Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting long non-coding RNA to therapeutically upregulate gene expression

A Corrigendum to this article was published on 29 November 2013

This article has been updated

Key Points

  • The human genome is pervasively transcribed. Most RNA transcripts represent non-coding RNAs (ncRNAs), of which there are many categories. This article focuses on long non-coding RNAs (lncRNAs).

  • Many lncRNAs have been shown to be functional and/or related to several human diseases, including various forms of cancer and inheritable diseases such as Huntington's disease and Fragile X syndrome. lncRNAs can positively or negatively regulate gene expression and chromatin architecture.

  • Natural antisense transcripts (NATs) are highly abundant in the human genome and found in many known gene loci where they are transcribed in the opposite direction of conventional protein-coding genes.

  • NATs frequently regulate the expression of protein-coding genes, either positively or negatively. Most NATs mediate transcriptional repression at the chromatin level.

  • AntagoNATs are oligonucleotides that specifically target NATs and are capable of upregulating the expression of corresponding protein coding genes in vitro as well as in vivo.

  • AntagoNATs induce gene upregulation in a gene-locus-specific and reversible manner.

  • AntagoNAT upregulation technology has been applied to the upregulation of genes including growth factors, tumour suppressors, transcription factors and those genes that are deficient in genetic diseases.

  • There is a scarcity of other methods for inducing locus-specific and reversible gene upregulation.

Abstract

The majority of currently available drugs and tool compounds exhibit an inhibitory mechanism of action and there is a relative lack of pharmaceutical agents that are capable of increasing the activity of effectors or pathways for therapeutic benefit. Indeed, the upregulation of many genes, including tumour suppressors, growth factors, transcription factors and genes that are deficient in various genetic diseases, would be desired in specific situations. Recently, key roles for regulatory long non-coding RNAs (lncRNAs) in the regulation of gene expression have begun to emerge. lncRNAs can positively or negatively regulate gene expression and chromatin architecture. Here, we review the current understanding of the mechanisms of action of lncRNAs and their roles in disease, focusing on recent work in the design of inhibitors of the natural antisense transcript (NAT) class of lncRNAs, known as antagoNAT oligonucleotides, and the issues associated with their potential therapeutic application.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 'Central dogma' in the context of regulatory non-coding RNAs.
Figure 2: Modulation of gene expression by long non-coding RNAs.
Figure 3: Simplified scheme of antagoNAT design.

Similar content being viewed by others

Change history

  • 29 November 2013

    The second paragraph in the section titled "Challenges in targeting long non-coding RNAs" on page 442 of this Review was inserted during manuscript revision. The wording of this paragraph drew heavily on, and mostly repeated, a paragraph in an earlier review article by J. T. Lee (Lee, J. T. Epigenetic regulation by long noncoding RNAs. Science 338, 1435–1439; 2012). Although the Science review was cited elsewhere in this article, it should also have been cited at this point in order to attribute correctly the ideas expressed by Lee. The author apologizes for introducing this passage, and for the lack of citation to the paper from which it derived, and is pleased to correct the record accordingly.

References

  1. Byrne, B. J., Falk, D. J., Clement, N. & Mah, C. S. Gene therapy approaches for lysosomal storage disease: next-generation treatment. Hum. Gene Ther. 23, 808–815 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sheridan, C. Gene therapy finds its niche. Nature Biotech. 29, 121–128 (2011).

    CAS  Google Scholar 

  3. Ciesielska, A. et al. Cerebral infusion of AAV9 vector-encoding non-self proteins can elicit cell-mediated immune responses. Mol. Ther. 21, 158–166 (2013).

    CAS  PubMed  Google Scholar 

  4. Unzu, C. et al. Transient and intensive pharmacological immunosuppression fails to improve AAV-based liver gene transfer in non-human primates. J. Transl. Med. 10, 122 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Waehler, R., Russell, S. J. & Curiel, D. T. Engineering targeted viral vectors for gene therapy. Nature Rev. Genet. 8, 573–587 (2007).

    CAS  PubMed  Google Scholar 

  6. Mingozzi, F. & High, K. A. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nature Rev. Genet. 12, 341–355 (2011).

    CAS  PubMed  Google Scholar 

  7. Thrasher, A. J. et al. Gene therapy: X-SCID transgene leukaemogenicity. Nature 443, e5–e6 (2006).

    CAS  PubMed  Google Scholar 

  8. Gaspar, H. B. et al. Long-term persistence of a polyclonal T cell repertoire after gene therapy for X-linked severe combined immunodeficiency. Sci. Transl. Med. 3, 97ra79 (2011).

    PubMed  Google Scholar 

  9. Woods, N. B., Bottero, V., Schmidt, M., von Kalle, C. & Verma, I. M. Gene therapy: therapeutic gene causing lymphoma. Nature 440, 1123 (2006).

    CAS  PubMed  Google Scholar 

  10. Yla-Herttuala, S. Endgame: glybera finally recommended for approval as the first gene therapy drug in the European union. Mol. Ther. 20, 1831–1832 (2012).

    PubMed  PubMed Central  Google Scholar 

  11. Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nature Rev. Drug Discov. 5, 993–996 (2006).

    CAS  Google Scholar 

  12. Karamouzis, M. V. & Papavassiliou, A. G. Transcription factor networks as targets for therapeutic intervention of cancer: the breast cancer paradigm. Mol. Med. 17, 1133–1136 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Libermann, T. A. & Zerbini, L. F. Targeting transcription factors for cancer gene therapy. Curr. Gene Ther. 6, 17–33 (2006).

    CAS  PubMed  Google Scholar 

  14. Arrowsmith, C. H., Bountra, C., Fish, P. V., Lee, K. & Schapira, M. Epigenetic protein families: a new frontier for drug discovery. Nature Rev. Drug Discov. 11, 384–400 (2012).

    CAS  Google Scholar 

  15. Dawson, M. A. & Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell 150, 12–27 (2012).

    CAS  PubMed  Google Scholar 

  16. Lindow, M. & Kauppinen, S. Discovering the first microRNA-targeted drug. J. Cell Biol. 199, 407–412 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Thum, T. MicroRNA therapeutics in cardiovascular medicine. EMBO Mol. Med. 4, 3–14 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Broderick, J. A. & Zamore, P. D. MicroRNA therapeutics. Gene Ther. 18, 1104–1110 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, V. & Wu, W. MicroRNA-based therapeutics for cancer. BioDrugs 23, 15–23 (2009).

    PubMed  Google Scholar 

  20. Sun, W., Julie Li, Y. S., Huang, H. D., Shyy, J. Y. & Chien, S. microRNA: a master regulator of cellular processes for bioengineering systems. Annu. Rev. Biomed. Eng. 12, 1–27 (2010).

    CAS  PubMed  Google Scholar 

  21. Wahlestedt, C. Natural antisense and noncoding RNA transcripts as potential drug targets. Drug Discov. Today 11, 503–508 (2006). This is the first non-patent publication to describe the antagoNAT strategy.

    CAS  PubMed  Google Scholar 

  22. Schwartz, J. C. et al. Antisense transcripts are targets for activating small RNAs. Nature Struct. Mol. Biol. 15, 842–848 (2008).

    CAS  Google Scholar 

  23. Morris, K. V. Long antisense non-coding RNAs function to direct epigenetic complexes that regulate transcription in human cells. Epigenetics 4, 296–301 (2009).

    CAS  PubMed  Google Scholar 

  24. Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 1559–1563 (2005). This study describes the large-scale effort required to produce data showing that the mammalian genome is pervasively transcribed.

    CAS  PubMed  Google Scholar 

  25. Cheng, J. et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308, 1149–1154 (2005).

    CAS  PubMed  Google Scholar 

  26. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    CAS  Google Scholar 

  27. Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101–108 (2012). This study also describes the large-scale effort required to produce data showing that the mammalian genome is pervasively transcribed.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22, 1775–1789 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mattick, J. S. The functional genomics of noncoding RNA. Science 309, 1527–1528 (2005).

    CAS  PubMed  Google Scholar 

  30. Graifer, D. & Karpova, G. Structural and functional topography of the human ribosome. Acta Biochim. Biophys. Sin. 44, 281–299 (2012).

    CAS  PubMed  Google Scholar 

  31. St Laurent, G. et al. Intronic RNAs constitute the major fraction of the non-coding RNA in mammalian cells. BMC Genomics 13, 504 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Brown, C. J. et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349, 38–44 (1991).

    CAS  PubMed  Google Scholar 

  33. Lee, J. T. Epigenetic regulation by long noncoding RNAs. Science 338, 1435–1439 (2012).

    CAS  PubMed  Google Scholar 

  34. Taft, R. J., Pheasant, M. & Mattick, J. S. The relationship between non-protein-coding DNA and eukaryotic complexity. Bioessays 29, 288–299 (2007).

    CAS  PubMed  Google Scholar 

  35. Mathews, D. H., Moss, W. N. & Turner, D. H. Folding and finding RNA secondary structure. Cold Spring Harb. Perspect. Biol. 2, a003665 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wahlestedt, C. et al. Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc. Natl Acad. Sci. USA 97, 5633–5638 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Khalil, A. M., Faghihi, M. A., Modarresi, F., Brothers, S. P. & Wahlestedt, C. A novel RNA transcript with antiapoptotic function is silenced in fragile X syndrome. PLoS ONE 3, e1486 (2008).

    PubMed  PubMed Central  Google Scholar 

  38. Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005). This paper describes a large-scale effort to show that extensive and functionally relevant antisense transcription occurs in the mammalian genome.

    PubMed  Google Scholar 

  39. Engstrom, P. G. et al. Complex loci in human and mouse genomes. PLoS Genet. 2, e47 (2006).

    PubMed  PubMed Central  Google Scholar 

  40. Khalil, A. M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl Acad. Sci. USA 106, 11667–11672 (2009). This paper demonstrates that many lncRNAs are not associated with protein-coding loci.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Guttman, M. et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477, 295–300 (2011). This is a large-scale demonstration showing that the function of many lncRNAs is not associated with protein-coding loci.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kretz, M. et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493, 231–235 (2013).

    CAS  PubMed  Google Scholar 

  44. Nakaya, H. I. et al. Genome mapping and expression analyses of human intronic noncoding RNAs reveal tissue-specific patterns and enrichment in genes related to regulation of transcription. Genome Biol. 8, R43 (2007).

    PubMed  PubMed Central  Google Scholar 

  45. Faghihi, M. A. et al. RNAi screen indicates widespread biological function for human natural antisense transcripts. PLoS ONE 5, e13177 (2010). This is a large-scale demonstration of the function of many long non-coding NATs.

    PubMed  PubMed Central  Google Scholar 

  46. Faghihi, M. A. & Wahlestedt, C. Regulatory roles of natural antisense transcripts. Nature Rev. Mol. Cell Biol. 10, 637–643 (2009).

    CAS  Google Scholar 

  47. Magistri, M., Faghihi, M. A., St Laurent, G. & Wahlestedt, C. Regulation of chromatin structure by long noncoding RNAs: focus on natural antisense transcripts. Trends Genet. 28, 389–396 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Faghihi, M. A. & Wahlestedt, C. RNA interference is not involved in natural antisense mediated regulation of gene expression in mammals. Genome Biol. 7, R38 (2006).

    PubMed  PubMed Central  Google Scholar 

  49. Carrieri, C. et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491, 454–457 (2012).

    CAS  PubMed  Google Scholar 

  50. Mohammad, F., Mondal, T. & Kanduri, C. Epigenetics of imprinted long noncoding RNAs. Epigenetics 4, 277–286 (2009).

    CAS  PubMed  Google Scholar 

  51. Yang, L. et al. ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell 147, 773–788 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Tsai, M. C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hung, T. et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nature Genet. 43, 621–629 (2011).

    CAS  PubMed  Google Scholar 

  55. Huarte, M. et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142, 409–419 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Feng, J. et al. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev. 20, 1470–1484 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, X. et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454, 126–130 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tripathi, V. et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell 39, 925–938 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Eissmann, M. et al. Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biol. 9, 1076–1087 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kino, T., Hurt, D. E., Ichijo, T., Nader, N. & Chrousos, G. P. Noncoding RNA Gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci. Signal. 3, ra8 (2010).

    PubMed  PubMed Central  Google Scholar 

  61. Bond, C. S. & Fox, A. H. Paraspeckles: nuclear bodies built on long noncoding RNA. J. Cell Biol. 186, 637–644 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Clemson, C. M. et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol. Cell 33, 717–726 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146, 353–358 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Cesana, M. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147, 358–369 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim, T. K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Sahu, B. et al. Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer. EMBO J. 30, 3962–3976 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, D. et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474, 390–394 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Yap, K. L. et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell 38, 662–674 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Gupta, R. A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang, Z. et al. Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann. Surg. Oncol. 18, 1243–1250 (2011).

    PubMed  Google Scholar 

  71. Kogo, R. et al. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 71, 6320–6326 (2011).

    CAS  PubMed  Google Scholar 

  72. Niinuma, T. et al. Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res. 72, 1126–1136 (2012).

    CAS  PubMed  Google Scholar 

  73. Gutschner, T. & Diederichs, S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 9, 703–719 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Luo, J. H. et al. Transcriptomic and genomic analysis of human hepatocellular carcinomas and hepatoblastomas. Hepatology 44, 1012–1024 (2006).

    CAS  PubMed  Google Scholar 

  75. Schmidt, L. H. et al. The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. J. Thorac. Oncol. 6, 1984–1992 (2011).

    PubMed  Google Scholar 

  76. Geng, Y. J., Xie, S. L., Li, Q., Ma, J. & Wang, G. Y. Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. J. Int. Med. Res. 39, 2119–2128 (2011).

    CAS  PubMed  Google Scholar 

  77. Kim, K. et al. HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene 32, 1616–1625 (2012).

    PubMed  PubMed Central  Google Scholar 

  78. Silva, J. M., Boczek, N. J., Berres, M. W., Ma, X. & Smith, D. I. LSINCT5 is over expressed in breast and ovarian cancer and affects cellular proliferation. RNA Biol. 8, 496–505 (2011).

    CAS  PubMed  Google Scholar 

  79. Jendrzejewski, J. et al. The polymorphism rs944289 predisposes to papillary thyroid carcinoma through a large intergenic noncoding RNA gene of tumor suppressor type. Proc. Natl Acad. Sci. USA 109, 8646–8651 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Han, Y., Liu, Y., Gui, Y. & Cai, Z. Long intergenic non-coding RNA TUG1 is overexpressed in urothelial carcinoma of the bladder. J. Surg. Oncol. 107, 555–559 (2012).

    PubMed  Google Scholar 

  81. Tsang, W. P., Wong, T. W., Cheung, A. H., Co, C. N. & Kwok, T. T. Induction of drug resistance and transformation in human cancer cells by the noncoding RNA CUDR. RNA 13, 890–898 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Qureshi, I. A., Mattick, J. S. & Mehler, M. F. Long non-coding RNAs in nervous system function and disease. Brain Res. 1338, 20–35 (2010).

    CAS  PubMed  Google Scholar 

  83. Pastori, C. & Wahlestedt, C. Involvement of long noncoding RNAs in diseases affecting the central nervous system. RNA Biol. 9, 860–870 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. St Laurent, G. & Wahlestedt, C. Noncoding RNAs: couplers of analog and digital information in nervous system function? Trends Neurosci. 30, 612–621 (2007).

    CAS  PubMed  Google Scholar 

  85. Mirkin, S. M. Expandable DNA repeats and human disease. Nature 447, 932–940 (2007).

    CAS  PubMed  Google Scholar 

  86. Moseley, M. L. et al. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nature Genet. 38, 758–769 (2006).

    CAS  PubMed  Google Scholar 

  87. Cho, D. H. et al. Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF. Mol. Cell 20, 483–489 (2005).

    CAS  PubMed  Google Scholar 

  88. Faghihi, M. A. et al. Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of β-secretase. Nature Med. 14, 723–730 (2008).

    CAS  PubMed  Google Scholar 

  89. Mus, E., Hof, P. R. & Tiedge, H. Dendritic BC200 RNA in aging and in Alzheimer's disease. Proc. Natl Acad. Sci. USA 104, 10679–10684 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Johnson, R. et al. The human accelerated region 1 noncoding RNA is repressed by REST in Huntington's disease. Physiol. Genomics 41, 269–274 (2010).

    CAS  PubMed  Google Scholar 

  91. Troy, A. & Sharpless, N. E. Genetic “lnc”-age of noncoding RNAs to human disease. J. Clin. Invest. 122, 3837–3840 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. van Dijk, M. et al. HELLP babies link a novel lincRNA to the trophoblast cell cycle. J. Clin. Invest. 122, 4003–4011 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Maass, P. G. et al. A misplaced lncRNA causes brachydactyly in humans. J. Clin. Invest. 122, 3990–4002 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Millar, J. K. et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum. Mol. Genet. 9, 1415–1423 (2000).

    CAS  PubMed  Google Scholar 

  95. Ladd, P. D. et al. An antisense transcript spanning the CGG repeat region of FMR1 is upregulated in premutation carriers but silenced in full mutation individuals. Hum. Mol. Genet. 16, 3174–3187 (2007).

    CAS  PubMed  Google Scholar 

  96. Cabianca, D. S. et al. A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell 149, 819–831 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wapinski, O. & Chang, H. Y. Long noncoding RNAs and human disease. Trends Cell Biol. 21, 354–361 (2011).

    CAS  PubMed  Google Scholar 

  98. Modarresi, F. et al. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nature Biotech. 30, 453–459 (2012). This is the first in vivo demonstration of the efficacy of antagoNATs.

    CAS  Google Scholar 

  99. Li, L. C. et al. Small dsRNAs induce transcriptional activation in human cells. Proc. Natl Acad. Sci. USA 103, 17337–17342 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Janowski, B. A. et al. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nature Chem. Biol. 3, 166–173 (2007).

    CAS  Google Scholar 

  101. Scheele, C. et al. The human PINK1 locus is regulated in vivo by a non-coding natural antisense RNA during modulation of mitochondrial function. BMC Genomics 8, 74 (2007).

    PubMed  PubMed Central  Google Scholar 

  102. Hopkins, A. L. & Groom, C. R. The druggable genome. Nature Rev. Drug Discov. 1, 727–730 (2002).

    CAS  Google Scholar 

  103. Desnick, R. J. & Schuchman, E. H. Enzyme replacement therapy for lysosomal diseases: lessons from 20 years of experience and remaining challenges. Annu. Rev. Genom. Hum. Genet. 13, 307–335 (2012).

    CAS  Google Scholar 

  104. Dirin, M. & Winkler, J. Influence of diverse chemical modifications on the ADME characteristics and toxicology of antisense oligonucleotides. Expert Opin. Biol. Ther. 2 Mar 2013 (10.1517/14712598.2013.774366).

  105. Jones, B. K., Levorse, J. M. & Tilghman, S. M. Igf2 imprinting does not require its own DNA methylation or H19 RNA. Genes Dev. 12, 2200–2207 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Schorderet, P. & Duboule, D. Structural and functional differences in the long non-coding RNA Hotair in mouse and human. PLoS Genet. 7, e1002071 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Nakagawa, S., Naganuma, T., Shioi, G. & Hirose, T. Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. J. Cell Biol. 193, 31–39 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang, B. et al. The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep. 2, 111–123 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Bennett, C. F. & Swayze, E. E. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol. 50, 259–293 (2010).

    CAS  PubMed  Google Scholar 

  110. Senn, J. J., Burel, S. & Henry, S. P. Non-CpG-containing antisense 2′-methoxyethyl oligonucleotides activate a proinflammatory response independent of Toll-like receptor 9 or myeloid differentiation factor 88. J. Pharmacol. Exp. Ther. 314, 972–979 (2005).

    CAS  PubMed  Google Scholar 

  111. Krieg, A. M. Therapeutic potential of Toll-like receptor 9 activation. Nature Rev. Drug Discov. 5, 471–484 (2006).

    CAS  Google Scholar 

  112. Freier, S. & Watt, A. T. in Antisense Drug Technology: Principles, Strategies, and Applications (ed. Crooke, S. T.) 118–138 (CRC Press, 2007).

    Google Scholar 

  113. Xu, Z., Almudevar, A. & Mathews, D. H. Statistical evaluation of improvement in RNA secondary structure prediction. Nucleic Acids Res. 40, e26 (2012).

    CAS  PubMed  Google Scholar 

  114. Lima, W. F. et al. Human RNase H1 discriminates between subtle variations in the structure of the heteroduplex substrate. Mol. Pharmacol. 71, 83–91 (2007).

    CAS  PubMed  Google Scholar 

  115. Carroll, J. B. et al. Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene / allele-specific silencing of mutant huntingtin. Mol. Ther. 19, 2178–2185 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Stein, C. A. The experimental use of antisense oligonucleotides: a guide for the perplexed. J. Clin. Invest. 108, 641–644 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Shim, M. S. & Kwon, Y. J. Efficient and targeted delivery of siRNA in vivo. FEBS J. 277, 4814–4827 (2010).

    CAS  PubMed  Google Scholar 

  118. Huang, L. & Liu, Y. In vivo delivery of RNAi with lipid-based nanoparticles. Annu. Rev. Biomed. Eng. 13, 507–530 (2011).

    CAS  PubMed  Google Scholar 

  119. Pollack, A. F.D.A. approves genetic drug to treat rare disease. New York Times [online], (2013).

  120. Juliano, R. L., Carver, K., Cao, C. & Ming, X. Receptors, endocytosis, and trafficking: the biological basis of targeted delivery of antisense and siRNA oligonucleotides. J. Drug Target 21, 27–43 (2013).

    CAS  PubMed  Google Scholar 

  121. Wahlestedt, C. et al. Antisense oligodeoxynucleotides to NMDA-R1 receptor channel protect cortical neurons from excitotoxicity and reduce focal ischaemic infarctions. Nature 363, 260–263 (1993).

    CAS  PubMed  Google Scholar 

  122. Wahlestedt, C., Pich, E. M., Koob, G. F., Yee, F. & Heilig, M. Modulation of anxiety and neuropeptide Y-Y1 receptors by antisense oligodeoxynucleotides. Science 259, 528–531 (1993).

    CAS  PubMed  Google Scholar 

  123. Standifer, K. M., Chien, C. C., Wahlestedt, C., Brown, G. P. & Pasternak, G. W. Selective loss of δ opioid analgesia and binding by antisense oligodeoxynucleotides to a δ opioid receptor. Neuron 12, 805–810 (1994).

    CAS  PubMed  Google Scholar 

  124. Yee, F., Ericson, H., Reis, D. J. & Wahlestedt, C. Cellular uptake of intracerebroventricularly administered biotin- or digoxigenin-labeled antisense oligodeoxynucleotides in the rat. Cell. Mol. Neurobiol. 14, 475–486 (1994).

    CAS  PubMed  Google Scholar 

  125. Southwell, A. L., Skotte, N. H., Bennett, C. F. & Hayden, M. R. Antisense oligonucleotide therapeutics for inherited neurodegenerative diseases. Trends Mol. Med. 18, 634–643 (2012).

    CAS  PubMed  Google Scholar 

  126. Hayek, S. M., Deer, T. R., Pope, J. E., Panchal, S. J. & Patel, V. B. Intrathecal therapy for cancer and non-cancer pain. Pain Physician 14, 219–248 (2011).

    PubMed  Google Scholar 

  127. Rigo, F., Hua, Y., Krainer, A. R. & Bennett, C. F. Antisense-based therapy for the treatment of spinal muscular atrophy. J. Cell Biol. 199, 21–25 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Gommans, W. M., Haisma, H. J. & Rots, M. G. Engineering zinc finger protein transcription factors: the therapeutic relevance of switching endogenous gene expression on or off at command. J. Mol. Biol. 354, 507–519 (2005).

    CAS  PubMed  Google Scholar 

  129. Klug, A. Zinc finger peptides for the regulation of gene expression. J. Mol. Biol. 293, 215–218 (1999).

    CAS  PubMed  Google Scholar 

  130. Matera, A. G., Terns, R. M. & Terns, M. P. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nature Rev. Mol. Cell Biol. 8, 209–220 (2007).

    CAS  Google Scholar 

  131. Bachellerie, J. P., Cavaille, J. & Huttenhofer, A. The expanding snoRNA world. Biochimie 84, 775–790 (2002).

    CAS  PubMed  Google Scholar 

  132. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Fabian, M. R. & Sonenberg, N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nature Struct. Mol. Biol. 19, 586–593 (2012).

    CAS  Google Scholar 

  134. Rother, S. & Meister, G. Small RNAs derived from longer non-coding RNAs. Biochimie 93, 1905–1915 (2011).

    PubMed  Google Scholar 

  135. Pruijn, G. J., Wingens, P. A., Peters, S. L., Thijssen, J. P. & van Venrooij, W. J. Ro RNP associated Y RNAs are highly conserved among mammals. Biochim. Biophys. Acta 1216, 395–401 (1993).

    CAS  PubMed  Google Scholar 

  136. Jeon, Y. & Lee, J. T. YY1 tethers Xist RNA to the inactive X nucleation center. Cell 146, 119–133 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Schmitz, K. M., Mayer, C., Postepska, A. & Grummt, I. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev. 24, 2264–2269 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Martianov, I., Ramadass, A., Serra Barros, A., Chow, N. & Akoulitchev, A. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445, 666–670 (2007).

    CAS  PubMed  Google Scholar 

  139. Beerli, R. R. & Barbas, C. F. Engineering polydactyl zinc-finger transcription factors. Nature Biotech. 20, 135–141 (2002).

    CAS  Google Scholar 

  140. Cayre, A., Rossignol, F., Clottes, E. & Penault-Llorca, F. aHIF but not HIF-1α transcript is a poor prognostic marker in human breast cancer. Breast Cancer Res. 5, R223–230 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Thrash-Bingham, C. A. & Tartof, K. D. aHIF: a natural antisense transcript overexpressed in human renal cancer and during hypoxia. J. Natl Cancer Inst. 91, 143–151 (1999).

    CAS  PubMed  Google Scholar 

  142. Zolk, O., Solbach, T. F., Eschenhagen, T., Weidemann, A. & Fromm, M. F. Activation of negative regulators of the hypoxia-inducible factor (HIF) pathway in human end-stage heart failure. Biochem. Biophys. Res. Commun. 376, 315–320 (2008).

    CAS  PubMed  Google Scholar 

  143. Pasmant, E. et al. Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res. 67, 3963–3969 (2007).

    CAS  PubMed  Google Scholar 

  144. Pasmant, E. et al. Role of noncoding RNA ANRIL in genesis of plexiform neurofibromas in neurofibromatosis type 1. J. Natl Cancer Inst. 103, 1713–1722 (2011).

    CAS  PubMed  Google Scholar 

  145. Pasmant, E., Sabbagh, A., Vidaud, M. & Bieche, I. ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J. 25, 444–448 (2011).

    CAS  PubMed  Google Scholar 

  146. Annilo, T., Kepp, K. & Laan, M. Natural antisense transcript of natriuretic peptide precursor A (NPPA): structural organization and modulation of NPPA expression. BMC Mol. Biol. 10, 81 (2009).

    PubMed  PubMed Central  Google Scholar 

  147. Parenti, R., Paratore, S., Torrisi, A. & Cavallaro, S. A natural antisense transcript against Rad18, specifically expressed in neurons and upregulated during β-amyloid-induced apoptosis. Eur. J. Neurosci. 26, 2444–2457 (2007).

    PubMed  Google Scholar 

  148. Zhang, H., Gao, S. & De Geyter, C. A natural antisense transcript, BOKAS, regulates the pro-apoptotic activity of human Bok. Int. J. Oncol. 34, 1135–1138 (2009).

    CAS  PubMed  Google Scholar 

  149. Chung, D. W., Rudnicki, D. D., Yu, L. & Margolis, R. L. A natural antisense transcript at the Huntington's disease repeat locus regulates HTT expression. Hum. Mol. Genet. 20, 3467–3477 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Yu, W. et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451, 202–206 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Ozgur, E. et al. Differential expression of long non-coding RNAs during genotoxic stress-induced apoptosis in HeLa and MCF-7 cells. Clin. Exp. Med. 10 Apr 2012 (10.1007/s10238-012-0181-x).

  152. Hu, W., Yuan, B., Flygare, J. & Lodish, H. F. Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev. 25, 2573–2578 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Paralkar, V. R. & Weiss, M. J. A new 'Linc' between noncoding RNAs and blood development. Genes Dev. 25, 2555–2558 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Mourtada-Maarabouni, M., Pickard, M. R., Hedge, V. L., Farzaneh, F. & Williams, G. T. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 28, 195–208 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author apologizes to colleagues whose work could not be discussed or cited owing to space limitations. He also thanks many members of his laboratory, in particular V. Peschansky and P. Halley, for their critical review of the literature and for providing important help with the manuscript. M. Magistri and Z. Zeier have provided scientific input and expert help in designing the figures. M. A. Faghihi, P. Kapranov and G. St Laurent are acknowledged for their critical reading and/or for providing important input on RNA classification. Finally, the author thanks J. Hsiao, O. Khorkova, C. Coito, P. Frost and others at OPKO-CURNA for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claes Wahlestedt.

Ethics declarations

Competing interests

Claes Wahlestedt is a consultant for Opko Health.

Related links

PowerPoint slides

Glossary

MicroRNAs

(miRNAs). Small non-coding RNAs that affect the stability of many mRNAs.

Long non-coding RNAs

(lncRNAs). RNA transcripts greater than 200 nucleotides in length that lack an open reading frame and therefore do not encode protein.

Natural antisense transcript

(NAT). An RNA transcript originating from the opposite strand of a sense (often protein-coding) RNA transcript.

INK4B–ARF–INK4A locus

A locus that encodes three tumour suppressor proteins: INK4B, which is encoded by cyclin-dependent kinase inhibitor 2B (CDKN2B); and INK4A and ARF, which are encoded by CDKN2A.

AntagoNATs

Oligonucleotide inhibitors targeted to a natural antisense transcript (NAT).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wahlestedt, C. Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat Rev Drug Discov 12, 433–446 (2013). https://doi.org/10.1038/nrd4018

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4018

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer