Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting the unfolded protein response in disease

Key Points

  • The endoplasmic reticulum (ER) is the main organelle involved in protein folding, and different perturbations to its function lead to the accumulation of unfolded proteins, a condition known as ER stress.

  • The unfolded protein response (UPR) is a signal transduction pathway that mediates adaption to ER stress. Chronic ER stress triggers apoptosis.

  • ER stress is an emerging feature of many diseases, including cancer, neurodegeneration, diabetes and inflammatory diseases.

  • Small molecules that inhibit proximal UPR signalling components have proven efficacy in preclinical models of cancer.

  • Compounds that decrease the load of misfolded proteins at the ER have protective effects in models of ischaemia, neurodegeneration and diabetes.

  • Targeting the UPR pathway systemically may have undesired side effects in the long term.

  • Gene therapy is emerging as a valid strategy to locally manipulate ER stress levels in a disease context, with more clear applications on brain pathology.

  • Genetic manipulation of the UPR in mice revealed that the UPR has important physiological activities in processes that may not be directly related to ER stress, including cell differentiation, lipid and cholesterol metabolism, and inflammatory responses.

  • More studies are needed to identify the mechanisms that fine-tune the UPR. Moreover, predicting and defining the possible side effects of manipulating the UPR at the systemic level are needed for the validation of the pathway as a drug target and the progression of UPR modulators into clinical trials.

Abstract

Stress induced by the accumulation of unfolded proteins in the endoplasmic reticulum (ER) is a feature of specialized secretory cells and is also observed in many diseases, including cancer, diabetes, autoimmune conditions, liver disorders, obesity and neurodegenerative disorders. Cellular adaptation to ER stress is achieved by the activation of the unfolded protein response, which is an integrated signal transduction pathway that modulates many aspects of ER physiology. When these mechanisms of adaptation are insufficient to handle the unfolded protein load, cells undergo apoptosis. Here, we discuss recent advances in the design of novel compounds and therapeutic strategies to manipulate levels of ER stress in disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The unfolded protein response.
Figure 2: Pharmacological modulation of IRE1.
Figure 3: Pharmacological modulation of PERK signalling.
Figure 4: Therapeutic molecules to target ER proteostasis.
Figure 5: Sites of action of therapeutic molecules to target ER proteostasis.

Similar content being viewed by others

References

  1. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Tabas, I. & Ron, D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nature Cell Biol. 13, 184–190 (2011).

    CAS  PubMed  Google Scholar 

  3. Rutkowski, D. T. & Hegde, R. S. Regulation of basal cellular physiology by the homeostatic unfolded protein response. J. Cell Biol. 189, 783–794 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, S. & Kaufman, R. J. The impact of the unfolded protein response on human disease. J. Cell Biol. 197, 857–867 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kozutsumi, Y., Segal, M., Normington, K., Gething, M. J. & Sambrook, J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332, 462–464 (1988).

    CAS  PubMed  Google Scholar 

  6. Calfon, M. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96 (2002).

    CAS  PubMed  Google Scholar 

  7. Lee, K. et al. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev. 16, 452–466 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891 (2001).

    CAS  PubMed  Google Scholar 

  9. Acosta-Alvear, D. et al. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol. Cell 27, 53–66 (2007).

    CAS  PubMed  Google Scholar 

  10. Lee, A.-H., Iwakoshi, N. N. & Glimcher, L. H. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell. Biol. 23, 7448–7459 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nature Rev. Mol. Cell Biol. 13, 89–102 (2012).

    CAS  Google Scholar 

  12. Hetz, C. & Glimcher, L. H. Fine-tuning of the unfolded protein response: assembling the IRE1α interactome. Mol. Cell 35, 551–561 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, H., Korennykh, A. V., Behrman, S. L. & Walter, P. Mammalian endoplasmic reticulum stress sensor IRE1 signals by dynamic clustering. Proc. Natl Acad. Sci. USA 107, 16113–16118 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Urano, F. et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664–666 (2000).

    CAS  PubMed  Google Scholar 

  15. Nishitoh, H. et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 16, 1345–1355 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Han, D. et al. IRE1α kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 138, 562–575 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hollien, J. et al. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J. Cell Biol. 186, 323–331 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hollien, J. & Weissman, J. S. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313, 104–107 (2006).

    CAS  PubMed  Google Scholar 

  19. Oikawa, D., Tokuda, M., Hosoda, A. & Iwawaki, T. Identification of a consensus element recognized and cleaved by IRE1α. Nucleic Acids Res. 38, 6265–6273 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Upton, J. P. et al. IRE1α cleaves select microRNAs during ER stress to derepress translation of proapoptotic caspase-2. Science 338, 818–822 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dai, B. H. et al. microRNA-199a-5p protects hepatocytes from bile acid-induced sustained endoplasmic reticulum stress. Cell Death Dis. 4, e604 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Maurel, M. & Chevet, E. Endoplasmic reticulum stress signaling: the microRNA connection. Am. J. Physiol. Cell Physiol. 304, C1117–C1126 (2013).

    CAS  PubMed  Google Scholar 

  23. Maurel, M., Dejeans, N., Taouji, S., Chevet, E. & Grosset, C. F. MicroRNA-1291-mediated silencing of IRE1α enhances glypican-3 expression. RNA 19, 778–788 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kimata, Y. & Kohno, K. Endoplasmic reticulum stress-sensing mechanisms in yeast and mammalian cells. Curr. Opin. Cell Biol. 23, 135–142 (2011).

    CAS  PubMed  Google Scholar 

  25. Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P. & Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nature Cell Biol. 2, 326–332 (2000).

    CAS  PubMed  Google Scholar 

  26. Harding, H. P. et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6, 1099–1108 (2000).

    CAS  PubMed  Google Scholar 

  27. Harding, H. P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619–633 (2003).

    CAS  PubMed  Google Scholar 

  28. Lange, P. S. et al. ATF4 is an oxidative stress-inducible, prodeath transcription factor in neurons in vitro and in vivo. J. Exp. Med. 205, 1227–1242 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Novoa, I., Zeng, H., Harding, H. P. & Ron, D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. J. Cell Biol. 153, 1011–1022 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Haze, K., Yoshida, H., Yanagi, H., Yura, T. & Mori, K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell 10, 3787–3799 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Asada, R., Kanemoto, S., Kondo, S., Saito, A. & Imaizumi, K. The signalling from endoplasmic reticulum-resident bZIP transcription factors involved in diverse cellular physiology. J. Biochem. 149, 507–518 (2011).

    CAS  PubMed  Google Scholar 

  32. Yamamoto, K. et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6α and XBP1. Dev. Cell 13, 365–376 (2007).

    CAS  PubMed  Google Scholar 

  33. Shoulders, M. D. et al. Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments. Cell Rep. 3, 1279–1292 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Credle, J. J., Finer-Moore, J. S., Papa, F. R., Stroud, R. M. & Walter, P. On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 102, 18773–18784 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gardner, B. M. & Walter, P. Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science 333, 1891–1894 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Oikawa, D., Kitamura, A., Kinjo, M. & Iwawaki, T. Direct association of unfolded proteins with mammalian ER stress sensor, IRE1β. PLoS ONE 7, e51290 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Woehlbier, U. & Hetz, C. Modulating stress responses by the UPRosome: a matter of life and death. Trends Biochem. Sci. 36, 329–337 (2011).

    CAS  PubMed  Google Scholar 

  38. Zinszner, H. et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 12, 982–995 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Puthalakath, H. et al. ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129, 1337–1349 (2007).

    CAS  PubMed  Google Scholar 

  40. Mccullough, K., Martindale, J., Klotz, L.-O., Aw, T.-Y. & Holbrook, N. GADD153 sensitizes cells to endoplasmic reticulum stress by down-regulating BCL2 and perturbing the cellular redox State. Mol. Cell. Biol. 21, 1249 (2001).

    CAS  PubMed  Google Scholar 

  41. Marciniak, S. J. et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 18, 3066–3077 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, I. et al. Chemical biology investigation of cell death pathways activated by endoplasmic reticulum stress reveals cytoprotective modulators of ASK1. J. Biol. Chem. 284, 1593–1603 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Shore, G. C., Papa, F. R. & Oakes, S. A. Signaling cell death from the endoplasmic reticulum stress response. Curr. Opin. Cell Biol. 23, 143–149 (2011).

    CAS  PubMed  Google Scholar 

  44. Lin, J. H. et al. IRE1 signaling affects cell fate during the unfolded protein response. Science 318, 944–949 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lin, J. H. et al. Divergent effects of PERK and IRE1 signaling on cell viability. PLoS ONE 4, e4170 (2009).

    PubMed  PubMed Central  Google Scholar 

  46. Schroder, M. & Kaufman, R. J. The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739–789 (2005).

    PubMed  Google Scholar 

  47. Bommiasamy, H. & Popko, B. Animal models in the study of the unfolded protein response. Methods Enzymol. 491, 91–109 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Matus, S., Glimcher, L. H. & Hetz, C. Protein folding stress in neurodegenerative diseases: a glimpse into the ER. Curr. Opin. Cell Biol. 23, 239–252 (2011).

    CAS  PubMed  Google Scholar 

  49. Mercado, G., Valdes, P. & Hetz, C. An ERcentric view of Parkinson's disease. Trends Mol. Med. 19, 165–175 (2013).

    CAS  PubMed  Google Scholar 

  50. Roussel, B. D. et al. Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol. 12, 105–118 (2013).

    CAS  PubMed  Google Scholar 

  51. Egawa, N. et al. The endoplasmic reticulum stress sensor, ATF6α, protects against neurotoxin-induced dopaminergic neuronal death. J. Biol. Chem. 286, 7947–7957 (2011).

    CAS  PubMed  Google Scholar 

  52. Hashida, K. et al. ATF6α promotes astroglial activation and neuronal survival in a chronic mouse model of Parkinson's disease. PLoS ONE 7, e47950 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Silva, R. M. et al. CHOP/GADD153 is a mediator of apoptotic death in substantia nigra dopamine neurons in an in vivo neurotoxin model of parkinsonism. J. Neurochem. 95, 974–986 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, L., Popko, B. & Roos, R. P. The unfolded protein response in familial amyotrophic lateral sclerosis. Hum. Mol. Genet. 20, 1008–1015 (2011).

    CAS  PubMed  Google Scholar 

  55. Hetz, C. et al. XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev. 23, 2294–2306 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Matus, S., Lopez, E., Valenzuela, V. & Hetz, C. Functional role of the transcription factor ATF4 in the pathogenesis of amyotrophic lateral sclerosis. PLoS ONE 8, e66672 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Vidal, R. L. et al. Targeting the UPR transcription factor XBP1 protects against Huntington's disease through the regulation of FoxO1 and autophagy. Hum. Mol. Genet. 21, 2245–2262 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Valenzuela, V. et al. Activation of the unfolded protein response enhances motor recovery after spinal cord injury. Cell Death Dis. 3, e272 (2012).

    CAS  PubMed  Google Scholar 

  59. Ohri, S. S. et al. Attenuating the endoplasmic reticulum stress response improves functional recovery after spinal cord injury. Glia 59, 1489–1502 (2011).

    PubMed  PubMed Central  Google Scholar 

  60. Moreno, J. A. et al. Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nature 485, 507–511 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hetz, C. et al. Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis. Proc. Natl Acad. Sci. USA 105, 757–762 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lin, W. & Popko, B. Endoplasmic reticulum stress in disorders of myelinating cells. Nature Neurosci. 12, 379–385 (2009).

    CAS  PubMed  Google Scholar 

  63. Clevers, H. Inflammatory bowel disease, stress, and the endoplasmic reticulum. N. Engl. J. Med. 360, 726–727 (2009).

    CAS  PubMed  Google Scholar 

  64. Kaser, A., Flak, M. B., Tomczak, M. F. & Blumberg, R. S. The unfolded protein response and its role in intestinal homeostasis and inflammation. Exp. Cell Res. 317, 2772–2779 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Garrett, W. S., Gordon, J. I. & Glimcher, L. H. Homeostasis and inflammation in the intestine. Cell 140, 859–870 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Bertolotti, A. et al. Increased sensitivity to dextran sodium sulfate colitis in IRE1β-deficient mice. J. Clin. Invest. 107, 585–593 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kaser, A. et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134, 743–756 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Treton, X. et al. Altered endoplasmic reticulum stress affects translation in inactive colon tissue from patients with ulcerative colitis. Gastroenterology 141, 1024–1035 (2011).

    CAS  PubMed  Google Scholar 

  69. Iwakoshi, N. N., Pypaert, M. & Glimcher, L. H. The transcription factor XBP-1 is essential for the development and survival of dendritic cells. J. Exp. Med. 204, 2267–2275 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Woo, C. W. et al. Adaptive suppression of the ATF4–CHOP branch of the unfolded protein response by Toll-like receptor signalling. Nature Cell Biol. 11, 1473–1480 (2009).

    CAS  PubMed  Google Scholar 

  71. Woo, C. W., Kutzler, L., Kimball, S. R. & Tabas, I. Toll-like receptor activation suppresses ER stress factor CHOP and translation inhibition through activation of eIF2B. Nature Cell Biol. 14, 192–200 (2012).

    CAS  PubMed  Google Scholar 

  72. Martinon, F. & Glimcher, L. H. Regulation of innate immunity by signaling pathways emerging from the endoplasmic reticulum. Curr. Opin. Immunol. 23, 35–40 (2011).

    CAS  PubMed  Google Scholar 

  73. Todd, D. J., Lee, A. H. & Glimcher, L. H. The endoplasmic reticulum stress response in immunity and autoimmunity. Nature Rev. Immunol. 8, 663–674 (2008).

    CAS  Google Scholar 

  74. Cao, S. S. & Kaufman, R. J. Targeting endoplasmic reticulum stress in metabolic disease. Expert Opin. Ther. Targets 17, 437–448 (2012).

    Google Scholar 

  75. Hotamisligil, G. S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140, 900–917 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ota, T., Gayet, C. & Ginsberg, H. N. Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J. Clin. Invest. 118, 316–332 (2008).

    CAS  PubMed  Google Scholar 

  77. Lee, A. H., Scapa, E. F., Cohen, D. E. & Glimcher, L. H. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320, 1492–1496 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhou, Y. et al. Regulation of glucose homeostasis through a XBP-1–FoxO1 interaction. Nature Med. 17, 356–365 (2011).

    CAS  PubMed  Google Scholar 

  79. Park, S. W. et al. The regulatory subunits of PI3K, 85α and p85β, interact with XBP-1 and increase its nuclear translocation. Nature Med. 16, 429–437 (2010).

    CAS  PubMed  Google Scholar 

  80. Winnay, J. N., Boucher, J., Mori, M. A., Ueki, K. & Kahn, C. R. A regulatory subunit of phosphoinositide 3-kinase increases the nuclear accumulation of X-box-binding protein-1 to modulate the unfolded protein response. Nature Med. 16, 438–445 (2010).

    CAS  PubMed  Google Scholar 

  81. Zhang, K. et al. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell 124, 587–599 (2006).

    CAS  PubMed  Google Scholar 

  82. Vecchi, C. et al. ER stress controls iron metabolism through induction of hepcidin. Science 325, 877–880 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang, C. et al. Endoplasmic reticulum-tethered transcription factor cAMP responsive element-binding protein, hepatocyte specific, regulates hepatic lipogenesis, fatty acid oxidation, and lipolysis upon metabolic stress in mice. Hepatology 55, 1070–1082 (2012).

    CAS  PubMed  Google Scholar 

  84. Ma, Y. & Hendershot, L. M. The role of the unfolded protein response in tumour development: friend or foe? Nature Rev. Cancer 4, 966–977 (2004).

    CAS  Google Scholar 

  85. Moenner, M., Pluquet, O., Bouchecareilh, M. & Chevet, E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Res. 67, 10631–10634 (2007).

    CAS  PubMed  Google Scholar 

  86. Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Guichard, C. et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nature Genet. 44, 694–698 (2012).

    CAS  PubMed  Google Scholar 

  88. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Blais, J. D. et al. PERK-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol. Cell. Biol. 26, 9517–9532 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Spiotto, M. T. et al. Imaging the unfolded protein response in primary tumors reveals microenvironments with metabolic variations that predict tumor growth. Cancer Res. 70, 78–88 (2010).

    CAS  PubMed  Google Scholar 

  91. Rouschop, K. M. et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J. Clin. Invest. 120, 127–141 (2010).

    CAS  PubMed  Google Scholar 

  92. Denoyelle, C. et al. Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nature Cell Biol. 8, 1053–1063 (2006).

    CAS  PubMed  Google Scholar 

  93. Auf, G. et al. Inositol-requiring enzyme 1α is a key regulator of angiogenesis and invasion in malignant glioma. Proc. Natl Acad. Sci. USA 107, 15553–15558 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Drogat, B. et al. IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Res. 67, 6700–6707 (2007).

    CAS  PubMed  Google Scholar 

  95. Dejeans, N. et al. Autocrine control of glioma cells adhesion and migration through IRE1α-mediated cleavage of SPARC mRNA. J. Cell Sci. 125, 4278–4287 (2012).

    CAS  PubMed  Google Scholar 

  96. Huber, A.-L. et al. p58IPK-mediated attenuation of the pro-apoptotic PERK–CHOP pathway allows malignant progression upon low glucose. Mol. Cell 49, 1049–1059 (2013).

    CAS  PubMed  Google Scholar 

  97. Hart, L. S. et al. ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J. Clin. Invest. 122, 4621–4634 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Qing, G. et al. ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation. Cancer Cell 22, 631–644 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Arai, M. et al. Transformation-associated gene regulation by ATF6α during hepatocarcinogenesis. FEBS Lett. 580, 184–190 (2006).

    CAS  PubMed  Google Scholar 

  100. Schewe, D. M. & Aguirre-Ghiso, J. A. ATF6α–Rheb–mTOR signaling promotes survival of dormant tumor cells in vivo. Proc. Natl Acad. Sci. USA 105, 10519–10524 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lee, A. S. GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res. 67, 3496–3499 (2007).

    CAS  PubMed  Google Scholar 

  102. Cross, B. C. et al. The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule. Proc. Natl Acad. Sci. USA 109, E869–E878 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Mimura, N. et al. Blockade of XBP1 splicing by inhibition of IRE1α is a promising therapeutic option in multiple myeloma. Blood 119, 5772–5781 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Papandreou, I. et al. Identification of an IRE1α endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood 117, 1311–1314 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Volkmann, K. et al. Potent and selective inhibitors of the inositol-requiring enzyme 1 endoribonuclease. J. Biol. Chem. 286, 12743–12755 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Suh, D. H. et al. Unfolded protein response to autophagy as a promising druggable target for anticancer therapy. Ann. NY Acad. Sci. 1271, 20–32 (2012).

    CAS  PubMed  Google Scholar 

  107. Ri, M. et al. Identification of toyocamycin, an agent cytotoxic for multiple myeloma cells, as a potent inhibitor of ER stress-induced XBP1 mRNA splicing. Blood Cancer J. 2, e79 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kawamura, T., Tashiro, E., Yamamoto, K., Shindo, K. & Imoto, M. SAR study of a novel triene-ansamycin group compound, quinotrierixin, and related compounds, as inhibitors of ER stress-induced XBP1 activation. J. Antibiot. (Tokyo) 61, 303–311 (2008).

    CAS  Google Scholar 

  109. Futamura, Y. et al. Trierixin, a novel inhibitor of ER stress-induced XBP1 activation from Streptomyces sp. II. Structure elucidation. J. Antibiot. (Tokyo) 60, 582–585 (2007).

    CAS  Google Scholar 

  110. Ali, M. M. et al. Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response. EMBO J. 30, 894–905 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Bouchecareilh, M., Higa, A., Fribourg, S., Moenner, M. & Chevet, E. Peptides derived from the bifunctional kinase/RNase enzyme IRE1α modulate IRE1α activity and protect cells from endoplasmic reticulum stress. FASEB J. 25, 3115–3129 (2011).

    CAS  PubMed  Google Scholar 

  112. Wang, L. et al. Divergent allosteric control of the IRE1α endoribonuclease using kinase inhibitors. Nature Chem. Biol. 8, 982–989 (2012).

    CAS  Google Scholar 

  113. Axten, J. M. et al. Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-p yrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J. Med. Chem. 55, 7193–7207 (2012).

    CAS  PubMed  Google Scholar 

  114. Atkins, C. et al. Characterization of a novel PERK kinase inhibitor with anti-tumor and anti-angiogenic activity. Cancer Res 73, 1993–2002 (2013).

    CAS  PubMed  Google Scholar 

  115. Sidrauski, C. et al. Pharmacological brake-release of mRNA translation enhances cognitive memory. Elife 2, e00498 (2013).

    PubMed  PubMed Central  Google Scholar 

  116. Costa-Mattioli, M., Sossin, W. S., Klann, E. & Sonenberg, N. Translational control of long-lasting synaptic plasticity and memory. Neuron 61, 10–26 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Brem, G. J., Mylonas, I. & Bruning, A. Eeyarestatin causes cervical cancer cell sensitization to bortezomib treatment by augmenting ER stress and CHOP expression. Gynecol. Oncol. 128, 383–390 (2013).

    CAS  PubMed  Google Scholar 

  118. Chou, T. F. et al. Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways. Proc. Natl Acad. Sci. USA 108, 4834–4839 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Chou, T. F., Li, K., Frankowski, K. J., Schoenen, F. J. & Deshaies, R. J. Structure–activity relationship study reveals ML240 and ML241 as potent and selective Inhibitors of p97 ATPase. ChemMedChem. 8, 297–312 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Polucci, P. et al. Alkylsulfanyl-1,2,4-triazoles, a new class of allosteric valosine containing protein inhibitors. Synthesis and structure–activity relationships. J. Med. Chem. 56, 437–450 (2013).

    CAS  PubMed  Google Scholar 

  121. Valle, C. W. et al. Critical role of VCP/p97 in the pathogenesis and progression of non-small cell lung carcinoma. PLoS ONE 6, e29073 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. D'Arcy, P. et al. Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nature Med. 17, 1636–1640 (2011).

    CAS  PubMed  Google Scholar 

  123. Kardosh, A. et al. Aggravated endoplasmic reticulum stress as a basis for enhanced glioblastoma cell killing by bortezomib in combination with celecoxib or its non-coxib analogue, 2,5-dimethyl-celecoxib. Cancer Res. 68, 843–851 (2008).

    CAS  PubMed  Google Scholar 

  124. Mujtaba, T. & Dou, Q. P. Advances in the understanding of mechanisms and therapeutic use of bortezomib. Discov. Med. 12, 471–480 (2011).

    PubMed  PubMed Central  Google Scholar 

  125. Suraweera, A., Munch, C., Hanssum, A. & Bertolotti, A. Failure of amino acid homeostasis causes cell death following proteasome inhibition. Mol. Cell 48, 242–253 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kisselev, A. F., van der Linden, W. A. & Overkleeft, H. S. Proteasome inhibitors: an expanding army attacking a unique target. Chem. Biol. 19, 99–115 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Pyrko, P., Schonthal, A. H., Hofman, F. M., Chen, T. C. & Lee, A. S. The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res. 67, 9809–9816 (2007).

    CAS  PubMed  Google Scholar 

  128. Chen, T. C. GRP78/BiP modulation of GRP78/BiP in altering sensitivity to chemotherapy. Methods Enzymol. 491, 25–36 (2011).

    CAS  PubMed  Google Scholar 

  129. Martin, S. et al. Inducing apoptosis of cancer cells using small-molecule plant compounds that bind to GRP78. Br. J. Cancer 109, 433–443 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Li, X., Zhang, K. & Li, Z. Unfolded protein response in cancer: the physician's perspective. J. Hematol. Oncol. 4, 8 (2012).

    Google Scholar 

  131. Park, H. R. et al. Effect on tumor cells of blocking survival response to glucose deprivation. J. Natl Cancer Inst. 96, 1300–1310 (2004).

    CAS  PubMed  Google Scholar 

  132. Saito, S. et al. Chemical genomics identifies the unfolded protein response as a target for selective cancer cell killing during glucose deprivation. Cancer Res. 69, 4225–4234 (2009).

    CAS  PubMed  Google Scholar 

  133. Backer, J. M. et al. Chaperone-targeting cytotoxin and endoplasmic reticulum stress-inducing drug synergize to kill cancer cells. Neoplasia 11, 1165–1173 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Goloudina, A. R., Demidov, O. N. & Garrido, C. Inhibition of HSP70: a challenging anti-cancer strategy. Cancer Lett. 325, 117–124 (2012).

    CAS  PubMed  Google Scholar 

  135. Jhaveri, K., Taldone, T., Modi, S. & Chiosis, G. Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim. Biophys. Acta 1823, 742–755 (2012).

    CAS  PubMed  Google Scholar 

  136. Neckers, L. & Workman, P. Hsp90 molecular chaperone inhibitors: are we there yet? Clin. Cancer Res. 18, 64–76 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Lawson, B., Brewer, J. W. & Hendershot, L. M. Geldanamycin, an hsp90/GRP94-binding drug, induces increased transcription of endoplasmic reticulum (ER) chaperones via the ER stress pathway. J. Cell. Physiol. 174, 170–178 (1998).

    CAS  PubMed  Google Scholar 

  138. Jones, D. T. et al. Geldanamycin and herbimycin A induce apoptotic killing of B chronic lymphocytic leukemia cells and augment the cells' sensitivity to cytotoxic drugs. Blood 103, 1855–1861 (2004).

    CAS  PubMed  Google Scholar 

  139. Andreu, C. I., Woehlbier, U., Torres, M. & Hetz, C. Protein disulfide isomerases in neurodegeneration: From disease mechanisms to biomedical applications. FEBS Lett. 586, 2826–2834 (2012).

    CAS  PubMed  Google Scholar 

  140. Benham, A. M. The protein disulfide isomerase family: key players in health and disease. Antioxid. Redox Signal. 16, 781–789 (2012).

    CAS  PubMed  Google Scholar 

  141. Goplen, D. et al. Protein disulfide isomerase expression is related to the invasive properties of malignant glioma. Cancer Res. 66, 9895–9902 (2006).

    CAS  PubMed  Google Scholar 

  142. Lovat, P. E. et al. Increasing melanoma cell death using inhibitors of protein disulfide isomerases to abrogate survival responses to endoplasmic reticulum stress. Cancer Res. 68, 5363–5369 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Hoffstrom, B. G. et al. Inhibitors of protein disulfide isomerase suppress apoptosis induced by misfolded proteins. Nature Chem. Biol. 6, 900–906 (2010).

    CAS  Google Scholar 

  144. Boyce, M. et al. A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Science 307, 935–939 (2005).

    CAS  PubMed  Google Scholar 

  145. Sokka, A. L. et al. Endoplasmic reticulum stress inhibition protects against excitotoxic neuronal injury in the rat brain. J. Neurosci. 27, 901–908 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Colla, E. et al. Endoplasmic reticulum stress is important for the manifestations of α-synucleinopathy in vivo. J. Neurosci. 32, 3306–3320 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Saxena, S., Cabuy, E. & Caroni, P. A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nature Neurosci. 12, 627–636 (2009).

    CAS  PubMed  Google Scholar 

  148. Tsaytler, P., Harding, H. P., Ron, D. & Bertolotti, A. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332, 91–94 (2011).

    CAS  PubMed  Google Scholar 

  149. Harding, H. P. et al. Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (eIF2α) dephosphorylation in mammalian development. Proc. Natl Acad. Sci. USA 106, 1832–1837 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Lindquist, S. L. & Kelly, J. W. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis. Cold Spring Harb. Perspect. Biol. 3, a004507 (2011).

    PubMed  PubMed Central  Google Scholar 

  151. Ozcan, U. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313, 1137–1140 (2006).

    PubMed  PubMed Central  Google Scholar 

  152. Ozcan, L. et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell. Metab. 9, 35–51 (2009).

    CAS  PubMed  Google Scholar 

  153. Xiao, C., Giacca, A. & Lewis, G. F. Sodium phenylbutyrate, a drug with known capacity to reduce endoplasmic reticulum stress, partially alleviates lipid-induced insulin resistance and β-cell dysfunction in humans. Diabetes 60, 918–924 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Kars, M. et al. Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes 59, 1899–1905 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Qi, X., Hosoi, T., Okuma, Y., Kaneko, M. & Nomura, Y. Sodium 4-phenylbutyrate protects against cerebral ischemic injury. Mol. Pharmacol. 66, 899–908 (2004).

    CAS  PubMed  Google Scholar 

  156. Mizukami, T. et al. Sodium 4-phenylbutyrate protects against spinal cord ischemia by inhibition of endoplasmic reticulum stress. J. Vasc. Surg. 52, 1580–1586 (2010).

    PubMed  Google Scholar 

  157. Ben Mosbah, I. et al. Endoplasmic reticulum stress inhibition protects steatotic and non-steatotic livers in partial hepatectomy under ischemia–reperfusion. Cell Death Dis. 1, e52 (2010).

    CAS  PubMed  Google Scholar 

  158. Vilatoba, M. et al. Sodium 4-phenylbutyrate protects against liver ischemia reperfusion injury by inhibition of endoplasmic reticulum-stress mediated apoptosis. Surgery 138, 342–351 (2005).

    PubMed  Google Scholar 

  159. Kim, I., Xu, W. & Reed, J. C. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nature Rev. Drug Discov. 7, 1013–1030 (2008).

    CAS  Google Scholar 

  160. Kraskiewicz, H. & FitzGerald, U. InterfERing with endoplasmic reticulum stress. Trends Pharmacol. Sci. 33, 53–63 (2012).

    CAS  PubMed  Google Scholar 

  161. Kudo, T. et al. A molecular chaperone inducer protects neurons from ER stress. Cell Death Differ. 15, 364–375 (2008).

    CAS  PubMed  Google Scholar 

  162. Oida, Y. et al. Induction of BiP, an ER-resident protein, prevents the neuronal death induced by transient forebrain ischemia in gerbil. Brain Res. 1208, 217–224 (2008).

    CAS  PubMed  Google Scholar 

  163. Nakanishi, T. et al. Role of endoplasmic reticulum stress in light-induced photoreceptor degeneration in mice. J. Neurochem. 125, 111–124 (2013).

    CAS  PubMed  Google Scholar 

  164. Oida, Y. et al. Post-treatment of a BiP inducer prevents cell death after middle cerebral artery occlusion in mice. Neurosci. Lett. 484, 43–46 (2010).

    CAS  PubMed  Google Scholar 

  165. Prachasilchai, W. et al. The protective effect of a newly developed molecular chaperone-inducer against mouse ischemic acute kidney injury. J. Pharmacol. Sci. 109, 311–314 (2009).

    CAS  PubMed  Google Scholar 

  166. Li, F. et al. The protective effect of dantrolene on ischemic neuronal cell death is associated with reduced expression of endoplasmic reticulum stress markers. Brain Res. 1048, 59–68 (2005).

    CAS  PubMed  Google Scholar 

  167. Fouillet, A. et al. ER stress inhibits neuronal death by promoting autophagy. Autophagy 8, 915–926 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Witt, J. & Marks, W. J. Jr. An update on gene therapy in Parkinson's disease. Curr. Neurol. Neurosci. Rep. 11, 362–370 (2011).

    CAS  PubMed  Google Scholar 

  169. Gorbatyuk, M. S. et al. Restoration of visual function in P23H rhodopsin transgenic rats by gene delivery of BiP/Grp78. Proc. Natl Acad. Sci. USA 107, 5961–5966 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Hu, Y. et al. Differential effects of unfolded protein response pathways on axon injury-induced death of retinal ganglion cells. Neuron 73, 445–452 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Zuleta, A., Vidal, R. L., Armentano, D., Parsons, G. & Hetz, C. AAV-mediated delivery of the transcription factor XBP1s into the striatum reduces mutant Huntingtin aggregation in a mouse model of Huntington's disease. Biochem. Biophys. Res. Commun. 420, 558–563 (2012).

    CAS  PubMed  Google Scholar 

  172. Gorbatyuk, M. S. et al. Glucose regulated protein 78 diminishes α-synuclein neurotoxicity in a rat model of Parkinson disease. Mol. Ther. 20, 1327–1337 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Sado, M. et al. Protective effect against Parkinson's disease-related insults through the activation of XBP1. Brain Res. 1257, 16–24 (2009).

    CAS  PubMed  Google Scholar 

  174. Toldo, S., Severino, A., Abbate, A. & Baldi, A. The role of PDI as a survival factor in cardiomyocyte ischemia. Methods Enzymol. 489, 47–65 (2011).

    CAS  PubMed  Google Scholar 

  175. Kammoun, H. L. et al. GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J. Clin. Invest. 119, 1201–1215 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Yang, X. et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin–Lowry Syndrome. Cell 117, 387–398 (2004).

    CAS  PubMed  Google Scholar 

  177. Costa-Mattioli, M. et al. eIF2α phosphorylation bidirectionally regulates the switch from short- to long-term synaptic plasticity and memory. Cell 129, 195–206 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. So, J. S. et al. Silencing of lipid metabolism genes through IRE1α-mediated mRNA decay lowers plasma lipids in mice. Cell. Metab. 16, 487–499 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Fu, S., Watkins, S. M. & Hotamisligil, G. S. The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell. Metab. 15, 623–634 (2012).

    CAS  PubMed  Google Scholar 

  180. Hur, K. Y. et al. IRE1α activation protects mice against acetaminophen-induced hepatotoxicity. J. Exp. Med. 209, 307–318 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Ameri, K. & Harris, A. L. Activating transcription factor 4. Int. J. Biochem. Cell Biol. 40, 14–21 (2008).

    CAS  PubMed  Google Scholar 

  182. Hong, M. et al. Underglycosylation of ATF6 as a novel sensing mechanism for activation of the unfolded protein response. J. Biol. Chem. 279, 11354–11363 (2004).

    CAS  PubMed  Google Scholar 

  183. Nadanaka, S., Okada, T., Yoshida, H. & Mori, K. Role of disulfide bridges formed in the luminal domain of ATF6 in sensing endoplasmic reticulum stress. Mol. Cell. Biol. 27, 1027–1043 (2007).

    CAS  PubMed  Google Scholar 

  184. Carrasco, D. R. et al. The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis. Cancer Cell 11, 349–360 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Magnaghi, P. et al. Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death. Nature Chem. Biol. 2013 (dx.doi:10.1038/nchembio.1313).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to all their colleagues whose work could not be cited owing to space limitations. The authors thank J. Patterson for helpful discussions about IRE1 inhibitors, and U. Woehlbier and H. Urra for initial designs of the figures. This work was funded by the following grants and associations: FONDECYT 1100176; Millennium Institute No. P09-015-F; Ring Initiative ACT1109; FONDEF D11I1007; the ALS Therapy Alliance; the Muscular Dystrophy Association; the Michael J. Fox Foundation; the Alzheimer's Disease Association (to C.H.); the Institut National de la Santé et la Recherche Médicale (INSERM); the Institut National du Cancer, France; the Ligue contre le cancer, France; and Wellcome Trust Grant 084812/Z/08/Z (to H.P.H.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Claudio Hetz, Eric Chevet or Heather P. Harding.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

RCSB Protein Data Bank (PDB)

PowerPoint slides

Glossary

Secretory pathway

The cell infrastructure dedicated to the folding, maturation and trafficking of transmembrane and secreted proteins.

ER-associated protein degradation

(ERAD). A mechanism to eliminate misfolded proteins generated at the endoplasmic reticulum (ER) through their retrotranslocation to the cytosol and further degradation by the proteasome.

UPRosome

A signalling platform assembled at the level of IRE1 that modulates it activity and controls downstream effector responses.

Chaperone addiction

The dependency of a tumour cell on high chaperone levels and activities to cope with metabolic and environmental demands. This provides the tumour cells with a survival advantage which, when inhibited, might become toxic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hetz, C., Chevet, E. & Harding, H. Targeting the unfolded protein response in disease. Nat Rev Drug Discov 12, 703–719 (2013). https://doi.org/10.1038/nrd3976

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3976

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research