidase 4: a new activator of the aberrantly expressed protease-activated receptor 1 in colon cancer cells. Am. J. Pathol. 176, 1452–1461 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mize, G. J., Wang, W. & Takayama, T. K. Prostate-specific kallikreins-2 and -4 enhance the proliferation of DU-145 prostate cancer cells through protease-activated receptors-1 and -2. Mol. Cancer Res. 6, 1043–1051 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Wang, W., Mize, G. J., Zhang, X. & Takayama, T. K. Kallikrein-related peptidase-4 initiates tumor-stroma interactions in prostate cancer through protease-activated receptor-1. Int. J. Cancer 126, 599–610 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Gao, J. et al. Kallikrein 4 is a potential mediator of cellular interactions between cancer cells and osteoblasts in metastatic prostate cancer. Prostate 67, 348–360 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Jin, Y. et al. Molecular circuit involving KLK4 integrates androgen and mTOR signaling in prostate cancer. Proc. Natl Acad. Sci. USA 110, E2572–E2581 (2013). This study validates KLK4 as a promising therapeutic target for prostate cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Lose, F. et al. Genetic association of the KLK4 locus with risk of prostate cancer. PLoS ONE 7, e44520 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Madeddu, P., Emanueli, C. & El-Dahr, S. Mechanisms of disease: the tissue kallikrein-kinin system in hypertension and vascular remodeling. Nature Clin. Pract. Nephrol. 3, 208–221 (2007).

    Article  CAS  Google Scholar 

  128. Davis, W. J. & Feldman, B. R. Treatment of asthma with theophylline and β adrenergic agents. Cutis 17, 1091–1098 (1976).

    CAS  PubMed  Google Scholar 

  129. O'Riordan, T. G., Weinstein, M. D., Abraham, W. M. & Forteza, R. Elevated tissue kallikrein activity in airway secretions from patients with tracheobronchitis associated with prolonged mechanical ventilation. Lung 181, 237–244 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Lauredo, I. T., Forteza, R. M., Botvinnikova, Y. & Abraham, W. M. Leukocytic cell sources of airway tissue kallikrein. Am. J. Physiol. Lung Cell. Mol. Physiol. 286, L734–L740 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Forteza, R., Lauredo, I., Abraham, W. M. & Conner, G. E. Bronchial tissue kallikrein activity is regulated by hyaluronic acid binding. Am. J. Respir. Cell. Mol. Biol. 21, 666–674 (1999).

    Article  CAS  PubMed  Google Scholar 

  132. Forteza, R. et al. Hyaluronan serves a novel role in airway mucosal host defense. FASEB J. 15, 2179–2186 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Casalino-Matsuda, S. M., Monzon, M. E., Conner, G. E., Salathe, M. & Forteza, R. M. Role of hyaluronan and reactive oxygen species in tissue kallikrein-mediated epidermal growth factor receptor activation in human airways. J. Biol. Chem. 279, 21606–21616 (2004). An in-depth mechanistic study on the signalling properties of KLK1 in human airways.

    Article  CAS  PubMed  Google Scholar 

  134. Casalino-Matsuda, S. M., Monzon, M. E. & Forteza, R. M. Epidermal growth factor receptor activation by epidermal growth factor mediates oxidant-induced goblet cell metaplasia in human airway epithelium. Am. J. Respir. Cell. Mol. Biol. 34, 581–591 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Christiansen, S. C. et al. Experimental rhinovirus infection increases human tissue kallikrein activation in allergic subjects. Int. Arch. Allergy Immunol. 147, 299–304 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Sexton, D. J. et al. Specific inhibition of tissue kallikrein 1 with a human monoclonal antibody reveals a potential role in airway diseases. Biochem. J. 422, 383–392 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Gondzik, V., Weber, W. M. & Awayda, M. S. Coupling of epithelial Na+ and Cl channels by direct and indirect activation by serine proteases. Am. J. Physiol. Cell Physiol. 303, C936–C946 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Patel, A. B., Chao, J. & Palmer, L. G. Tissue kallikrein activation of the epithelial Na channel. Am. J. Physiol. Renal Physiol. 303, F540–F550 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Topala, C. N., Bindels, R. J. & Hoenderop, J. G. Regulation of the epithelial calcium channel TRPV5 by extracellular factors. Curr. Opin. Nephrol. Hypertens. 16, 319–324 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. El Moghrabi, S. et al. Tissue kallikrein permits early renal adaptation to potassium load. Proc. Natl Acad. Sci. USA 107, 13526–13531 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  141. Picard, N. et al. Defective ENaC processing and function in tissue kallikrein-deficient mice. J. Biol. Chem. 283, 4602–4611 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Li, Q. D., Li, F. J., Liu, X. C. & Jiang, H. KLK1 A1789G gene polymorphism and the risk of coronary artery stenosis in the Chinese population. Genet. Mol. Res. 12, 1636–1645 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Azizi, M. et al. Arterial and renal consequences of partial genetic deficiency in tissue kallikrein activity in humans. J. Clin. Invest. 115, 780–787 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Carretero, O. A. Vascular remodeling and the kallikrein-kinin system. J. Clin. Invest. 115, 588–591 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ponticelli, C. & Meroni, P. L. Kallikreins and lupus nephritis. J. Clin. Invest. 119, 768–771 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Li, Q. Z. et al. The lupus-susceptibility gene kallikrein downmodulates antibody-mediated glomerulonephritis. Genes Immun. 10, 503–508 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Simmer, J. P. et al. Purification, characterization, and cloning of enamel matrix serine proteinase 1. J. Dent. Res. 77, 377–386 (1998).

    Article  CAS  PubMed  Google Scholar 

  148. Bartlett, J. D. Dental enamel development: proteinases and their enamel matrix substrates. ISRN Dent. 2013, 684607 (2013).

    PubMed  PubMed Central  Google Scholar 

  149. Cho, A. et al. TGF-β regulates enamel mineralization and maturation through KLK4 expression. PLoS ONE 8, e82267 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Smith, C. E. et al. Relationships between protein and mineral during enamel development in normal and genetically altered mice. Eur. J. Oral Sci. 119 (Suppl. 1), 125–135 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Hart, P. S. et al. Mutation in kallikrein 4 causes autosomal recessive hypomaturation amelogenesis imperfecta. J. Med. Genet. 41, 545–549 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wang, S. K. et al. Novel KLK4 and MMP20 mutations discovered by whole-exome sequencing. J. Dent. Res. 92, 266–271 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bando, Y. et al. Implications of protease M/neurosin in myelination during experimental demyelination and remyelination. Neurosci. Lett. 405, 175–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Yoshida, S. Klk8, a multifunctional protease in the brain and skin: analysis of knockout mice. Biol. Chem. 391, 375–380 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Terayama, R. et al. Neuropsin promotes oligodendrocyte death, demyelination and axonal degeneration after spinal cord injury. Neuroscience 148, 175–187 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. Terayama, R., Bando, Y., Takahashi, T. & Yoshida, S. Differential expression of neuropsin and protease M/neurosin in oligodendrocytes after injury to the spinal cord. Glia 48, 91–101 (2004).

    Article  PubMed  Google Scholar 

  157. Nakamura, Y., Tamura, H., Horinouchi, K. & Shiosaka, S. Role of neuropsin in formation and maturation of Schaffer-collateral L1cam-immunoreactive synaptic boutons. J. Cell Sci. 119, 1341–1349 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Tamura, H. et al. Neuropsin is essential for early processes of memory acquisition and Schaffer collateral long-term potentiation in adult mouse hippocampus in vivo. J. Physiol. 570, 541–551 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Komai, S. et al. Neuropsin regulates an early phase of schaffer-collateral long-term potentiation in the murine hippocampus. Eur. J. Neurosci. 12, 1479–1486 (2000).

    Article  CAS  PubMed  Google Scholar 

  160. Matsumoto-Miyai, K. et al. NMDA-dependent proteolysis of presynaptic adhesion molecule L1 in the hippocampus by neuropsin. J. Neurosci. 23, 7727–7736 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Attwood, B. K. et al. Neuropsin cleaves EphB2 in the amygdala to control anxiety. Nature 473, 372–375 (2011). This paper reports a novel neuronal pathway linking stress-induced KLK8-driven proteolysis of EPHB2 in the amygdala to anxiety.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tamura, H., Kawata, M., Hamaguchi, S., Ishikawa, Y. & Shiosaka, S. Processing of neuregulin-1 by neuropsin regulates GABAergic neuron to control neural plasticity of the mouse hippocampus. J. Neurosci. 32, 12657–12672 (2012). This paper presents critical insights into the roles of KLK8 in human cognition and mental disorders, such as schizophrenia and bipolar disorder.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Mei, L. & Xiong, W. C. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nature Rev. Neurosci. 9, 437–452 (2008).

    Article  CAS  Google Scholar 

  164. Izumi, A. et al. Genetic variations of human neuropsin gene and psychiatric disorders: polymorphism screening and possible association with bipolar disorder and cognitive functions. Neuropsychopharmacology 33, 3237–3245 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Murakami, K. et al. In vivo analysis of kallikrein-related peptidase 6 (KLK6) function in oligodendrocyte development and the expression of myelin proteins. Neuroscience 236, 1–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  166. Yousef, G. M., Kishi, T. & Diamandis, E. P. Role of kallikrein enzymes in the central nervous system. Clin. Chim. Acta 329, 1–8 (2003).

    Article  CAS  PubMed  Google Scholar 

  167. Aoyagi, T. et al. Deficiency of kallikrein-like enzyme activities in cerebral tissue of patients with Alzheimer's disease. Experientia 46, 94–97 (1990).

    Article  CAS  PubMed  Google Scholar 

  168. Ogawa, K. et al. Localization of a novel type trypsin-like serine protease, neurosin, in brain tissues of Alzheimer's disease and Parkinson's disease. Psychiatry Clin. Neurosci. 54, 419–426 (2000).

    Article  CAS  PubMed  Google Scholar 

  169. Zarghooni, M. et al. Decreased concentration of human kallikrein 6 in brain extracts of Alzheimer's disease patients. Clin. Biochem. 35, 225–231 (2002).

    Article  CAS  PubMed  Google Scholar 

  170. Shulman, J. M. & De Jager, P. L. Evidence for a common pathway linking neurodegenerative diseases. Nature Genet. 41, 1261–1262 (2009).

    Article  CAS  PubMed  Google Scholar 

  171. Iwata, A. et al. α-synuclein degradation by serine protease neurosin: implication for pathogenesis of synucleinopathies. Hum. Mol. Genet. 12, 2625–2635 (2003).

    Article  CAS  PubMed  Google Scholar 

  172. Kasai, T. et al. Cleavage of normal and pathological forms of α-synuclein by neurosin in vitro. Neurosci. Lett. 436, 52–56 (2008).

    Article  CAS  PubMed  Google Scholar 

  173. Tatebe, H. et al. Extracellular neurosin degrades α-synuclein in cultured cells. Neurosci. Res. 67, 341–346 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Spencer, B. et al. Lentivirus mediated delivery of neurosin promotes clearance of wild-type α-synuclein and reduces the pathology in an α-synuclein model of LBD. Mol. Ther. 21, 31–41 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Blaber, S. I. et al. Targeting kallikrein 6 proteolysis attenuates CNS inflammatory disease. FASEB J. 18, 920–922 (2004).

    Article  CAS  PubMed  Google Scholar 

  176. Scarisbrick, I. A. et al. Kallikrein 6 regulates early CNS demyelination in a viral model of multiple sclerosis. Brain Pathol. 22, 709–722 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Blaber, S. I. et al. Enzymatic properties of rat myelencephalon-specific protease. Biochemistry 41, 1165–1173 (2002).

    Article  CAS  PubMed  Google Scholar 

  178. Terayama, R., Bando, Y., Yamada, M. & Yoshida, S. Involvement of neuropsin in the pathogenesis of experimental autoimmune encephalomyelitis. Glia 52, 108–118 (2005).

    Article  PubMed  Google Scholar 

  179. Scarisbrick, I. A. et al. Kallikrein 6 is a novel molecular trigger of reactive astrogliosis. Biol. Chem. 393, 355–367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Noorbakhsh, F. et al. Proteinase-activated receptor 2 modulates neuroinflammation in experimental autoimmune encephalomyelitis and multiple sclerosis. J. Exp. Med. 203, 425–435 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Koistinen, H. et al. Novel small molecule inhibitors for prostate-specific antigen. Prostate 68, 1143–1151 (2008).

    Article  CAS  PubMed  Google Scholar 

  182. Tan, X. et al. 1,2,4-triazole derivatives as transient inactivators of kallikreins involved in skin diseases. Bioorg. Med. Chem. Lett. 23, 4547–4551 (2013).

    Article  CAS  PubMed  Google Scholar 

  183. Tan, X. et al. Identification by in silico and in vitro screenings of small organic molecules acting as reversible inhibitors of kallikreins. Eur. J. Med. Chem. 70, 661–668 (2013).

    Article  CAS  PubMed  Google Scholar 

  184. Liang, G. et al. Human kallikrein 6 inhibitors with a para-amidobenzylanmine P1 group identified through virtual screening. Bioorg. Med. Chem. Lett. 22, 2450–2455 (2012).

    Article  CAS  PubMed  Google Scholar 

  185. Flohr, S. et al. Kallikrein 7 modulators WO 2009000878 A1. (2008).

  186. Freitas, R. F. et al. Isomannide derivatives as new class of inhibitors for human kallikrein 7. Bioorg. Med. Chem. Lett. 22, 6072–6075 (2012).

    Article  CAS  PubMed  Google Scholar 

  187. Singh, P., LeBeau, A. M., Lilja, H., Denmeade, S. R. & Isaacs, J. T. Molecular insights into substrate specificity of prostate specific antigen through structural modeling. Proteins 77, 984–993 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Vlieghe, P., Lisowski, V., Martinez, J. & Khrestchatisky, M. Synthetic therapeutic peptides: science and market. Drug Discov. Today 15, 40–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  189. LeBeau, A. M., Banerjee, S. R., Pomper, M. G., Mease, R. C. & Denmeade, S. R. Optimization of peptide-based inhibitors of prostate-specific antigen (PSA) as targeted imaging agents for prostate cancer. Bioorg. Med. Chem. 17, 4888–4893 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. LeBeau, A. M., Singh, P., Isaacs, J. T. & Denmeade, S. R. Potent and selective peptidyl boronic acid inhibitors of the serine protease prostate-specific antigen. Chem. Biol. 15, 665–674 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Evans, D. M. et al. Synthetic inhibitors of human tissue kallikrein. Immunopharmacology 32, 117–118 (1996).

    Article  CAS  PubMed  Google Scholar 

  192. Koistinen, H., Hekim, C., Wu, P., Narvanen, A. & Stenman, U. H. Evaluation of peptides as protease inhibitors and stimulators. Methods Mol. Biol. 1088, 147–158 (2014).

    Article  CAS  PubMed  Google Scholar 

  193. Pakkala, M. et al. Activity and stability of human kallikrein-2-specific linear and cyclic peptide inhibitors. J. Pept. Sci. 13, 348–353 (2007).

    Article  CAS  PubMed  Google Scholar 

  194. Huang, X. et al. Modulation of recombinant human prostate-specific antigen: activation by Hofmeister salts and inhibition by azapeptides. Appendix: thermodynamic interpretation of the activation by concentrated salts. Biochemistry 40, 11734–11741 (2001).

    Article  CAS  PubMed  Google Scholar 

  195. Evans, D.M., Allans, C.E., Horton, J. & Rooker, D.P. Aminopyridine derivatives WO 2009133348 A1. (2009).

  196. Vasileiou, Z. et al. Synthesis of the proteinase inhibitor LEKTI domain 6 by the fragment condensation method and regioselective disulfide bond formation. Biopolymers 94, 339–349 (2010).

    Article  CAS  PubMed  Google Scholar 

  197. de Veer, S. J. et al. Mechanism-based selection of a potent kallikrein-related peptidase 7 inhibitor from a versatile library based on the sunflower trypsin inhibitor SFTI-1. Biopolymers (2013).

  198. Swedberg, J. E. et al. Mastering the canonical loop of serine protease inhibitors: enhancing potency by optimising the internal hydrogen bond network. PLoS ONE 6, e19302 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Felber, L. M. et al. Mutant recombinant serpins as highly specific inhibitors of human kallikrein 14. FEBS J. 273, 2505–2514 (2006).

    Article  CAS  PubMed  Google Scholar 

  200. Cloutier, S. M. et al. Development of recombinant inhibitors specific to human kallikrein 2 using phage-display selected substrates. Eur. J. Biochem. 271, 607–613 (2004).

    Article  CAS  PubMed  Google Scholar 

  201. Cha, E. & Fong, L. Immunotherapy for prostate cancer: biology and therapeutic approaches. J. Clin. Oncol. 29, 3677–3685 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Madan, R. A. & Gulley, J. L. The current and emerging role of immunotherapy in prostate cancer. Clin. Genitourin. Cancer 8, 10–16 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Madan, R. A. & Gulley, J. L. Therapeutic cancer vaccine fulfills the promise of immunotherapy in prostate cancer. Immunotherapy 3, 27–31 (2011).

    Article  CAS  PubMed  Google Scholar 

  204. Di Lorenzo, G., Buonerba, C. & Kantoff, P. W. Immunotherapy for the treatment of prostate cancer. Nature Rev. Clin. Oncol. 8, 551–561 (2011).

    Article  CAS  Google Scholar 

  205. Madan, R. A., Arlen, P. M., Mohebtash, M., Hodge, J. W. & Gulley, J. L. Prostvac-VF: a vector-based vaccine targeting PSA in prostate cancer. Expert Opin. Investig. Drugs 18, 1001–1011 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Kantoff, P. W. et al. Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J. Clin. Oncol. 28, 1099–1105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Madan, R. A. & Gulley, J. L. Sipuleucel-T: harbinger of a new age of therapeutics for prostate cancer. Expert Rev. Vaccines 10, 141–150 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Sonpavde, G. et al. The role of sipuleucel-T in therapy for castration-resistant prostate cancer: a critical analysis of the literature. Eur. Urol. 61, 639–647 (2012).

    Article  CAS  PubMed  Google Scholar 

  209. Arlen, P. M., Mohebtash, M., Madan, R. A. & Gulley, J. L. Promising novel immunotherapies and combinations for prostate cancer. Future Oncol. 5, 187–196 (2009).

    Article  CAS  PubMed  Google Scholar 

  210. Bitting, R. L. & Armstrong, A. J. Potential predictive biomarkers for individualizing treatment for men with castration-resistant prostate cancer. Cancer J. 19, 25–33 (2013).

    Article  CAS  PubMed  Google Scholar 

  211. May, K. F. et al. Prostate cancer immunotherapy. Clin. Cancer Res. 17, 5233–5238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Schweizer, M. T. & Drake, C. G. Immunotherapy for prostate cancer: recent developments and future challenges. Cancer Metastasis Rev. 33, 641–655 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Thakur, A., Vaishampayan, U. & Lum, L. G. Immunotherapy and immune evasion in prostate cancer. Cancers (Basel) 5, 569–590 (2013).

    Article  CAS  Google Scholar 

  214. auf dem Keller, U., Doucet, A. & Overall, C. M. Protease research in the era of systems biology. Biol. Chem. 388, 1159–1162 (2007).

    CAS  PubMed  Google Scholar 

  215. Beaufort, N. et al. Interdependence of kallikrein-related peptidases in proteolytic networks. Biol. Chem. 391, 581–587 (2010).

    Article  CAS  PubMed  Google Scholar 

  216. Ohler, A., Debela, M., Wagner, S., Magdolen, V. & Becker-Pauly, C. Analyzing the protease web in skin: meprin metalloproteases are activated specifically by KLK4, 5 and 8 vice versa leading to processing of proKLK7 thereby triggering its activation. Biol. Chem. 391, 455–460 (2010).

    Article  CAS  PubMed  Google Scholar 

  217. Nomura, D. K., Dix, M. M. & Cravatt, B. F. Activity-based protein profiling for biochemical pathway discovery in cancer. Nature Rev. Cancer 10, 630–638 (2010).

    Article  CAS  Google Scholar 

  218. Jeffery, D. A. & Bogyo, M. Chemical proteomics and its application to drug discovery. Drug Discov. Today 9, S19–S26 (2004).

    PubMed  Google Scholar 

  219. Schilling, O., Huesgen, P. F., Barre, O., Auf dem Keller, U. & Overall, C. M. Characterization of the prime and non-prime active site specificities of proteases by proteome-derived peptide libraries and tandem mass spectrometry. Nature Protoc. 6, 111–120 (2011).

    Article  CAS  Google Scholar 

  220. Kleifeld, O. et al. Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. Nature Biotech. 28, 281–288 (2010).

    Article  CAS  Google Scholar 

  221. Doucet, A. & Overall, C. M. Protease proteomics: revealing protease in vivo functions using systems biology approaches. Mol. Aspects Med. 29, 339–358 (2008).

    Article  CAS  PubMed  Google Scholar 

  222. Turk, B. Targeting proteases: successes, failures and future prospects. Nature Rev. Drug Discov. 5, 785–799 (2006).

    Article  CAS  Google Scholar 

  223. Walker, B. & Lynas, J. F. Strategies for the inhibition of serine proteases. Cell. Mol. Life Sci. 58, 596–624 (2001).

    Article  CAS  PubMed  Google Scholar 

  224. Pinto, D. J. et al. Discovery of 1-(4-methoxyphenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4,5,6,7- tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carboxamide (apixaban, BMS-562247), a highly potent, selective, efficacious, and orally bioavailable inhibitor of blood coagulation factor Xa. J. Med. Chem. 50, 5339–5356 (2007).

    Article  CAS  PubMed  Google Scholar 

  225. Pinto, D. J., Qiao, J. X. & Knabb, R. M. The emergence of factor Xa inhibitors for the treatment of cardiovascular diseases: a patent review. Expert Opin. Ther. Pat. 22, 645–661 (2012).

    Article  CAS  PubMed  Google Scholar 

  226. Latham, P. W. Therapeutic peptides revisited. Nature Biotech. 17, 755–757 (1999).

    Article  CAS  Google Scholar 

  227. Overall, C. M. & Lopez-Otin, C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nature Rev. Cancer 2, 657–672 (2002).

    Article  CAS  Google Scholar 

  228. Meneton, P. et al. Cardiovascular abnormalities with normal blood pressure in tissue kallikrein-deficient mice. Proc. Natl Acad. Sci. USA 98, 2634–2639 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Pons, S. et al. Tissue kallikrein deficiency aggravates cardiac remodelling and decreases survival after myocardial infarction in mice. Eur. J. Heart Fail. 10, 343–351 (2008).

    Article  CAS  PubMed  Google Scholar 

  230. Simmer, J. P., Hu, Y., Lertlam, R., Yamakoshi, Y. & Hu, J. C. Hypomaturation enamel defects in Klk4 knockout/LacZ knockin mice. J. Biol. Chem. 284, 19110–19121 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

G.P. would like to acknowledge the support of the Ontario Institute for Cancer Research and its funding from the Government of Ontario, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleftherios P. Diamandis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Summary of the % nucleotide sequence identities between KLK-related peptidases* (PDF 120 kb)

Supplementary information S2 (table)

Diagrammatic summary of the preferred substrate specificities of the human KLK peptidases according to the MEROPS Peptidase Database* (PDF 111 kb)

Supplementary information S3 (figure)

Structure of other major serine proteases in standard orientation. (PDF 375 kb)

Glossary

Proteases

Enzymes that break down the peptide bonds that link amino acids together in proteins and polypeptides in a process known as proteolysis; they are also known as peptidases, proteolytic enzymes or proteinases.

Skin desquamation

The physiological peeling or shedding of the outermost corneocytes of the skin. A typical cycle of skin desquamation (which takes ~14 days) involves the apical movement and terminal differentiation of skin keratinocytes into corneocytes and their eventual shedding after cleavage by skin-associated proteases.

Seminal liquefaction

The enzymatic breakdown of the seminal gel — formed by proteins from the seminal vesicles — to become more liquefied. A typical seminal liquefaction cycle is completed within 20 minutes following ejaculation.

Catalytic triad

The three conserved amino-acid residues that are at the centre of the active sites of many enzymes (for example, proteases, amidases, esterases and lipases) and synergistically account for their activity.

Prime side

According to Schechter and Berger's nomenclature of interactions between protease active sites and peptidic or protein substrates, enzyme binding subsites (S′) and their corresponding substrate peptide (P′) residues that are C-terminal to the scissile peptide bond are termed 'prime side' and designated as S1′, S2′ and P1′, P2′, respectively.

Phage display

A molecular laboratory technique for the production and screening of novel proteins or polypeptides. The desired gene fragment is expressed by bacteriophages, which display the resulting protein on their surface where it can be tested for biological activity or interactions with other proteins, peptides or DNA.

Lamellar granules

Specialized secretory organelles typically found in keratinocytes and type 2 pneumocytes that are also known as membrane-coating granules, lamellar bodies, keratinosomes or Odland bodies. The keratinocyte trans-Golgi network and lamellar granules are parts of the same continuous membrane structure, in which lamellar granules transport their cargo and fuse with the cell membrane at the border of the stratum granulosum and stratum corneum to release their contents into the extracellular milieu.

Acanthosis

An abnormal, diffuse hypertrophy of the stratum spinosum, as in eczema and psoriasis.

Long-term potentiation

(LTP) The biological process behind the persistent increase and long-lasting enhancement in synaptic strength following electrical or chemical stimulation of neurons. It is a crucial cellular mechanism for both learning memory (also known as long-term memory) and working memory (also known as short-term memory).

Chondromyces crocatus

A Gram-negative bacteria strain that belongs to the myxobacteria family. They live predominantly in the soil and feed on insoluble organic substances. Although they are poorly distributed ecologically, numerous secondary metabolite products of Chondromyces crocatus have been recently found.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prassas, I., Eissa, A., Poda, G. et al. Unleashing the therapeutic potential of human kallikrein-related serine proteases. Nat Rev Drug Discov 14, 183–202 (2015). https://doi.org/10.1038/nrd4534

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4534

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research