Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain

Key Points

  • Glycine is released from presynaptic terminals as a classical inhibitory neurotransmitter that hyperpolarizes the postsynaptic membrane through the activation of glycine receptors, which have an integral anion channel. Glycine also modulates the activity of excitatory NMDA (N-methyl-D-aspartate)-selective glutamate receptors at excitatory synapses by acting as a co-agonist.

  • The glycine transporters GlyT1 and GlyT2 are expressed in neurons and in astrocytes that ensheath synapses. At inhibitory glycinergic synapses, GlyT1 terminates neurotransmission, whereas GlyT2 regulates the recycling of glycine into presynaptic terminals. At excitatory synapses, GlyT1 also controls the extracellular concentration of glycine near NMDA receptors.

  • Constitutive disruption of the genes encoding GlyT1 or GlyT2 leads to early postnatal fatality in mouse models, whereas mutations in the GLYT2 gene have been linked to startle disease in humans and other species. In the adult central nervous system, the balance between inhibitory and excitatory signalling in multiple neural pathways remains susceptible to modulation by GlyT1 and GlyT2, and therefore glycine transporters are potential new targets for the treatment of several neuropsychiatric conditions.

  • GlyT1 inhibition can facilitate NMDA receptor activity and is therefore primarily conceived as a potential remedy against the cognitive and affective deficiencies in schizophrenia, which are due to an underlying impairment in NMDA receptor signalling. The clinical efficacy of GlyT1 inhibitors as an adjunct therapy to improve global functioning in patients with schizophrenia is supported by the Phase II trials of bitopertin, which is currently under Phase III evaluation.

  • Preclinical models have shown that inhibition of GlyT1 can suppress alcohol intake and relapses in rats, and suggest a new application for GlyT1 inhibitors in the treatment of alcohol dependence. The anti-alcohol effect is attributed to the potentiation of glycinergic inhibition via the activation of glycine receptors in central reward pathways, which may be relevant to addiction in general.

  • The transmission of pain signals from the spinal cord to the brain is regulated by glycinergic inhibition in the dorsal horn mediated by signalling pathways converging on glycine receptors containing the α3 subunit. The local inhibition of GlyT1 or GlyT2 can effectively suppress pain transmission through the enhancement of local neuronal inhibition mediated by glycine receptors.

  • Further applications of glycine reuptake inhibition therapy to other diseases, such as obsessive-compulsive disorder, depression and epilepsy, have been proposed but the precise brain mechanisms involved in these disorders are less clear. In this Review, we consider potential factors that may determine the clinical efficacy of glycine reuptake inhibition therapy in these conditions, such as pharmacokinetics, brain circuitry and the localization of the relevant glycine transporters.

Abstract

Glycine transporters are endogenous regulators of the dual functions of glycine, which acts as a classical inhibitory neurotransmitter at glycinergic synapses and as a modulator of neuronal excitation mediated by NMDA (N-methyl-D-aspartate) receptors at glutamatergic synapses. The two major subtypes of glycine transporters, GlyT1 and GlyT2, have been linked to the pathogenesis and/or treatment of central and peripheral nervous system disorders, including schizophrenia and related affective and cognitive disturbances, alcohol dependence, pain, epilepsy, breathing disorders and startle disease (also known as hyperekplexia). This Review examines the rationale for the therapeutic potential of GlyT1 and GlyT2 inhibition, and surveys the latest advances in the biology of glycine reuptake and transport as well as the drug discovery and clinical development of compounds that block glycine transporters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The regulation of neurotransmission at glycinergic and glutamatergic synapses by glycine transporters.
Figure 2: Distribution patterns of glycine, GlyT1 and GlyT2 in the rat brain.
Figure 3: Antipsychotic effects that could result from GlyT1 inhibition.
Figure 4: GlyT1 inhibition can modulate the mesolimbic dopamine reward pathway.
Figure 5: Inhibition of GlyT1 and GlyT2 can suppress pain signals.

Similar content being viewed by others

References

  1. Avila, A. et al. Glycine receptor α2 subunit activation promotes cortical interneuron migration. Cell Rep. 4, 738–750 (2013). This paper reveals a novel biological role for GlyRα2 in cortical interneuron migration during embryonic development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wolosker, H. NMDA receptor regulation by D-serine: new findings and perspectives. Mol. Neurobiol. 36, 152–164 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Eulenburg, V., Armsen, W., Betz, H. & Gomeza, J. Glycine transporters: essential regulators of neurotransmission. Trends Biochem. Sci. 30, 325–333 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Harvey, R. J., Topf, M., Harvey, K. & Rees, M. I. The genetics of hyperekplexia: more than startle! Trends Genet. 24, 439–447 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Supplisson, S. & Roux, M. J. Why glycine transporters have different stoichiometries. FEBS Lett. 529, 93–101 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Aubrey, K. R. et al. The transporters GlyT2 and VIAAT cooperate to determine the vesicular glycinergic phenotype. J. Neurosci. 27, 6273–6281 (2007). This elegant study demonstrates why the functional properties of GlyT2 are suitable for mediating the high cytosolic glycine concentration that is required for efficient vesicular loading by the vesicular inhibitory amino acid transporter at inhibitory synapses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gomeza, J. et al. Inactivation of the glycine transporter 1 gene discloses vital role of glial glycine uptake in glycinergic inhibition. Neuron 40, 785–796 (2003). This is a groundbreaking study demonstrating that a severe phenotype in GlyT1-knockout mice, resembling glycine encephalopathy, is linked to the overactivation of glycine receptors at inhibitory glycinergic synapses.

    Article  CAS  PubMed  Google Scholar 

  8. Gomeza, J. et al. Deletion of the mouse glycine transporter 2 results in a hyperekplexia phenotype and postnatal lethality. Neuron 40, 797–806 (2003). This important paper demonstrates that GlyT2 is vital for efficient transmitter loading of synaptic vesicles in glycinergic nerve terminals, and that GlyT2-knockout mice are a model for human startle disease.

    Article  CAS  PubMed  Google Scholar 

  9. Eulenburg, V., Retiounskaia, M., Papadopoulos, T., Gomeza, J. & Betz, H. Glial glycine transporter 1 function is essential for early postnatal survival but dispensable in adult mice. Glia 58, 1066–1073 (2010).

    Article  PubMed  Google Scholar 

  10. Rousseau, F., Aubrey, K. R. & Supplisson, S. The glycine transporter GlyT2 controls the dynamics of synaptic vesicle refilling in inhibitory spinal cord neurons. J. Neurosci. 28, 9755–9768 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yee, B. K. et al. Disruption of glycine transporter 1 restricted to forebrain neurons is associated with a procognitive and antipsychotic phenotypic profile. J. Neurosci. 26, 3169–3181 (2006). This is the first report on mutant mice lacking forebrain neuronal GlyT1, clearly showing the presence of schizophrenia-resilient phenotypes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Singer, P. et al. Altered mnemonic functions and resistance to N-methyl-D-aspartate receptor antagonism by forebrain conditional knockout of glycine transporter 1. Neuroscience 161, 635–654 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Rees, M. I. et al. Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease. Nature Genet. 38, 801–806 (2006). This report demonstrates that mutations in the human GLYT2 gene cause startle disease with associated life-threatening neonatal apnoea episodes.

    Article  CAS  PubMed  Google Scholar 

  14. Carta, E. et al. Mutations in the GlyT2 gene (SLC6A5) are a second major cause of startle disease. J. Biol. Chem. 287, 28975–28985 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cubelos, B., Giménez, C. & Zafra, F. Localization of the GLYT1 glycine transporter at glutamatergic synapses in the rat brain. Cereb. Cortex 15, 448–459 (2005).

    Article  PubMed  Google Scholar 

  16. Cubelos, B., Gonzalez-Gonzalez, I. M., Gimenez, C. & Zafra, F. The scaffolding protein PSD-95 interacts with the glycine transporter GLYT1 and impairs its internalization. J. Neurochem. 95, 1047–1058 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Zafra, F. et al. Glycine transporters are differentially expressed among CNS cells. J. Neurosci. 15, 3952–3969 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Coyle, J. T., Balu, D., Benneyworth, M., Basu, A. & Roseman, A. Beyond the dopamine receptor: novel therapeutic targets for treating schizophrenia. Dialogues Clin. Neurosci. 12, 359–382 (2010).

    PubMed  PubMed Central  Google Scholar 

  19. Javitt, D. C. Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int. Rev. Neurobiol. 78, 69–108 (2007). This paper traces the background of the glutamate hypothesis of schizophrenia up to the recent attempts in glycine augmentation therapy, including the inhibition of glycine reuptake.

    Article  CAS  PubMed  Google Scholar 

  20. Coyle, J. T. NMDA receptor and schizophrenia: a brief history. Schizophr Bull. 38, 920–926 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Marino, M. J., Knutsen, L. J. & Williams, M. Emerging opportunities for antipsychotic drug discovery in the postgenomic era. J. Med. Chem. 51, 1077–1107 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Perry, K. W. et al. Neurochemical and behavioral profiling of the selective GlyT1 inhibitors ALX5407 and LY2365109 indicate a preferential action in caudal versus cortical brain areas. Neuropharmacology 55, 743–754 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Danysz, W. & Parsons, C. G. Glycine and N-methyl-D-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol. Rev. 50, 597–664 (1998).

    CAS  PubMed  Google Scholar 

  24. Furukawa, H. & Gouaux, E. Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. EMBO J. 22, 2873–2885 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kristensen, A. S. et al. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol. Rev. 63, 585–640 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Cioffi, C. L., Liu, S. & Wolf, M. A. Chapter 2 — Recent developments in glycine transporter-1 inhibitors. Annu. Rep. Med. Chem. 45, 19–35 (2010).

    CAS  Google Scholar 

  27. Möhler, H. et al. Glycine transporter 1 as a potential therapeutic target for schizophrenia-related symptoms: evidence from genetically modified mouse models and pharmacological inhibition. Biochem. Pharmacol. 81, 1065–1077 (2011). This comprehensive review compares different mouse models of GlyT1 disruption. It also explores the possibility of targeting subpopulations of GlyT1 in specific regions of the brain and/or cell types.

    Article  CAS  PubMed  Google Scholar 

  28. Tsai, G. et al. Gene knockout of glycine transporter 1: characterization of the behavioral phenotype. Proc. Natl Acad. Sci. USA 101, 8485–8490 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martina, M. et al. Reduced glycine transporter type 1 expression leads to major changes in glutamatergic neurotransmission of CA1 hippocampal neurones in mice. J. Physiol. 563, 777–793 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Balu, D. T. & Coyle, J. T. Glutamate receptor composition of the post-synaptic density is altered in genetic mouse models of NMDA receptor hypo- and hyperfunction. Brain Res. 1392, 1–7 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Black, M. D. et al. Procognitive and antipsychotic efficacy of glycine transport 1 inhibitors (GlyT1) in acute and neurodevelopmental models of schizophrenia: latent inhibition studies in the rat. Psychopharmacol. (Berl.) 202, 385–396 (2009).

    Article  CAS  Google Scholar 

  32. Boulay, D., Bergis, O., Avenet, P. & Griebel, G. The glycine transporter-1 inhibitor SSR103800 displays a selective and specific antipsychotic-like profile in normal and transgenic mice. Neuropsychopharmacology 35, 416–427 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Weiner, I. Neural substrates of latent inhibition: the switching model. Psychol. Bull. 108, 442–461 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Moser, P. C., Hitchcock, J. M., Lister, S. & Moran, P. M. The pharmacology of latent inhibition as an animal model of schizophrenia. Brain Res. Brain Res. Rev. 33, 275–307 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Yee, B. K. et al. Latent inhibition enhancement by glycine transporter 1 disruption is mediated by anti-dopaminergic mechanism in the nucleus accumbens. Program No. 571.10/GG15. 2010 Neuroscience Meeting Planner [online], (San Diego, California; Society for Neuroscience, 2010).

    Google Scholar 

  36. Gray, J. A., Feldon, J., Rawlins, J. N. P., Smith, A. D. & Hemsley, D. R. The neuropsychology of schizophrenia. Behav. Brain Sci. 14, 1–19 (1991).

    Article  Google Scholar 

  37. Harsing, L. G. Jr et al. The glycine transporter-1 inhibitors NFPS and Org 24461: a pharmacological study. Pharmacol. Biochem. Behav. 74, 811–825 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Alberati, D. et al. Glycine reuptake inhibitor RG1678: a pharmacologic characterization of an investigational agent for the treatment of schizophrenia. Neuropharmacology 62, 1152–1161 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Depoortere, R. et al. Neurochemical, electrophysiological and pharmacological profiles of the selective inhibitor of the glycine transporter-1 SSR504734, a potential new type of antipsychotic. Neuropsychopharmacology 30, 1963–1985 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Singer, P., Feldon, J. & Yee, B. K. Interactions between the glycine transporter 1 (GlyT1) inhibitor SSR504734 and psychoactive drugs in mouse motor behaviour. Eur. Neuropsychopharmacol. 19, 571–580 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Leonetti, M. et al. 2-chloro-N[(S)-phenyl [(2S)-piperidin-2-yl] methyl]-3-trifluoromethyl benzamide, monohydrochloride, an inhibitor of the glycine transporter type 1, increases evoked-dopamine release in the rat nucleus accumbens in vivo via an enhanced glutamatergic neurotransmission. Neuroscience 137, 555–564 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Lidö, H. H., Ericson, M., Marston, H. & Soderpalm, B. A role for accumbal glycine receptors in modulation of dopamine release by the glycine transporter-1 inhibitor Org25935. Front. Psychiatry 2, 8 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barch, D. M. & Carter, C. S. Amphetamine improves cognitive function in medicated individuals with schizophrenia and in healthy volunteers. Schizophr. Res. 77, 43–58 (2005).

    Article  PubMed  Google Scholar 

  44. Molander, A. & Soderpalm, B. Glycine receptors regulate dopamine release in the rat nucleus accumbens. Alcohol Clin. Exp. Res. 29, 17–26 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Singh, S. P. & Singh, V. Meta-analysis of the efficacy of adjunctive NMDA receptor modulators in chronic schizophrenia. CNS Drugs 25, 859–885 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Singer, P., Feldon, J. & Yee, B. K. The glycine transporter 1 inhibitor SSR504734 enhances working memory performance in a continuous delayed alternation task in C57BL/6 mice. Psychopharmacol. (Berl.) 202, 371–384 (2009).

    Article  CAS  Google Scholar 

  47. Roberts, B. M. et al. Glycine transporter inhibition reverses ketamine-induced working memory deficits. Neuroreport 21, 390–394 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Boulay, D. et al. Characterization of SSR103800, a selective inhibitor of the glycine transporter-1 in models predictive of therapeutic activity in schizophrenia. Pharmacol. Biochem. Behav. 91, 47–58 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Manahan-Vaughan, D., Wildforster, V. & Thomsen, C. Rescue of hippocampal LTP and learning deficits in a rat model of psychosis by inhibition of glycine transporter-1 (GlyT1). Eur. J. Neurosci. 28, 1342–1350 (2008).

    Article  PubMed  Google Scholar 

  50. Igartua, I., Solis, J. M. & Bustamante, J. Glycine-induced long-term synaptic potentiation is mediated by the glycine transporter GLYT1. Neuropharmacology 52, 1586–1595 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Martina, M. et al. Glycine transporter type 1 blockade changes NMDA receptor-mediated responses and LTP in hippocampal CA1 pyramidal cells by altering extracellular glycine levels. J. Physiol. 557, 489–500 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dubroqua, S. et al. Intact working memory in the absence of forebrain neuronal glycine transporter 1. Behav. Brain Res. 230, 208–214 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Singer, P., Boison, D., Mohler, H., Feldon, J. & Yee, B. K. Enhanced recognition memory following glycine transporter 1 deletion in forebrain neurons. Behav. Neurosci. 121, 815–825 (2007).

    Article  PubMed  Google Scholar 

  54. Dubroqua, S., Boison, D., Feldon, J., Mohler, H. & Yee, B. K. Examining the sex- and circadian dependency of a learning phenotype in mice with glycine transporter 1 deletion in two Pavlovian conditioning paradigms. Neurobiol. Learn. Mem. 96, 218–229 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shimazaki, T., Kaku, A. & Chaki, S. D-serine and a glycine transporter-1 inhibitor enhance social memory in rats. Psychopharmacol. (Berl.) 209, 263–270 (2010).

    Article  CAS  Google Scholar 

  56. Singer, P., Boison, D., Mohler, H., Feldon, J. & Yee, B. K. Deletion of glycine transporter 1 (GlyT1) in forebrain neurons facilitates reversal learning: enhanced cognitive adaptability? Behav. Neurosci. 123, 1012–1027 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nong, Y. et al. Glycine binding primes NMDA receptor internalization. Nature 422, 302–307 (2003). This is an important paper demonstrating that the stimulation of the glycine-B site on NMDA receptors may prime these receptors for subsequent internalization via clathrin-dependent endocytosis, which highlights the possibility that glycine and D -serine, which bind to the glycine-B site, may also downregulate NMDA receptor activity.

    Article  CAS  PubMed  Google Scholar 

  58. Nikiforuk, A. et al. Blockade of glycine transporter 1 by SSR-504734 promotes cognitive flexibility in glycine/NMDA receptor-dependent manner. Neuropharmacology 61, 262–267 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Singer, P., Boison, D., Mohler, H., Feldon, J. & Yee, B. K. Modulation of sensorimotor gating in prepulse inhibition by conditional brain glycine transporter 1 deletion in mice. Eur. Neuropsychopharmacol. 21, 401–413 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Kopec, K. et al. Glycine transporter (GlyT1) inhibitors with reduced residence time increase prepulse inhibition without inducing hyperlocomotion in DBA/2 mice. Biochem. Pharmacol. 80, 1407–1417 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Lipina, T., Labrie, V., Weiner, I. & Roder, J. Modulators of the glycine site on NMDA receptors, D-serine and ALX 5407, display similar beneficial effects to clozapine in mouse models of schizophrenia. Psychopharmacol. (Berl.) 179, 54–67 (2005).

    Article  CAS  Google Scholar 

  62. Yang, S. Y., Hong, C. J., Huang, Y. H. & Tsai, S. J. The effects of glycine transporter I inhibitor, N-methylglycine (sarcosine), on ketamine-induced alterations in sensorimotor gating and regional brain c-Fos expression in rats. Neurosci. Lett. 469, 127–130 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Le Pen, G. et al. Prepulse inhibition deficits of the startle reflex in neonatal ventral hippocampal-lesioned rats: reversal by glycine and a glycine transporter inhibitor. Biol. Psychiatry 54, 1162–1170 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Bullich, S. et al. Biodistribution and radiation dosimetry of the glycine transporter-1 ligand 11C-GSK931145 determined from primate and human whole-body PET. Mol. Imag. Biol. 13, 776–784 (2011).

    Article  Google Scholar 

  65. Hamill, T. G. et al. The synthesis and preclinical evaluation in rhesus monkey of [18F]MK-6577 and [11C]CMPyPB glycine transporter 1 positron emission tomography radiotracers. Synapse 65, 261–270 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Borroni, E. et al. Pre-clinical characterization of [11C]R05013853 as a novel radiotracer for imaging of the glycine transporter type 1 by positron emission tomography. Neuroimage 75, 291–300 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Mezler, M. et al. Inhibitors of GlyT1 affect glycine transport via discrete binding sites. Mol. Pharmacol. 74, 1705–1715 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Papouin, T. et al. Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 150, 633–646 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Laughren, T. & Levin, R. Food and Drug Administration commentary on methodological issues in negative symptom trials. Schizophr Bull. 37, 255–256 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tsai, G. E. & Lin, P. Y. Strategies to enhance N-methyl-D-aspartate receptor-mediated neurotransmission in schizophrenia, a critical review and meta-analysis. Curr. Pharm. Des. 16, 522–537 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Lin, C. H., Lane, H. Y. & Tsai, G. E. Glutamate signaling in the pathophysiology and therapy of schizophrenia. Pharmacol. Biochem. Behav. 100, 665–677 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Javitt, D. C. Glycine transport inhibitors and the treatment of schizophrenia. Biol. Psychiatry 63, 6–8 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Buchanan, R. W. et al. The Cognitive and Negative Symptoms in Schizophrenia Trial (CONSIST): the efficacy of glutamatergic agents for negative symptoms and cognitive impairments. Am. J. Psychiatry 164, 1593–1602 (2007).

    Article  PubMed  Google Scholar 

  74. Heresco-Levy, U. et al. Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch. Gen. Psychiatry 56, 29–36 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Lane, H. Y., Chang, Y. C., Liu, Y. C., Chiu, C. C. & Tsai, G. E. Sarcosine or D-serine add-on treatment for acute exacerbation of schizophrenia: a randomized, double-blind, placebo-controlled study. Arch. Gen. Psychiatry 62, 1196–1204 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Lane, H. Y. et al. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to clozapine for the treatment of schizophrenia. Biol. Psychiatry 60, 645–649 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Lane, H. Y. et al. A randomized, double-blind, placebo-controlled comparison study of sarcosine (N-methylglycine) and D-serine add-on treatment for schizophrenia. Int. J. Neuropsychopharmacol. 13, 451–460 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Tsai, G., Lane, H. Y., Yang, P., Chong, M. Y. & Lange, N. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia. Biol. Psychiatry 55, 452–456 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Lane, H. Y. et al. Sarcosine (N-methylglycine) treatment for acute schizophrenia: a randomized, double-blind study. Biol. Psychiatry 63, 9–12 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Javitt, D. C., Duncan, L., Balla, A. & Sershen, H. Inhibition of system A-mediated glycine transport in cortical synaptosomes by therapeutic concentrations of clozapine: implications for mechanisms of action. Mol. Psychiatry 10, 275–287 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Leucht, S. et al. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet 382, 951–962 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. van Berckel, B. N. et al. Efficacy and tolerance of D-cycloserine in drug-free schizophrenic patients. Biol. Psychiatry 40, 1298–1300 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Woods, S. W. et al. Glycine treatment of the risk syndrome for psychosis: report of two pilot studies. Eur. Neuropsychopharmacol. 23, 931–940 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Pinard, E. et al. Selective GlyT1 inhibitors: discovery of [4-(3-fluoro-5-trifluoromethylpyridin-2-yl)piperazin-1-yl][5-methanesulfonyl-2-((S)-2,2,2-trifluoro-1- methylethoxy)phenyl]methanone (RG1678), a promising novel medicine to treat schizophrenia. J. Med. Chem. 53, 4603–4614 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Umbricht, D. et al. Glycine transporter type 1 (GLYT1) inhibitor RG1678: Positive results of the proof-of-concept study for the treatment of negative symptoms in schizophrenia. Neuropsychopharmacology 35, S320–S321 (2010).

    Google Scholar 

  86. Martin-Facklam, M. et al. Glycine transporter type 1 occupancy by bitopertin: a positron emission tomography study in healthy volunteers. Neuropsychopharmacology 38, 504–512 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Molander, A., Lidö, H. H., Lof, E., Ericson, M. & Soderpalm, B. The glycine reuptake inhibitor Org25935 decreases ethanol intake and preference in male Wistar rats. Alcohol Alcohol. 42, 11–18 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Söderpalm, B. & Ericson, M. Neurocircuitry involved in the development of alcohol addiction: the dopamine system and its access points. Curr. Top. Behav. Neurosci. 13, 127–161 (2013). This study proposes a model of alcohol addiction that links the action of glycine and alcohol with the reward pathway, and provides the rationale for glycine transporter reuptake inhibition as a means to reduce alcohol consumption and relapse.

    Article  CAS  PubMed  Google Scholar 

  89. Uslaner, J. M. et al. Inhibition of glycine transporter 1 attenuates nicotine- but not food-induced cue-potentiated reinstatement for a response previously paired with sucrose. Behav. Brain Res. 207, 37–43 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Achat-Mendes, C., Nic Dhonnchadha, B. A., Platt, D. M., Kantak, K. M. & Spealman, R. D. Glycine transporter-1 inhibition preceding extinction training inhibits reacquisition of cocaine seeking. Neuropsychopharmacology 37, 2837–2845 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nic Dhonnchadha, B. A. et al. Inhibiting glycine transporter-1 facilitates cocaine-cue extinction and attenuates reacquisition of cocaine-seeking behavior. Drug Alcohol Depend. 122, 119–126 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Vengeliene, V., Leonardi-Essmann, F., Sommer, W. H., Marston, H. M. & Spanagel, R. Glycine transporter-1 blockade leads to persistently reduced relapse-like alcohol drinking in rats. Biol. Psychiatry 68, 704–711 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Lidö, H. H., Stomberg, R., Fagerberg, A., Ericson, M. & Soderpalm, B. The glycine reuptake inhibitor Org 25935 interacts with basal and ethanol-induced dopamine release in rat nucleus accumbens. Alcohol Clin. Exp. Res. 33, 1151–1157 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Szegedi, A. et al. Evaluation of glycine transporter inhibitor Org 25935 for the prevention of relapse in alcohol-dependent patients: a multisite, randomized, double-blind, placebo-controlled trial. Neuropsychopharmacology 38, S314–S446 (2012).

    Article  Google Scholar 

  95. Molander, A., Lof, E., Stomberg, R., Ericson, M. & Soderpalm, B. Involvement of accumbal glycine receptors in the regulation of voluntary ethanol intake in the rat. Alcohol Clin. Exp. Res. 29, 38–45 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Eggers, E. D. & Berger, A. J. Mechanisms for the modulation of native glycine receptor channels by ethanol. J. Neurophysiol. 91, 2685–2695 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Spanagel, R. & Vengeliene, V. New pharmacological treatment strategies for relapse prevention. Curr. Top. Behav. Neurosci. 13, 583–609 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Wee, S. & Koob, G. F. The role of the dynorphin-κ opioid system in the reinforcing effects of drugs of abuse. Psychopharmacol. (Berl.) 210, 121–135 (2010).

    Article  CAS  Google Scholar 

  99. Mann, K., Bladstrom, A., Torup, L., Gual, A. & van den Brink, W. Extending the treatment options in alcohol dependence: a randomized controlled study of as-needed nalmefene. Biol. Psychiatry 73, 706–713 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Spanagel, R. et al. An integrated genome research network for studying the genetics of alcohol addiction. Addict. Biol. 15, 369–379 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Lidö, H. H., Marston, H., Ericson, M. & Soderpalm, B. The glycine reuptake inhibitor Org24598 and acamprosate reduce ethanol intake in the rat; tolerance development to acamprosate but not to Org24598. Addict. Biol. 17, 897–907 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Vengeliene, V., Bachteler, D., Danysz, W. & Spanagel, R. The role of the NMDA receptor in alcohol relapse: a pharmacological mapping study using the alcohol deprivation effect. Neuropharmacology 48, 822–829 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Gass, J. T. & Olive, M. F. Glutamatergic substrates of drug addiction and alcoholism. Biochem. Pharmacol. 75, 218–265 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Sesack, S. R. & Grace, A. A. Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology 35, 27–47 (2010).

    Article  PubMed  Google Scholar 

  105. Engblom, D. et al. Glutamate receptors on dopamine neurons control the persistence of cocaine seeking. Neuron 59, 497–508 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Sindrup, S. H., Otto, M., Finnerup, N. B. & Jensen, T. S. Antidepressants in the treatment of neuropathic pain. Bas. Clin. Pharmacol. Toxicol. 96, 399–409 (2005).

    Article  CAS  Google Scholar 

  107. Núñez, E., Lopez-Corcuera, B., Vazquez, J., Gimenez, C. & Aragon, C. Differential effects of the tricyclic antidepressant amoxapine on glycine uptake mediated by the recombinant GLYT1 and GLYT2 glycine transporters. Br. J. Pharmacol. 129, 200–206 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Tanabe, M., Takasu, K., Yamaguchi, S., Kodama, D. & Ono, H. Glycine transporter inhibitors as a potential therapeutic strategy for chronic pain with memory impairment. Anesthesiology 108, 929–937 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Morita, K. et al. Spinal antiallodynia action of glycine transporter inhibitors in neuropathic pain models in mice. J. Pharmacol. Exp. Ther. 326, 633–645 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Dohi, T., Morita, K., Kitayama, T., Motoyama, N. & Morioka, N. Glycine transporter inhibitors as a novel drug discovery strategy for neuropathic pain. Pharmacol. Ther. 123, 54–79 (2009). This review examines the evidence supporting the role of glycine reuptake inhibition in pain control and describes the relevant neural circuits of pain processing that we have presented in this article.

    Article  CAS  PubMed  Google Scholar 

  111. Yoshikawa, S., Oguchi, T., Funahashi, Y., de Groat, W. C. & Yoshimura, N. Glycine transporter type 2 (GlyT2) inhibitor ameliorates bladder overactivity and nociceptive behavior in rats. Eur. Urol. 62, 704–712 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cheng, W. et al. Intracerebroventricular or intrathecal injection of glycine produces analgesia in thermal nociception and chemical nociception via glycine receptors. Eur. J. Pharmacol. 614, 44–49 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Wallace, M. S. et al. A randomized, double-blind, placebo-controlled trial of a glycine antagonist in neuropathic pain. Neurology 59, 1694–1700 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Beyer, C., Komisaruk, B. R., Lopez-Colome, A. M. & Caba, M. Administration of AP5, a glutamate antagonist, unmasks glycine analgesic actions in the rat. Pharmacol. Biochem. Behav. 42, 229–232 (1992).

    Article  CAS  PubMed  Google Scholar 

  115. Centeno, M. V., Mutso, A., Millecamps, M. & Apkarian, A. V. Prefrontal cortex and spinal cord mediated anti-neuropathy and analgesia induced by sarcosine, a glycine-T1 transporter inhibitor. Pain 145, 176–183 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kodama, D., Ono, H. & Tanabe, M. Increased hippocampal glycine uptake and cognitive dysfunction after peripheral nerve injury. Pain 152, 809–817 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Werdehausen, R. et al. Lidocaine metabolites inhibit glycine transporter 1: a novel mechanism for the analgesic action of systemic lidocaine? Anesthesiology 116, 147–158 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Hermanns, H. et al. Differential effects of spinally applied glycine transporter inhibitors on nociception in a rat model of neuropathic pain. Neurosci. Lett. 445, 214–219 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Haranishi, Y., Hara, K., Terada, T., Nakamura, S. & Sata, T. The antinociceptive effect of intrathecal administration of glycine transporter-2 inhibitor ALX1393 in a rat acute pain model. Anesth. Analg. 110, 615–621 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Nishikawa, Y., Sasaki, A. & Kuraishi, Y. Blockade of glycine transporter GlyT2, but not GlyT1, ameliorates dynamic and static mechanical allodynia in mice with herpetic or postherpetic pain. J. Pharmacol. Sci. 112, 352–360 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Munts, A. G. et al. Intrathecal glycine for pain and dystonia in complex regional pain syndrome. Pain 146, 199–204 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Waziri, R. Glycine therapy of schizophrenia: some caveats. Biol. Psychiatry 39, 155–156 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. Harsing, L. G. Jr et al. Glycine transporter type-1 and its inhibitors. Curr. Med. Chem. 13, 1017–1044 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Yang, C. R. & Svensson, K. A. Allosteric modulation of NMDA receptor via elevation of brain glycine and D-serine: the therapeutic potentials for schizophrenia. Pharmacol. Ther. 120, 317–332 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Ouellet, D., Sutherland, S., Wang, T., Griffini, P. & Murthy, V. First-time-in-human study with GSK1018921, a selective GlyT1 inhibitor: relationship between exposure and dizziness. Clin. Pharmacol. Ther. 90, 597–604 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Atkinson, B. N. et al. ALX 5407: a potent, selective inhibitor of the hGlyT1 glycine transporter. Mol. Pharmacol. 60, 1414–1420 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Howard, A. et al. Glycine transporter GLYT1 is essential for glycine-mediated protection of human intestinal epithelial cells against oxidative damage. J. Physiol. 588, 995–1009 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Javitt, D. C. Is the glycine site half saturated or half unsaturated? Effects of glutamatergic drugs in schizophrenia patients. Curr. Opin. Psychiatry 19, 151–157 (2006).

    Article  PubMed  Google Scholar 

  129. French, J. A. & Faught, E. Rational polytherapy. Epilepsia 50 (Suppl. 8), 63–68 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Tamminga, C. A. When is polypharmacy an advantage? Am. J. Psychiatry 168, 663 (2011).

    Article  PubMed  Google Scholar 

  131. Ritsner, M. S. (ed) Polypharmacy in Psychiatry Practice, Volume II: Use of Polypharmacy in the “Real World” (Springer, 2013).

    Book  Google Scholar 

  132. D'Souza, D. C. et al. Glycine transporter inhibitor attenuates the psychotomimetic effects of ketamine in healthy males: preliminary evidence. Neuropsychopharmacology 37, 1036–1046 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Pinard, E. et al. Discovery of benzoylpiperazines as a novel class of potent and selective GlyT1 inhibitors. Bioorg. Med. Chem. Lett. 18, 5134–5139 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Gray, J. A. & Nicoll, R. A. Thinking outside the synapse: glycine at extrasynaptic NMDA receptors. Cell 150, 455–456 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Mothet, J. P. et al. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc. Natl Acad. Sci. USA 97, 4926–4931 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rosenberg, D. et al. Neuronal D-serine and glycine release via the ASC-1 transporter regulates NMDA receptor-dependent synaptic activity. J. Neurosci. 33, 3533–3544 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Marchetti, M. et al. ATP binding to human serine racemase is cooperative and modulated by glycine. FEBS J. http://dx.doi.org/10.1111/febs.12510 (2013).

  138. Musante, V., Summa, M., Cunha, R. A., Raiteri, M. & Pittaluga, A. Pre-synaptic glycine GlyT1 transporter–NMDA receptor interaction: relevance to NMDA autoreceptor activation in the presence of Mg2+ ions. J. Neurochem. 117, 516–527 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Duguid, I. C. & Smart, T. G. in Biology of the NMDA Receptor (ed. Dongen, A. M. V. ) 313–328 (CRC Press, 2009).

    Google Scholar 

  140. Gelfin, E. et al. D-serine adjuvant treatment alleviates behavioural and motor symptoms in Parkinson's disease. Int. J. Neuropsychopharmacol. 15, 543–549 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Schneider, J. S., Tinker, J. P., Van Velson, M. & Giardiniere, M. Effects of the partial glycine agonist D-cycloserine on cognitive functioning in chronic low dose MPTP-treated monkeys. Brain Res. 860, 190–194 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. Jimenez, E. et al. P2Y purinergic regulation of the glycine neurotransmitter transporters. J. Biol. Chem. 286, 10712–10724 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Barkess, G. et al. The chromatin-binding protein HMGN3 stimulates histone acetylation and transcription across the Glyt1 gene. Biochem. J. 442, 495–505 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Verissimo, C. et al. Nonketotic hyperglycinemia: a cause of encephalopathy in children. J. Child Neurol. 28, 251–254 (2013).

    Article  PubMed  Google Scholar 

  145. Applegarth, D. A. & Toone, J. R. Glycine encephalopathy (nonketotic hyperglycinemia): comments and speculations. Am. J. Med. Genet. A 140A, 186–188 (2006).

    Article  Google Scholar 

  146. Conter, C. et al. Genetic heterogeneity of the GLDC gene in 28 unrelated patients with glycine encephalopathy. J. Inherit Metab. Dis. 29, 135–142 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Mayor, F. Jr et al. Atypical nonketotic hyperglycinemia with a defective glycine transport system in nervous tissue. Neurochem. Pathol. 2, 233–249 (1984).

    PubMed  Google Scholar 

  148. Jursky, F. & Nelson, N. Developmental expression of the glycine transporters GLYT1 and GLYT2 in mouse brain. J. Neurochem. 67, 336–344 (1996).

    Article  CAS  PubMed  Google Scholar 

  149. Shiang, R. et al. Mutations in the α1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. Nature Genet. 5, 351–358 (1993).

    Article  CAS  PubMed  Google Scholar 

  150. Chung, S. K. et al. Pathophysiological mechanisms of dominant and recessive GLRA1 mutations in hyperekplexia. J. Neurosci. 30, 9612–9620 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chung, S. K. et al. GLRB is the third major gene of effect in hyperekplexia. Hum. Mol. Genet. 22, 927–940 (2013).

    Article  CAS  PubMed  Google Scholar 

  152. James, V. M. et al. Novel missense mutations in the glycine receptor beta subunit gene (GLRB) in startle disease. Neurobiol. Dis. 52, 137–149 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gimenez, C. et al. A novel dominant hyperekplexia mutation Y705C alters trafficking and biochemical properties of the presynaptic glycine transporter GlyT2. J. Biol. Chem. 287, 28986–29002 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Charlier, C. et al. Highly effective SNP-based association mapping and management of recessive defects in livestock. Nature Genet. 40, 449–454 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Gill, J. L. et al. Startle disease in Irish wolfhounds associated with a microdeletion in the glycine transporter GlyT2 gene. Neurobiol. Dis. 43, 184–189 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bohme, I. & Luddens, H. The inhibitory neural circuitry as target of antiepileptic drugs. Curr. Med. Chem. 8, 1257–1274 (2001).

    Article  CAS  PubMed  Google Scholar 

  157. Seiler, N. & Sarhan, S. Synergistic anticonvulsant effects of a GABA agonist and glycine. Gen. Pharmacol. 15, 367–369 (1984).

    Article  CAS  PubMed  Google Scholar 

  158. Halsey, M. J., Little, H. J. & Wardley-Smith, B. Systemically administered glycine protects against strychnine convulsions, but not the behavioural effects of high pressure, in mice. J. Physiol. 408, 431–441 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Peterson, S. L. Glycine potentiates the anticonvulsant action of diazepam and phenobarbital in kindled amygdaloid seizures of rats. Neuropharmacology 25, 1359–1363 (1986).

    Article  CAS  PubMed  Google Scholar 

  160. Larson, A. A. & Beitz, A. J. Glycine potentiates strychnine-induced convulsions: role of NMDA receptors. J. Neurosci. 8, 3822–3826 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Semyanov, A., Walker, M. C., Kullmann, D. M. & Silver, R. A. Tonically active GABAA receptors: modulating gain and maintaining the tone. Trends Neurosci. 27, 262–269 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Eichler, S. A. et al. Splice-specific roles of glycine receptor α3 in the hippocampus. Eur. J. Neurosci. 30, 1077–1091 (2009).

    Article  PubMed  Google Scholar 

  163. Chen, R. Q. et al. Role of glycine receptors in glycine-induced LTD in hippocampal CA1 pyramidal neurons. Neuropsychopharmacology 36, 1948–1958 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zhang, L. H., Gong, N., Fei, D., Xu, L. & Xu, T. L. Glycine uptake regulates hippocampal network activity via glycine receptor-mediated tonic inhibition. Neuropsychopharmacology 33, 701–711 (2008). This paper shows that inhibition of GlyT1 in the hippocampus facilitates the induction of NMDA receptor-dependent LTP and simultaneously potentiates neuronal inhibition via glycine receptors, thereby indicating that GlyT1 can effectively fine-tune both excitatory and inhibitory activities within the hippocampus through the regulation of glycine trafficking.

    Article  CAS  PubMed  Google Scholar 

  165. Socała, K., Nieoczym, D., Rundfeldt, C. & Wlaz, P. Effects of sarcosine, a glycine transporter type 1 inhibitor, in two mouse seizure models. Pharmacol. Rep. 62, 392–397 (2010).

    Article  PubMed  Google Scholar 

  166. Kalinichev, M. et al. Glycine transporter 1 (GlyT1) inhibitors exhibit anticonvulsant properties in the rat maximal electroshock threshold (MEST) test. Brain Res. 1331, 105–113 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Peterson, S. L. Anticonvulsant drug potentiation by glycine in maximal electroshock seizures is mimicked by D-serine and antagonized by 7-chlorokynurenic acid. Eur. J. Pharmacol. 199, 341–348 (1991).

    Article  CAS  PubMed  Google Scholar 

  168. Peterson, S. L. & Schwade, N. D. The anticonvulsant activity of D-cycloserine is specific for tonic convulsions. Epilepsy Res. 15, 141–148 (1993).

    Article  CAS  PubMed  Google Scholar 

  169. Wlaź, P., Baran, H. & Loscher, W. Effect of the glycine/NMDA receptor partial agonist, D-cycloserine, on seizure threshold and some pharmacodynamic effects of MK-801 in mice. Eur. J. Pharmacol. 257, 217–225 (1994).

    Article  PubMed  Google Scholar 

  170. Xue, J. G. et al. NMDA receptor activation enhances inhibitory GABAergic transmission onto hippocampal pyramidal neurons via presynaptic and postsynaptic mechanisms. J. Neurophysiol. 105, 2897–2906 (2011).

    Article  CAS  PubMed  Google Scholar 

  171. Perry, T. L. & Hansen, S. Amino acid abnormalities in epileptogenic foci. Neurology 31, 872–876 (1981).

    Article  CAS  PubMed  Google Scholar 

  172. Foster, A. C. & Kemp, J. A. Neurobiology. Glycine maintains excitement. Nature 338, 377–378 (1989).

    Article  CAS  PubMed  Google Scholar 

  173. Croucher, M. J. & Bradford, H. F. 7-chlorokynurenic acid, a strychnine-insensitive glycine receptor antagonist, inhibits limbic seizure kindling. Neurosci. Lett. 118, 29–32 (1990).

    Article  CAS  PubMed  Google Scholar 

  174. Bristow, L. J. et al. Anticonvulsant and behavioral profile of L-701,324, a potent, orally active antagonist at the glycine modulatory site on the N-methyl-D-aspartate receptor complex. J. Pharmacol. Exp. Ther. 279, 492–501 (1996).

    CAS  PubMed  Google Scholar 

  175. Stelzer, A., Slater, N. T. & ten Bruggencate, G. Activation of NMDA receptors blocks GABAergic inhibition in an in vitro model of epilepsy. Nature 326, 698–701 (1987).

    Article  CAS  PubMed  Google Scholar 

  176. Endele, S. et al. Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nature Genet. 42, 1021–1026 (2010).

    Article  CAS  PubMed  Google Scholar 

  177. Carvill, G. L. et al. GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nature Genet. 45, 1073–1076 (2013).

    Article  CAS  PubMed  Google Scholar 

  178. Lemke, J. R. et al. Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nature Genet. 45, 1067–1072 (2013).

    Article  CAS  PubMed  Google Scholar 

  179. Lesca, G. et al. GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction. Nature Genet. 45, 1061–1066 (2013).

    Article  CAS  PubMed  Google Scholar 

  180. Muller, E., Le-Corronc, H. & Legendre, P. Extrasynaptic and postsynaptic receptors in glycinergic and GABAergic neurotransmission: a division of labor? Front. Mol. Neurosci. 1, 3 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Li, Y. & Xu, T. L. State-dependent cross-inhibition between anionic GABAA and glycine ionotropic receptors in rat hippocampal CA1 neurons. Neuroreport 13, 223–226 (2002).

    Article  PubMed  Google Scholar 

  182. Breustedt, J., Schmitz, D., Heinemann, U. & Schmieden, V. Characterization of the inhibitory glycine receptor on entorhinal cortex neurons. Eur. J. Neurosci. 19, 1987–1991 (2004).

    Article  PubMed  Google Scholar 

  183. Brodie, M. J. & Sills, G. J. Combining antiepileptic drugs — rational polytherapy? Seizure 20, 369–375 (2011).

    Article  PubMed  Google Scholar 

  184. Greenberg, W. M. et al. Adjunctive glycine in the treatment of obsessive-compulsive disorder in adults. J. Psychiatr. Res. 43, 664–670 (2009).

    Article  PubMed  Google Scholar 

  185. Wu, P. L., Tang, H. S., Lane, H. Y., Tsai, C. A. & Tsai, G. E. Sarcosine therapy for obsessive compulsive disorder: a prospective, open-label study. J. Clin. Psychopharmacol 31, 369–374 (2011).

    Article  CAS  PubMed  Google Scholar 

  186. Carlsson, M. L. On the role of cortical glutamate in obsessive-compulsive disorder and attention-deficit hyperactivity disorder, two phenomenologically antithetical conditions. Acta Psychiatr. Scand. 102, 401–413 (2000).

    Article  CAS  PubMed  Google Scholar 

  187. Wu, K., Hanna, G. L., Rosenberg, D. R. & Arnold, P. D. The role of glutamate signaling in the pathogenesis and treatment of obsessive-compulsive disorder. Pharmacol. Biochem. Behav. 100, 726–735 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Kushner, M. G. et al. D-cycloserine augmented exposure therapy for obsessive-compulsive disorder. Biol. Psychiatry 62, 835–838 (2007).

    Article  CAS  PubMed  Google Scholar 

  189. Wilhelm, S. et al. Augmentation of behavior therapy with D-cycloserine for obsessive-compulsive disorder. Am. J. Psychiatry 165, 335–341 (2008).

    Article  PubMed  Google Scholar 

  190. Ressler, K. J. et al. Cognitive enhancers as adjuncts to psychotherapy: use of D-cycloserine in phobic individuals to facilitate extinction of fear. Arch. Gen. Psychiatry 61, 1136–1144 (2004).

    Article  PubMed  Google Scholar 

  191. Davis, M., Ressler, K., Rothbaum, B. O. & Richardson, R. Effects of D-cycloserine on extinction: translation from preclinical to clinical work. Biol. Psychiatry 60, 369–375 (2006).

    Article  CAS  PubMed  Google Scholar 

  192. Otto, M. W. et al. Efficacy of D-cycloserine for enhancing response to cognitive-behavior therapy for panic disorder. Biol. Psychiatry 67, 365–370 (2010).

    Article  CAS  PubMed  Google Scholar 

  193. Guastella, A. J. et al. A randomized controlled trial of D-cycloserine enhancement of exposure therapy for social anxiety disorder. Biol. Psychiatry 63, 544–549 (2008).

    Article  CAS  PubMed  Google Scholar 

  194. Hofmann, S. G. et al. Augmentation of exposure therapy with D-cycloserine for social anxiety disorder. Arch. Gen. Psychiatry 63, 298–304 (2006).

    Article  CAS  PubMed  Google Scholar 

  195. Nations, K. R. et al. Evaluation of the glycine transporter inhibitor Org 25935 as augmentation to cognitive-behavioral therapy for panic disorder: a multicenter, randomized, double-blind, placebo-controlled trial. J. Clin. Psychiatry 73, 647–653 (2012).

    Article  CAS  PubMed  Google Scholar 

  196. Huang, C. C. et al. Inhibition of glycine transporter-1 as a novel mechanism for the treatment of depression. Biol. Psychiatry http://dx.doi.org/10.1016/j.biopsych.2013.02.020 (2013).

  197. Heresco-Levy, U. et al. A randomized add-on trial of high-dose D-cycloserine for treatment-resistant depression. Int. J. Neuropsychopharmacol. 16, 501–506 (2013).

    Article  CAS  PubMed  Google Scholar 

  198. Burgdorf, J. et al. GLYX-13, a NMDA receptor glycine-site functional partial agonist, induces antidepressant-like effects without ketamine-like side effects. Neuropsychopharmacology 38, 729–742 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Catena-Dell'osso, M., Fagiolini, A., Rotella, F., Baroni, S. & Marazziti, D. Glutamate system as target for development of novel antidepressants. CNS Spectr. 18, 188–198 (2013).

    Article  PubMed  Google Scholar 

  200. Perez-Siles, G. et al. Molecular basis of the differential interaction with lithium of glycine transporters GLYT1 and GLYT2. J. Neurochem. 118, 195–204 (2011).

    Article  CAS  PubMed  Google Scholar 

  201. Poleszak, E. et al. A complex interaction between glycine/NMDA receptors and serotonergic/noradrenergic antidepressants in the forced swim test in mice. J. Neural Transm. 118, 1535–1546 (2011).

    Article  CAS  PubMed  Google Scholar 

  202. Vanhoof, G. et al. Glycine transporter 1 heterozygotes display reduced anxiety in novel environments. Program No. 504.13. 2004 Neuroscience Meeting Planner (San Diego, California; Society for Neuroscience, 2004).

    Google Scholar 

  203. Dubroqua, S. et al. Impacts of forebrain neuronal glycine transporter 1 disruption in the senescent brain: evidence for age-dependent phenotypes in Pavlovian learning. Behav. Neurosci. 124, 839–850 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Jacobs, B. L., van Praag, H. & Gage, F. H. Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol. Psychiatry 5, 262–269 (2000).

    Article  CAS  PubMed  Google Scholar 

  205. Harvey, R. J. et al. GlyR α3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 304, 884–887 (2004). This key study reveals a novel biological role for GlyRα3 in central inflammatory pain sensitization.

    Article  CAS  PubMed  Google Scholar 

  206. Rácz, I., Schütz, B., Abo-Salem, O. M. & Zimmer, A. Visceral, inflammatory and neuropathic pain in glycine receptor α3-deficient mice. Neuroreport 16, 2025–2028 (2005).

    Article  PubMed  Google Scholar 

  207. Hösl, K. et al. Spinal prostaglandin E receptors of the EP2 subtype and the glycine receptor α3 subunit, which mediate central inflammatory hyperalgesia, do not contribute to pain after peripheral nerve injury or formalin injection. Pain 126, 46–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  208. Harvey, V. L., Caley, A., Muller, U. C., Harvey, R. J. & Dickenson, A. H. A selective role for α3 subunit glycine receptors in inflammatory pain. Front. Mol. Neurosci. 2, 14 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Morita, K., Kitayama, T., Morioka, N. & Dohi, T. Glycinergic mediation of tactile allodynia induced by platelet-activating factor (PAF) through glutamate-NO-cyclic GMP signalling in spinal cord in mice. Pain 138, 525–536 (2008).

    Article  CAS  PubMed  Google Scholar 

  210. Xiong, W. et al. Cannabinoid potentiation of glycine receptors contributes to cannabis-induced analgesia. Nature Chem. Biol. 7, 296–303 (2011). This pivotal study maps the binding site for cannabinoids on glycine receptors and demonstrates that cannabinoid-induced analgesia is absent in mice lacking GlyRα3 but not in cannabinoid receptor 1 (CB1R)- and CB2R-knockout mice.

    Article  CAS  Google Scholar 

  211. Zeilhofer, H. U. et al. Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J. Comp. Neurol. 482, 123–141 (2005).

    Article  CAS  PubMed  Google Scholar 

  212. Fuziwara, S., Inoue, K. & Denda, M. NMDA-type glutamate receptor is associated with cutaneous barrier homeostasis. J. Invest. Dermatol. 120, 1023–1029 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.J.H. is supported by the Medical Research Council (Grants G0500833, G0601585 and J004049) and Action Medical Research (Grant 1966). B.K.Y. is supported by the US National Institutes of Health (NIH) (Grant R01MH083973), and the Legacy Foundation Grant, and would like to acknowledge former support from the Swiss National Science Foundation (Grant: 3100-066855), the Swiss National Center of Competence in Research Neural Plasticity and Repair, and the Swiss Federal Institute of Technology, Zurich.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert J. Harvey or Benjamin K. Yee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Interneurons

Nerve cells that form short, local (mostly inhibitory) connections with nearby neurons within a single area of the brain. They are to be distinguished from principal or projection neurons that extend axonal connections to distal regions of the nervous system.

Forebrain

An area of the brain that comprises two main sections: the diencephalon and the telencephalon. It covers the entire cerebral cortex, limbic cortices, thalamus and striatum, and governs sensory and motor information processing, language and memory function.

Affects

The experience and expression of feelings or emotions that can be positive or negative; the psychological processes involved are often contrasted with (but cannot be entirely disentangled from) cognition and thought processes.

Executive functions

A broad number of cognitive processes including planning, working memory, attention, problem solving, reasoning, inhibition, mental flexibility and task switching, as well as the initiation and monitoring of these cognitive processes.

Positive allosteric modulatory sites

Binding sites on a receptor or channel that are distinct from the active site. These sites allow regulatory ligands (that have an affinity to these sites) to enhance the biochemical response that is associated with the activation of the active site.

Glutamate hypothesis

A hypothesis of the pathophysiology of schizophrenia that attributes the production of schizophrenia symptoms to the underactivity of the glutamatergic neurotransmission system — in particular, to the transmission of neural signals via NMDA (N-methyl-D-aspartate) receptors.

Glyt1+/− mice

Constitutive heterozygous knockout mice that lack one allele of the glycine transporter 1 gene (Glyt1; also known as Slc6a9), and have GlyT1 expression levels that are 50% lower than those of wild-type mice.

Glyt1fl/fl:CamKIIα–Cre+/− conditional knockout mice

Conditional knockout mutant mice in which the expression of the glycine transporter 1 gene (Glyt1; also known as Slc6a9) is disrupted in forebrain principal neurons.

Telencephalon

The largest and most highly developed part of the human brain that is involved in many higher brain functions including intelligence, personality and interpretation of sensory information; often referred to as the cerebrum or cerebral cortex in the literature.

Nucleus accumbens

The main component of the ventral (or limbic) striatum that receives ascending dopaminergic innervation and limbic glutamatergic inputs, and is involved in reward, motivation and attention.

Clozapine

8-chloro-11-(4-methylpiperazin-1-yl)-5H-dibenzo[b,e][1,4]diazepine); the prototypical second-generation antipsychotic drug, which is associated with fewer motor side effects. It is commonly prescribed to patients with schizophrenia who do not respond to first-generation antipsychotic drugs.

Glyt1fl/fl:EMX1–Cre+/− mice

Mice in which expression of the glycine transporter 1 gene (Glyt1; also known as Slc6a9) in the dorsal telencephalon is disrupted so that all cells in the cerebral cortex including the limbic cortices (the hippocampus and amygdala) lack GlyT1, but GlyT1 expression is retained in the striatum.

Pavlovian fear conditioning

A behavioural paradigm in which organisms learn to anticipate an aversive event by learning to associate the aversive stimulus (for example, an electrical shock) with a neutral stimulus (for example, a tone), which results in the expression of fear responses (for example, freezing or immobility) to the originally neutral stimulus.

Porsolt forced swim test

A rodent test that is used for determining the effects of antidepressant drugs. Such drugs can increase the length of time before a rodent gives up swimming or struggling and begins to float when left in a cylinder of water without any possibility of escaping.

Prepulse inhibition

A cross-species translational paradigm that is sensitive to an early attentional deficit in schizophrenia, which measures the inhibition of a startle response to an intense acoustic stimulus (that is, a pulse) induced by a weak non-startling stimulus (that is, a prepulse).

Adjunctive design

A clinical trial that is designed to test the efficacy of a given treatment that is administered as an add-on to the medications that the patients are already receiving; clinical outcomes are compared with placebo add-on.

Negative symptom factor score

A summary score, derived from the Positive and Negative Syndrome Scale (PANSS), to index the change in the negative symptoms of schizophrenia between the treatment and placebo arms in a clinical trial.

Complete Freund's adjuvant

A water-in-oil emulsion that contains heat-killed mycobacteria or mycobacterial cell wall components, and is used to induce an inflammatory response and pain in animal models.

Gabapentin

(2-[1-(aminomethyl)cyclohexyl]acetic acid). An analogue of GABA (γ-aminobutyric acid) that is currently used for the treatment of neuropathic pain but was originally developed as an anti-epileptic drug.

Allodynia

A form of pain caused by a thermal or physical stimulus that does not normally elicit pain sensation and can occur following injury.

Epileptic foci

Localized areas of the brain where a crucial number of pathologically discharging neurons reside; these neurons have the potential to give rise to widespread brain seizures.

NMDA autoreceptors

NMDA (N-methyl-D-aspartate) receptors that are located on presynaptic nerve cell membranes. They may provide tonic facilitation of neural transmission, contribute to neural plasticity such as long-term depression or be part of a negative feedback loop to reduce glutamate release.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harvey, R., Yee, B. Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain. Nat Rev Drug Discov 12, 866–885 (2013). https://doi.org/10.1038/nrd3893

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3893

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research