Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Applying thermodynamic profiling in lead finding and optimization

Abstract

Small-molecule drug discovery involves the optimization of various physicochemical properties of a ligand, particularly its binding affinity for its target receptor (or receptors). In recent years, there has been growing interest in using thermodynamic profiling of ligand–receptor interactions in order to select and optimize those ligands that might be most likely to become drug candidates with desirable physicochemical properties. The thermodynamics of binding is influenced by multiple factors, including hydrogen bonding and hydrophobic interactions, desolvation, residual mobility, dynamics and the local water structure. This article discusses key issues in understanding the effects of these factors and applying this knowledge in drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ITC data plotted onto an enthalpy–entropy diagram.
Figure 2: Thermodynamic signatures for congeneric ligand series.
Figure 3: The influence of water molecules in binding pockets on the thermodynamic signature of protein–ligand binding.
Figure 4: Thermodynamic contributions of hydrogen bonds to protein–ligand complex formation.
Figure 5: Cooperative effects in protein–ligand binding.

Similar content being viewed by others

References

  1. Wermuth, C. G. in The Practice of Medicinal Chemistry Ch. 18 (Elsevier, 2003).

    Google Scholar 

  2. Blundell, T. L., Jhoti, H. & Abell, C. High-throughput crystallography for lead discovery in drug design. Nature Rev. Drug. Discov. 2, 45–53 (2002).

    Article  CAS  Google Scholar 

  3. de Kloe, G. E., Bailey, D., Leurs, R. & de Esch, I. J. Transforming fragments into candidates: small becomes big in medicinal chemistry. Drug Discov. Today 14, 630–646 (2009).

    Article  PubMed  Google Scholar 

  4. Ajay & Murcko, M. A. Computational methods to predict binding free energy in ligand-receptor complexes. J. Med. Chem. 38, 4953–4967 (1995).

    Article  PubMed  Google Scholar 

  5. Cheng, Y.-C. & Prusoff, W. H. Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108 (1973).

    Article  CAS  PubMed  Google Scholar 

  6. Klebe, G. Drug Design: Methodology, Concepts, and Mode-of-Action Ch. 4 (Springer Reference, 2013).

    Book  Google Scholar 

  7. Chaires, J. B. Calorimetry and thermodynamics in drug design. Ann. Rev. Biophys. 37, 135–151 (2008).

    Article  CAS  Google Scholar 

  8. Weber, I. T. & Agniswamy, J. HIV-1 protease: structural perspective on drug resistance. Viruses 1, 1110–1136 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ali, A. et al. Molecular basis for drug resistance in HIV-1 protease. Viruses 2, 2509–2535 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Freire, E. Do enthalpy and entropy distinguish first in class from best in class? Drug Discov. Today 13, 869–874 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ohtaka, H. & Freire, E. Adaptive inhibitors of the HIV-1 protease. Prog. Biophys. Mol. Biol. 88, 193–208 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Fernandez, A., Frazer, C. & Scott, L. R. Purposely engineered drug-target mismatches for entropy-based drug optimization. Trends Biotech. 30, 1–7 (2012).

    Article  CAS  Google Scholar 

  13. Das, K., Lewi, P. J., Hughes, S. H. & Arnold, E. Crystallography and the design of anti-AIDS drugs: conformational flexibility and positional adaptability are important in the design of non-nucleoside HIV-1 reverse transcriptase inhibitors. Prog. Biophys. Mol. Biol. 88, 209–231 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Ladbury, J. & Chowdhry, B. Z. Sensing the heat: the application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactions. Chem. Biol. 3, 791–801 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Ladbury, J. E. Isothermal titration calorimetry: application to structure-based drug design. Thermochim. Acta 380, 209–215 (2001).

    Article  CAS  Google Scholar 

  16. Velazquez-Campoy, A. & Freire, E. ITC in the post-genomic era? Priceless. Biophys. Chem. 115, 115–124 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Jelesarov, I. & Bossard, H. R. Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetic of biomolecular recognition. J. Mol. Recogn. 12, 3–18 (1999).

    Article  CAS  Google Scholar 

  18. Baker, B. M. & Murphy, K. P. Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry. Biophys. J. 71, 2049–2055 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Falconer, R. J. & Collins, B. M. Survey of the year 2009: applications of isothermal titration calorimetry. J. Mol. Recogn. 24, 1–16 (2011).

    Article  CAS  Google Scholar 

  20. Czodrowski, P., Sotriffer, C. A. & Klebe, G. Protonation changes upon ligand binding to trypsin and thrombin: structural interpretation based on pKa calculations and ITC experiments. J. Mol. Biol. 367, 1347–1356 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Baum, B. et al. Think twice: understanding the high potency of bis(phenyl)methane inhibitors of thrombin. J. Mol. Biol. 391, 552–564 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Goldberg, R. N., Kishore, N. & Lennen, R. M. Thermodynamic quantities for the reactions of buffers. J. Phys. Chem. Ref. Data 31, 231–370 (2002).

    Article  CAS  Google Scholar 

  23. Simunec, J. Microcalorimetric Studies to Understand the Thermodynamic and Structural Properties of Inhibitors of the Blood Coagulation Cascade. Thesis, Univ. Marburg (2007).

    Google Scholar 

  24. Sharp, K. Entropy-enthalpy compensation: fact or artifact? Prot. Sci. 10, 661–667 (2001).

    Article  CAS  Google Scholar 

  25. Olsson, T. S. G., Ladbury, J. E., Pitt, W. R. & Williams, M. A. Extent of enthalpy-entropy compensation in protein-ligand interactions. Prot. Sci. 20, 1607–1618 (2011).

    Article  CAS  Google Scholar 

  26. Chodera, J. D. & Mobley, D. L. Entropy-enthalpy compensation: role and ramifications in biomolecular ligand recognition and design. Ann. Rev. Biophys. 42, 121–142 (2013).

    Article  CAS  Google Scholar 

  27. Dunitz, J. D. Win some, lose some: enthalpy-entropy compensation in weak intermolecular interactions. Chem. Biol. 2, 709–712 (2003).

    Article  Google Scholar 

  28. Page, M. I. & Jencks, W. P. Entropic contributions to rate accelerations in enzymic and intramolecular reactions and chelate effect. Proc. Natl Acad. Sci. USA 68, 1678–1683 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Murray, C. W. & Verdonk, M. L. The consequences of translational and rotational entropy lost by small molecules on binding to proteins. J. Comput. Aided Mol. Design 16, 741–753 (2002).

    Article  CAS  Google Scholar 

  30. Nazare, M. et al. Fragment deconstruction of small, potent factor Xa inhibitors: exploring the superadditivity energetic of fragment linking in protein-ligand complexes. Angew. Chem. Int. Ed. 51, 905–911 (2012).

    Article  CAS  Google Scholar 

  31. Borsi, V., Calderone, V., Fragai, M., Luchinat, C. & Sarti, N. Entropic contribution to the linking coefficient in fragment-based drug design: a case study. J. Med. Chem. 53, 4285–4289 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Olsson, T. S. G., Williams, M. A., Pitt, W. R. & Ladbury, J. E. The thermodynamics of protein-ligand interactions and solvation: insights for ligand design. J. Mol. Biol. 384, 1002–1017 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Hann, M. M. & Kerserü, G. M. Finding the sweet spot: the role of nature and nurture in medicinal chemistry. Nature Rev. Drug Discov. 11, 355–365 (2011).

    Article  CAS  Google Scholar 

  34. Ferenczy, G. G. & Kerserü, G. M. Thermodynamics guided lead discovery and optimization. Drug Discov. Today 15, 919–932 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Reynolds, C. H. & Holloway, M. K. Thermodynamics of ligand binding and efficiency. ACS Med. Chem. Lett. 2, 433–437 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ferenczy, G. G. & Keserü, G. M. Thermodynamics of fragment binding. J. Chem. Inf. Model. 52, 1039–1045 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Ladbury, J. E., Klebe, G. & Freire, E. Adding calorimetric data to decision making in lead discovery: a hot tip. Nature Rev. Drug Discov. 9, 23–27 (2010).

    Article  CAS  Google Scholar 

  38. Freire, E. A thermodynamic approach to the affinity optimization of drug candidates. Chem. Biol. Drug Des. 74, 488–472 (2009).

    Article  CAS  Google Scholar 

  39. Martin, S. F. & Clements, J. H. Correlating structure and energetics in protein-ligand interactions: paradigms and paradoxes. Annu. Rev. Biochem. 82, 267–293 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Glas, A. et al. Constrained peptides with target-adapted cross-inks as inhibitors of a pathogenic protein-protein interaction. Angew. Chem. Int. Ed. 53, 2489–2493 (2014).

    Article  CAS  Google Scholar 

  41. Biela, A. et al. Ligand binding stepwise disrupts water network in thrombin: enthalpic and entropic changes reveal classical hydrophobic effect. J. Med. Chem. 55, 6094–6110 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Kyte, J. The basis of the hydrophobic effect. Biophys. Chem. 100, 193–203 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Dill, K. A., Truskett, T. M., Vlachy, V. & Hribar-Lee, B. Modeling water, the hydrophobic effect, and ion solvation. Annu. Rev. Biophys. Biomol. Struct. 34, 173–199 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Steuber, H., Heine, A. & Klebe, G. Structural and thermodynamic study on aldose reductase: nitro-substituted inhibitors with strong enthalpic binding contribution. J. Mol. Biol. 368, 618–638 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Rees, D. C., Congreve, M., Murray, C. W. & Carr, R. Fragment-based lead discovery. Nature Rev. Drug Discov. 3, 660–672 (2004).

    Article  CAS  Google Scholar 

  47. Erlanson, D. A., McDowell, R. S. & O'Brien, T. Fragment-based drug discovery. J. Med. Chem. 47, 3463–3482 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Hopkins, A. L., Groom, C. R. & Alex, A. Ligand efficiency: a useful metric for lead selection. Drug Discov. Today 9, 430–431 (2004).

    Article  PubMed  Google Scholar 

  49. Ferenczy, G. G. & Keserü, G. M. How are fragments optimized? A retrospective analysis of 145 fragment optimizations. J. Med. Chem. 56, 2478–2486 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Mondal, M. et al. Structure-based design exploiting dynamic combinatorial chemistry to identify novel inhibitors for the aspartic protease endothiapepsin. Angew. Chem. Int. Ed. 53, 3259–3263 (2014).

    Article  CAS  Google Scholar 

  51. Zhang, Y.-L. & Zhang, Z.-Y. Low-affinity binding determined by titration calorimetry using a high-affinity coupling ligand: a thermodynamic study of ligand binding to protein tyrosine phosphatase 1B. Analy. Biochem. 261, 139–148 (1998).

    Article  CAS  Google Scholar 

  52. Valezques-Campoy, A. & Freire, E. Isothermal titration calorimetry to determine association constants for high-affinity ligands. Nature Protoc. 1, 186–191 (2006).

    Article  CAS  Google Scholar 

  53. Steuber, H., Czodrowski, P., Sotriffer, C. A. & Klebe, G. Tracing changes in protonation: a prerequisite to factorize thermodynamic data of inhibitor binding to aldose reductase. J. Mol. Biol. 373, 1305–1320 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Baum, B. et al. Non-additivity of functional group contributions in protein-ligand binding: a comprehensive study by crystallography and isothermal titration calorimetry. J. Mol. Biol. 397, 1042–1057 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Baum, B. et al. More than a simple lipophilic contact: a detailed thermodynamic analysis of non-basic residues in the S1 pocket of thrombin. J. Mol. Biol. 390, 56–69 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Blum, A. Structure-Based Design and Synthesis of Pyrrolidines as Inhibitors of HIV-1 Protease. Thesis, Univ. Marburg (2007).

    Google Scholar 

  57. Homans, S. W. Water, water everywhere — except where it matters. Drug Discov. Today 12, 534–539 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Englert, L. et al. Displacement of disordered water molecules from the hydrophobic pocket creates enthalpic signature: binding of phosphonamidate to the S1′-pocket of thermolysin. Biochim. Biophys. Acta 1800, 1192–1202 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Snyder, P. W. et al. Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase. Proc. Natl Acad. Sci. USA 108, 17889–17894 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, J., Berne, B. J. & Friesner, R. A. Ligand binding to protein-binding pockets with wet and dry regions. Proc. Natl Acad. Sci. USA 108, 1326–1330 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Setny, P., Baron, R. & McCammon, J. A. How can hydrophobic association be enthalpy driven? J. Chem. Theory Comput. 6, 2866–2871 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Muley, L. et al. Enhancement of hydrophobic interactions and hydrogen bond strength by cooperativity: synthesis, modeling, and molecular dynamics simulations of a series of thrombin inhibitors. J. Med. Chem. 53, 2126–2135 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Sleigh, S. H., Seavers, P. R., Wilkingson, A. J., Ladbury, J. E. & Tame, J. R. H. Crystallographic and calorimetric analysis of peptide binding to OppA protein. J. Mol. Biol. 291, 393–415 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Davies, T. G., Hubbard, R. E. & Tame, J. R. H. Relating structures to thermodynamics: the crystal structures and binding affinity of eight OppA-peptide complexes. Protein Sci. 8, 1432–1444 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Brandt, T. et al. Congeneric but still distinct: how closely related trypsin ligands exhibit different thermodynamic and structural properties. J. Mol. Biol. 405, 1170–1187 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Petrova, T. et al. Factorizing selectivity determinants of inhibitor binding toward aldose and aldehyde reductases: structural and thermodynamic properties of the aldose reductase mutant Leu300Pro-fidarestat complex. J. Med. Chem. 48, 5659–5665 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Biela, A. et al. Impact of ligand and protein desolvation on ligand binding to the S1 pocket of thrombin. J. Mol. Biol. 418, 350–366 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Young, T., Abel, R., Kim, B., Berne, B. J. & Friesner, R. A. Motifs for molecular recognition exploiting hydrophobic enclosure in protein-ligand binding. Proc. Natl Acad. Sci. USA 104, 808–813 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Abel, R., Young, T., Farid, R., Berne, B. J. & Friesner, R. A. Role of the acive-site solvent in the thermodynamics of factor Xa ligand binding. J. Am. Chem. Soc. 130, 2817–2831 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Abel, R. et al. Contribution of explicit solvent effects to the binding affinity of small-molecule inhibitors in blood coagulation factor serine proteases. ChemMedChem. 6, 1049–1066 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Biela, A., Betz, M., Heine, A. & Klebe, G. Water makes the difference: rearrangement of water solvation layer triggers non-additivity of functional group contributions in protein-ligand binding. ChemMedChem. 7, 1423–1434 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Biela, A. et al. Dissecting the hydrophobic effect on the molecular level: the role of water, enthalpy, and entropy in ligand binding to thermolysin. Angew. Chem. Int. Ed. 52, 1822–1828 (2013).

    Article  CAS  Google Scholar 

  73. Krimmer, S., Betz, M., Heine, A. & Klebe, G. Methyl, ethyl, propyl, butyl: futile but not for water, as the correlation of structure and thermodynamic signature shows in a congeneric series of thermolysin inhibitors. ChemMedChem. 9, 833–846 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Leung, C. S., Leung, S. S. F., Tirado-Rives, J., Jorgensen, W. L. Methyl effects on protein-ligand binding. J. Med. Chem. 55, 4489–4500 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. MacRaild, C. A., Daranas, A. H., Bronowska, A. & Homans, S. W. Global changes in local protein dynamics reduce the entropic cost of carbohydrate binding in the arabinose binding protein. J. Mol. Biol. 368, 822–832 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Diehl, C., Genheden, S., Modig, K., Ryde, U. &, Akke, M. Conformational entropy changes upon lactose binding to the carbohydrate recognition domain of galectin-3. J. Biomol. NMR 45, 157–169 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Popovych, N., Sun, S., Ebright, R. H. & Kalodimos, C. G. Dynamically driven protein allostery. Nature Struct. Biol. 13, 831–838 (2006).

    Article  CAS  Google Scholar 

  78. Zidek, L., Novotny, M. V. & Stone, M. J. Increased protein backbone conformational entropy upon hydrophobic ligand binding. Nature Struct. Biol. 6, 1118–1121 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Diehl, C. et al. Protein flexibility and conformational entropy in ligand design targeting the carbohydrate recognition domain of galectin-3. J. Am. Chem. Soc. 132, 14577–14589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Stöckmann, H. et al. Residual ligand entropy in the binding of p-substituted benzenesulfonamide ligands to bovine carbonic anhydrase II. J. Am. Chem. Soc. 130, 12420–12426 (2008).

    Article  PubMed  CAS  Google Scholar 

  81. Syme, N. R., Dennis, C., Bronowska, A., Paesen, G. C. & Homans, S. W. Comparison of entropic contributions to binding in a “hydrophilic” versus “hydrophobic” ligand-protein interaction. J. Am. Chem. Soc. 132, 8682–8689 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Neeb, M. et al. Chasing protons: how ITC, mutagenesis and pKa calculations trace the locus of charge in ligand binding to a tRNA-binding enzyme. J. Med. Chem. 57, 5554–5565 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Neeb, M. et al. Beyond affinity: enthalpy-entropy factorization unravels complexity of a flat structure-activity relationship for inhibiton of tRNA-modifying enzyme. J. Med. Chem. 57, 5566–5578 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Rühmann, E. et al. Thermodynamic signatures of fragment binding: validation of direct versus displacement ITC titrations. Biochim. Biophys. Acta http://dx.doi.org/10.1016/j.bbagen.2014.12.007 (2015)

Download references

Acknowledgements

The author is grateful to the European Commission for a generous European Research Council (ERC) Advanced Grant (DrugProfilBind No. 268145), which made these systematic studies possible. Many members of the Marburg research team have contributed to the reported work. Their effort and engagement — in particular that of B. Baum, A. Biela, A. Heine and S. Krimmer — are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Klebe.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary information S1 (box)

ITC versus van't Hoff data and determination of heat capacity changes ΔCp (PDF 1222 kb)

Supplementary information S2 (figure)

Congeneric series of thermolysin inhibitors with a terminal carboxylate group and with P2′ substituents of growing hydrophobicity (R= H to benzyl). (PDF 382 kb)

Supplementary information S3 (figure)

Congeneric series of thermolysin inhibitors without a terminal carboxylate group and with P2′ substituents of growing hydrophobicity. (PDF 1327 kb)

PowerPoint slides

Glossary

Bioisosteric groups

Chemical groups that have a different chemical composition but elicit the same biological response once they are attached to a basic scaffold and bound to the target protein.

Classical hydrophobic effect

The tendency of non-polar molecules to aggregate and repel water. The effect is measured by the surface area of hydrophobic patches that is removed from solvent access, and it is usually explained as an entropy-driven process, as when the hydrophobic surface becomes buried it displaces water molecules.

Congeneric

In a congeneric series of ligands, one property, such as the size of a hydrophobic substituent, is gradually increased from ligand to ligand.

Difference electron density

X-rays are diffracted at the electrons of the molecules forming a crystal. Therefore, crystallography determines an electron density in the crystal to which a molecular model is fitted. Residual density — so-called 'difference electron density' — not explained by the atoms of the protein, indicates, for example, bound ligands or water molecules.

Enthalpic efficiency

A ligand parameter that, similarly to ligand efficiency, relates the enthalpic binding component of a ligand to its molecular size. Accordingly, the enthalpic binding signal is divided by the number of non-hydrogen atoms that compose the ligand.

Ligand efficiency

A parameter that relates the affinity of a ligand to its molecular size. Various equations to calculate ligand efficiency have been proposed: for example, dividing the Gibbs free energy of binding by the number of non-hydrogen atoms that compose the ligand.

Scaffold

The central molecular core of a lead compound, onto which different substituents and functional groups are attached.

Surface patch increment

The area of the hydrophobic surface of a ligand that becomes buried in the hydrophobic pocket of a protein upon the formation of a protein–ligand complex, contributing to affinity. This description follows the ideas of the classical hydrophobic effect.

Thrombin's 60-loop

Unlike other members of the trypsin-like serine proteases, thrombin has an additional loop that covers the S2 pocket of the protease and has an important influence on the selective recognition of the substrate.

Trajectory

A record along a molecular dynamics simulation of all the geometrical and conformational changes of the simulated system with time.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klebe, G. Applying thermodynamic profiling in lead finding and optimization. Nat Rev Drug Discov 14, 95–110 (2015). https://doi.org/10.1038/nrd4486

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4486

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research