Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The determination and interpretation of the therapeutic index in drug development

Abstract

A key part of drug discovery and development is the characterization and optimization of the safety and efficacy of drug candidates to identify those that have an appropriately balanced safety–efficacy profile for a given indication. The therapeutic index (TI) — which is typically considered as the ratio of the highest exposure to the drug that results in no toxicity to the exposure that produces the desired efficacy — is an important parameter in efforts to achieve this balance. Various types of safety and efficacy data are generated in vitro and in vivo (in animals and in humans), and these data can be used to predict the clinical TI of a drug candidate at an early stage. However, approaches to systematically and quantitatively compare these types of data and to apply this knowledge more effectively are needed. This article critically discusses the various aspects of TI determination and interpretation in drug development for both small molecule drugs and biotherapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An exposure-centric approach to therapeutic index determination.
Figure 2: The therapeutic index in relation to the pharmacodynamic end point.

Similar content being viewed by others

References

  1. Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nature Rev. Drug Discov. 9, 203–214 (2010).

    Article  CAS  Google Scholar 

  2. Ray, A. Beyond debacle and debate: developing solutions in drug safety. Nature Rev. Drug Discov. 8, 775–779 (2009).

    Article  CAS  Google Scholar 

  3. Kesselheim, A. S. & Avorn, J. The role of litigation in defining drug risks. JAMA 297, 308–311 (2007).

    Article  CAS  Google Scholar 

  4. Kesselheim, A. S. Permitting product liability litigation for FDA-approved drugs and devices promotes patient safety. Clin. Pharmacol. Ther. 87, 645–647 (2010).

    Article  CAS  Google Scholar 

  5. Watkins, P. B. Drug safety sciences and the bottleneck in drug development. Clin. Pharmacol. Ther. 89, 788–790 (2011).

    Article  CAS  Google Scholar 

  6. Dearden, J. C. In silico prediction of drug toxicity. J. Comput. Aided Mol. Des. 17, 119–127 (2003).

    Article  CAS  Google Scholar 

  7. Przybylak, K. R. & Cronin, M. T. In silico models for drug-induced liver injury — current status. Expert Opin. Drug Metab. Toxicol. 8, 201–217 (2012).

    Article  CAS  Google Scholar 

  8. Cui, Y. & Paules, R. S. Use of transcriptomics in understanding mechanisms of drug-induced toxicity. Pharmacogenomics 11, 573–585 (2010).

    Article  CAS  Google Scholar 

  9. Ge, F. & He, Q. Y. Genomic and proteomic approaches for predicting toxicity and adverse drug reactions. Expert Opin. Drug Metab. Toxicol. 5, 29–37 (2009).

    Article  CAS  Google Scholar 

  10. Van Summeren, A., Renes, J., van Delft, J. H., Kleinjans, J. C. & Mariman, E. C. Proteomics in the search for mechanisms and biomarkers of drug-induced hepatotoxicity. Toxicol. in Vitro 26, 373–385 (2012).

    Article  CAS  Google Scholar 

  11. Muller, P. Y. & Dieterle, F. Tissue-specific, non-invasive toxicity biomarkers: translation from preclinical safety assessment to clinical safety monitoring. Expert Opin. Drug Metab. Toxicol. 5, 1023–1038 (2009).

    Article  CAS  Google Scholar 

  12. Finkel, R, Clark, M. A., Champe, P. C. & Cubeddu, L. X. (eds) Lippincott's Illustrated Reviews: Pharmacology 4th edn (Lippincott Williams & Wilkins, 2008).

    Google Scholar 

  13. Smith, D. A., Di, L. & Kerns, E. H. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nature Rev. Drug Discov. 9, 929–939 (2010).

    Article  CAS  Google Scholar 

  14. Lewis, R. W. et al. Recognition of adverse and nonadverse effects in toxicity studies. Toxicol. Pathol. 30, 66–74 (2002).

    Article  CAS  Google Scholar 

  15. Lee, C. H. et al. α4β2 neuronal nicotinic receptor positive allosteric modulation: an approach for improving the therapeutic index of α4β2 nAChR agonists in pain. Biochem. Pharmacol. 82, 959–966 (2011).

    Article  CAS  Google Scholar 

  16. Muller, P. Y., Milton, M., Lloyd, P., Sims, J. & Brennan, F. R. The minimum anticipated biological effect level (MABEL) for selection of first human dose in clinical trials with monoclonal antibodies. Curr. Opin. Biotechnol. 20, 722–729 (2009).

    Article  CAS  Google Scholar 

  17. Toutain, P. L. & Lefèbvre, H. P. Pharmacokinetics and pharmacokinetic/pharmacodynamic relationships for angiotensin-converting enzyme inhibitors. J. Vet. Pharmacol. Ther. 27, 515–525 (2004).

    Article  CAS  Google Scholar 

  18. Solon, E. G., Schweitzer, A., Stoeckli, M. & Prideaux, B. Autoradiography, MALDI-MS, and SIMS-MS imaging in pharmaceutical discovery and development. AAPS. J. 12, 11–26 (2010).

    Article  CAS  Google Scholar 

  19. International Conference on Harmonisation (ICH). ICH Harmonised Tripartite Guideline: Detection of Toxicity to Reproduction for Medicinal Products & Toxicity To Male Fertility S5(R2). ICH[online], (2005).

  20. International Conference on Harmonisation (ICH). ICH Harmonised Tripartite Guideline: Testing for Carcinogenicity of Pharmaceuticals S1B. ICH[online], (1997).

  21. International Conference on Harmonisation (ICH). ICH Harmonised Tripartite Guideline: Nonclinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals M3(R2). ICH[online], (2009).

  22. US Department of Health and Human Services, Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER). Guidance for Industry: Safety Testing of Drug Metabolites. FDA[online], (2008).

  23. Redfern, W. S. et al. Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc. Res. 58, 32–45 (2003).

    Article  CAS  Google Scholar 

  24. International Conference on Harmonisation (ICH). ICH Harmonised Tripartite Guideline: Non-Clinical Evaluation of the Potential for Delayed Ventricular Repolarization (QT Interval Prolongation) by Human Pharmaceuticals S7B. ICH[online], (2005).

  25. Harmer, A., Valentin, J. P. & Pollard, C. On the relationship between block of the cardiac Na+ channel and drug-induced prolongation of the QRS complex. Br. J. Pharmacol. 164, 260–273 (2011).

    Article  CAS  Google Scholar 

  26. US Department of Health and Human Services, Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER). Guidance for Industry: Drug Interaction Studies — Study Design, Data Analysis, and Implications for Dosing and Labeling. FDA[online], (2012).

  27. European Medicines Agency (EMA). Guideline on the Investigation of Drug Interactions. EMA[online], (2012).

  28. Cordes, J. et al. Translation between in vitro inhibition of the cardiac Nav1.5 channel and pre-clinical and clinical QRS widening. J. Pharmacol. Toxicol. Methods 60, 221 (2009).

    Article  Google Scholar 

  29. Whitebread, S., Hamon, J., Bojanic, D. & Urban, L. Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development. Drug Discov. Today 10, 1421–1433 (2005).

    Article  CAS  Google Scholar 

  30. Lounkine, E. et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature 486, 361–367 (2012).

    Article  CAS  Google Scholar 

  31. Muller, P. Y. & Brennan, F. R. Safety assessment and dose selection for first-in-human clinical trials with immunomodulatory monoclonal antibodies. Clin. Pharmacol. Ther. 85, 247–258 (2009).

    Article  CAS  Google Scholar 

  32. Shankar, G., Pendley, C. & Stein, K. E. A risk-based bioanalytical strategy for the assessment of antibody immune responses against biological drugs. Nature Biotechnol. 25, 555–561 (2007).

    Article  CAS  Google Scholar 

  33. Eskens, F. A. & Verweij, J. The clinical toxicity profile of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors; a review. Eur. J. Cancer 42, 3127–3139 (2006).

    Article  CAS  Google Scholar 

  34. Freyhaus, H. et al. Imatinib mesylate for the treatment of pulmonary arterial hypertension. Expert Opin. Investig. Drugs. 21, 119–134 (2012).

    Article  Google Scholar 

  35. US Department of Health and Human Services, Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER). Guidance for Industry: Bioavailability and Bioequivalence Sudies for Orally Administered Drug products — General Considerations. FDA[online], (2003).

  36. US Department of Health and Human Services, Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER). Guidance for Industry: Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers. FDA[online], (2005).

  37. Muller, P. Y. Comparative requirements for exploratory clinical trials — eIND, eCTA and microdosing. Adv. Drug Deliv. Rev. 63, 511–517 (2011).

    Article  CAS  Google Scholar 

  38. Smith, D. A., Morgan, P., Vogel, W. M. & Walker, D. K. The use of Cav rather than AUC in safety assessment. Regul. Toxicol. Pharmacol. 57, 70–73 (2010).

    Article  CAS  Google Scholar 

  39. Bender, A. et al. Analysis of pharmacology data and the prediction of adverse drug reactions and off-target effects from chemical structure. ChemMedChem. 2, 861–873 (2007).

    Article  CAS  Google Scholar 

  40. Park, B. K. et al. Managing the challenge of chemically reactive metabolites in drug development. Nature Rev. Drug Discov. 10, 292–306 (2011).

    Article  CAS  Google Scholar 

  41. Hamon, J. et al. In vitro safety pharmacology profiling: what else beyond hERG? Future Med. Chem. 1, 645–665 (2009).

    Article  CAS  Google Scholar 

  42. Fuchs, H., Tillement, J. P., Urien, S., Greischel, A. & Roth, W. Concentration-dependent plasma protein binding of the novel dipeptidyl peptidase 4 inhibitor BI 1356 due to saturable binding to its target in plasma of mice, rats and humans. J. Pharm. Pharmacol. 61, 55–62 (2009).

    Article  CAS  Google Scholar 

  43. Wu-Wong, J. R., Dixon, D. B., Chiou, W. J. & Opgenorth, T. J. Endothelin receptor antagonists: effect of serum albumin on potency and comparison of pharmacological characteristics. J. Pharmacol. Exp. Ther. 281, 791–798 (1997).

    CAS  PubMed  Google Scholar 

  44. Schnitzer, J. E. & Oh, P. Albondin-mediated capillary permeability to albumin. Differential role of receptors in endothelial transcytosis and endocytosis of native and modified albumins. J. Biol. Chem. 269, 6072–6082 (1994).

    CAS  PubMed  Google Scholar 

  45. Neumann, E. et al. Native albumin for targeted drug delivery. Expert Opin. Drug Deliv. 7, 915–925 (2010).

    Article  CAS  Google Scholar 

  46. US Food and Drug Administration (FDA). Public Health Advisory — Pergolide (marketed as Permax). FDA[online], (2007).

  47. Kvernmo, T., Härtter, S. & Burger, E. A review of the receptor-binding and pharmacokinetic properties of dopamine agonists. Clin. Ther. 28, 1065–1078 (2006).

    Article  CAS  Google Scholar 

  48. Thalamas, C. et al. Pergolide: multiple-dose pharmacokinetics in patients with mild to moderate Parkinson disease. Clin. Neuropharmacol. 28, 120–125 (2005).

    Article  CAS  Google Scholar 

  49. Mano, Y., Usui, T. & Kamimura, H. Effects of bosentan, an endothelin receptor antagonist, on bile salt export pump and multidrug resistance-associated protein 2. Biopharm. Drug Dispos. 28, 13–18 (2007).

    Article  CAS  Google Scholar 

  50. Clozel, M. et al. Pharmacological characterization of bosentan, a new potent orally active nonpeptide endothelin receptor antagonist. J. Pharmacol. Exp. Ther. 270, 228–235 (1994).

    CAS  PubMed  Google Scholar 

  51. Dawson, S., Stahl, S., Paul, N., Barber, J. & Kenna, J. G. In vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug-induced liver injury in humans. Drug Metab. Dispos. 40, 130–138 (2012).

    Article  CAS  Google Scholar 

  52. European Medicines Agency (EMA). EMA Summary of Product Characteristics: Tracleer. EMA[online], (2012).

  53. International Transporter Consortium. Membrane transporters in drug development. Nature Rev. Drug Discov. 9, 215–236 (2010).

  54. US Food and Drug Administration (FDA). Drug Approval Package on Bextra (Valdecoxib) Tablets. Company: G.D. Searle & Co. Application No.: 21–341 Approval Date: 11/16/01. FDA[online], (2002).

  55. Dajani, E. Z. & Islam, K. Cardiovascular and gastrointestinal toxicity of selective cyclo-oxygenase-2 inhibitors in man. J. Physiol. Pharmacol. 59 (Suppl. 2), 117–133 (2008).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank B. Schmouder, L. Urban, P. Bouchard, P. Hoffmann, P. Heining and V. Jarugula for their valuable input and in-depth interdisciplinary discussions on this topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Y. Muller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

To convert umol/L to ng/mL: multiply umol/L value by MW of compound. (XLSX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muller, P., Milton, M. The determination and interpretation of the therapeutic index in drug development. Nat Rev Drug Discov 11, 751–761 (2012). https://doi.org/10.1038/nrd3801

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3801

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research