Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Finding the sweet spot: the role of nature and nurture in medicinal chemistry

Subjects

This article has been updated

Abstract

Given its position at the heart of small-molecule drug discovery, medicinal chemistry has an important role in tackling the well-known productivity challenges in pharmaceutical research and development. In recent years, extensive analyses of successful and failed discovery compounds and drug candidates have improved our understanding of the role of physicochemical properties in drug attrition. Based on the clarified challenges in finding the 'sweet spot' in medicinal chemistry programmes, we suggest that this goal can be achieved through a combination of first identifying chemical starting points with appropriate 'nature' and then rigorously 'nurturing' them during lead optimization. Here, we discuss scientific, strategic, organizational and cultural considerations for medicinal chemistry practices, with the aim of promoting more effective use of what is already known, as well as a wider appreciation of the risks of pursuing suboptimal compounds.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Binding thermodynamics in medicinal chemistry optimization.

Change history

  • 05 October 2012

    Michael M. Hann's postcode was originally incorrect; it has now been updated online.

References

  1. Madea, B., Mußhoff, F. & Berghaus, G. (eds) Verkehrsmedizin: Fahreignung, Fahrsicherheit, Unfallrekonstruktion 435 (Deutscher Ärzte-Verlag, Köln, 2007).

    Google Scholar 

  2. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997).

    CAS  Google Scholar 

  3. Wenlock, M. C., Austin, R. P., Barton, P., Davis, A. M. & Leeson, P. D. A comparison of physiochemical property profiles of development and marketed oral drugs. J. Med. Chem. 46, 1250–1256 (2003).

    CAS  Article  PubMed  Google Scholar 

  4. Leeson, P. D. & Davis, A. M. Time-related differences in the physical property profiles of oral drugs. J. Med. Chem. 47, 6338–6348 (2004).

    CAS  Article  PubMed  Google Scholar 

  5. Mannhold, R., Poda, G. I., Ostermann, C. & Tetko, I. V. Calculation of molecular lipophilicity: state-of-the-art and comparison of log P methods on more than 96,000 compounds. J. Pharm. Sci. 98, 861–893 (2009).

    CAS  Article  PubMed  Google Scholar 

  6. Oprea, T. I., Davis, A. M., Teague, S. J. & Leeson, P. D. Is there a difference between leads and drugs? A historical perspective. J. Chem. Inf. Comput. Sci. 41, 1308–1315 (2001).

    CAS  Article  PubMed  Google Scholar 

  7. Hann, M. M., Leach, A. R. & Harper, G. Molecular complexity and its impact on the probability of finding leads for drug discovery. J. Chem. Inf. Comput. Sci. 41, 856–864 (2001).

    CAS  Article  PubMed  Google Scholar 

  8. Hann, M. M. & Oprea, T. I. Pursuing the leadlikeness concept in pharmaceutical research. Curr. Opin. Chem. Biol. 8, 255–263 (2004).

    CAS  Article  PubMed  Google Scholar 

  9. Leeson, P. D. & Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nature Rev. Drug Discov. 6, 881–890 (2007).

    CAS  Article  Google Scholar 

  10. Waring, M. Lipophilicity in drug discovery. Expert Opin. Drug Discov. 5, 235–248 (2010).

    CAS  Article  PubMed  Google Scholar 

  11. Waring, M. Defining optimum lipophilicity and molecular weight ranges for drug candidates — molecular weight dependent lower logD limits based on permeability. Bioorg. Med. Chem. Lett. 19, 2844–2851 (2009).

    CAS  Article  PubMed  Google Scholar 

  12. Gleeson, M. P. Generation of a set of simple, interpretable ADMET rules of thumb. J. Med. Chem. 51, 817–834 (2008).

    CAS  Article  PubMed  Google Scholar 

  13. Gleeson, M. P., Hersey, A., Montanari, D. & Overington, J. Probing the links between in vitro potency, ADMET and physicochemical parameters. Nature Rev. Drug Discov. 10, 197–208 (2011).

    CAS  Article  Google Scholar 

  14. Keserü, G. M. 5th Drug Design Lead Discovery Conference 2009: lead finding strategies and optimization case studies. Drugs Future 35, 143–153 (2010).

    Article  Google Scholar 

  15. Hann, M. M. Molecular obesity, potency and other addictions in drug discovery. MedChemComm. 2, 349–355 (2011).

    CAS  Article  Google Scholar 

  16. Hopkins, A. L., Groom, C. R. & Alex, A. Ligand efficiency: a useful metric for lead selection. Drug Discov. Today 9, 430–431 (2004).

    Article  PubMed  Google Scholar 

  17. Keserü, G. M. & Makara, G. M. The influence of lead discovery strategies on the properties of drug candidates. Nature Rev. Drug Discov. 8, 203–212 (2009).

    Article  Google Scholar 

  18. Ferenczy, G. G. & Keserü, G. M. Thermodynamics guided lead discovery and optimization. Drug Discov. Today 15, 919–932 (2010).

    CAS  Article  PubMed  Google Scholar 

  19. Morphy, R. The influence of target family and functional activity on the physicochemical properties of pre-clinical compounds. J. Med. Chem. 49, 2969–2978 (2006).

    CAS  Article  PubMed  Google Scholar 

  20. Vieth, M. & Sutherland, J. J. Dependence of molecular properties on proteomic family for marketed oral drugs. J. Med. Chem. 49, 3451–3453 (2006).

    CAS  Article  PubMed  Google Scholar 

  21. Paolini, G. V., Shapland, R. H. B., van Hoorn, W. P., Mason, J. S. & Hopkins, A. L. Global mapping of pharmacological space. Nature Biotech. 24, 805–815 (2006).

    CAS  Article  Google Scholar 

  22. Southan, C., Boppana, K., Jagarlapudi, S. A. R. P. & Muresan, S. Analysis of in vitro bioactivity data extracted from drug discovery literature and patents: ranking 1654 human protein targets by assayed compounds and molecular scaffolds. J. Cheminform. 3, 14 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Egner, U. & Hillig, R. C. A structural biology view of target drugability. Expert Opin. Drug Discov. 3, 391–401 (2008).

    CAS  Article  PubMed  Google Scholar 

  24. Edfeldt, F. N. B., Folmer, R. H. A. & Breeze, A. L. Fragment screening to predict druggability (ligandability) and lead discovery success. Drug Discov. Today 16, 284–287 (2011).

    CAS  Article  PubMed  Google Scholar 

  25. Hajduk, P. J., Huth, J. R. & Tse, C. Predicting protein druggability. Drug Discov. Today 10, 1675–1682 (2005).

    CAS  Article  PubMed  Google Scholar 

  26. Swinney, D. C. & Anthony, J. How were new medicines discovered? Nature Rev. Drug Discov. 10, 507–519 (2011).

    CAS  Article  Google Scholar 

  27. Merelli, X., Bourgeas, R. & Roche, P. Chemical and structural lessons from recent successes in protein–protein interaction inhibition (2P2I). Curr. Opin. Chem. Biol. 15, 1–7 (2011).

    Article  Google Scholar 

  28. Alex, A., Millan, D. S., Perez, M., Wakenhut, F. & Whitlock, G. A. Intramolecular hydrogen bonding to improve membrane permeability and absorption in beyond rule of five chemical space. MedChemComm. 2, 669–674 (2011).

    CAS  Article  Google Scholar 

  29. Leeson, P. D. & St-Gallay, S. A. The influence of the 'organizational factor' on compound quality in drug discovery. Nature Rev. Drug Discov. 10, 749–765 (2011).

    CAS  Article  Google Scholar 

  30. Tyrchan, C., Blomberg, N., Engkvist, O., Kogej, T. & Muresan, S. Physicochemical property profiles of marketed drugs, clinical candidates and bioactive compounds. Bioorg. Med. Chem. Lett. 19, 6943–6947 (2009).

    CAS  Article  PubMed  Google Scholar 

  31. Murray, C. W. & Rees, D. C. The rise of fragment-based drug discovery. Nature Chem. 1, 187–192 (2009).

    CAS  Article  Google Scholar 

  32. Macarron, R. et al. Impact of high-throughput screening in biomedical research. Nature Rev. Drug Discov. 10, 188–195 (2011).

    CAS  Article  Google Scholar 

  33. Leach, A. R. & Hann, M. M. Molecular complexity and fragment-based drug discovery: ten years on. Curr. Opin. Chem. Biol. 15, 489–496 (2011).

    CAS  Article  PubMed  Google Scholar 

  34. Olsson, T. S., Williams, M. A., Pitt, W. R. & Ladbury, J. E. The thermodynamics of protein–ligand interaction and solvation: insights for ligand design. J. Mol. Biol. 384, 1002–1017 (2008).

    CAS  Article  PubMed  Google Scholar 

  35. Durrant, J. D. & McCammon, J. A. BINANA: a novel algorithm for ligand-binding characterization. J. Mol. Graph. Model. 29, 888–893 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Ladbury, J. E., Klebe, G. & Freire, E. Adding calorimetric data to decision making in lead discovery: a hot tip. Nature Rev. Drug Discov. 9, 23–27 (2010).

    CAS  Article  Google Scholar 

  37. Brandt, T. et al. Congeneric but still distinct: how closely related trypsin ligands exhibit different thermodynamic and structural properties. J. Mol. Biol. 405, 1170–1187 (2011).

    CAS  Article  PubMed  Google Scholar 

  38. Snyder, P. W. et al. Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase. Proc. Natl Acad. Sci. USA 108, 17889–17894 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Ferenczy, G. G. & Keserü, G. M. Enthalpic efficiency of ligand binding. J. Chem. Inf. Model. 50, 1536–1541 (2010).

    CAS  Article  PubMed  Google Scholar 

  40. Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nature Rev. Drug Discov. 5, 993–996 (2006).

    CAS  Article  Google Scholar 

  41. Morphy, R. & Rankovic, Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem. 48, 6523–6543 (2005).

    CAS  Article  PubMed  Google Scholar 

  42. Olsson, T. S., Ladbury, J. E., Pitt, W. R. & Williams, M. A. Extent of enthalpy-entropy compensation in protein–ligand interactions. Protein Sci. 20, 1607–1618 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Copeland, R. A., Pompliano, D. L. & Meek, T. D. Drug–target residence time and its implications for lead optimization. Nature Rev. Drug Discov. 5, 730–739 (2006).

    CAS  Article  Google Scholar 

  44. Schmidtke, P., Luque, F. J., Murray, J. B. & Barril, X. Shielded hydrogen bonds as structural determinants of binding kinetics: application in drug design. J. Am. Chem. Soc. 133, 18903–18910 (2011).

    CAS  Article  PubMed  Google Scholar 

  45. Reynolds, C. H., Tounge, B. A. & Bembenek, S. D. Ligand binding efficiency: trends, physical basis, and implications. J. Med. Chem. 51, 2432–2438 (2008).

    CAS  Article  PubMed  Google Scholar 

  46. Reynolds, C. H. & Holloway, M. K. Thermodynamics of ligand binding and efficiency. ACS Med. Chem. Lett. 2, 433–437 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Nissink, J. W. M. Simple size-independent measure of ligand efficiency. J. Chem. Inf. Model. 49, 1617–1622 (2009).

    CAS  Article  PubMed  Google Scholar 

  48. Mortenson, P. N. & Murray, C. W. Assessing the lipophilicity of fragments and early hits. J. Comput. Aided Mol. Des. 25, 663–667 (2011).

    CAS  Article  PubMed  Google Scholar 

  49. Wager, T. T. et al. Defining desirable central nervous system drug space through the alignment of molecular properties, in vitro ADME, and safety attributes. ACS Chem. Neurosci. 1, 420–434 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tarcsay, A., Nyiri, K. & Keserü, G. M. The impact of lipophilic efficiency on compound quality. J. Med. Chem. 55, 1252–1260 (2012).

    CAS  Article  PubMed  Google Scholar 

  51. Wager, T. T., Hou, X., Verhoest, P. R. & Villalobos, A. Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem. Neurosci. 1, 435–449 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Dack, K. Reducing Attrition Risk: Evolution of an in silico 'Compound Safety Evaluator'. Designing Safer Medicines In Discovery Symposium (Society of Chemical Industry, London, 17 March 2011).

    Google Scholar 

  53. Braggio, S., Montanari, D., Rossi, T. & Ratti, E. Drug efficiency: a new concept to guide lead optimization programs towards the selection of better clinical candidates. Expert Opin. Drug Discov. 5, 609–618 (2010).

    CAS  Article  PubMed  Google Scholar 

  54. Montanari, D. et al. Application of drug efficiency index in drug discovery: a strategy towards low therapeutic dose. Expert Opin. Drug Discov. 6, 913–920 (2011).

    CAS  Article  PubMed  Google Scholar 

  55. Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S. & Hopkins, A. L. Quantifying druglikeness and target druggability. Nature Chem. 4, 90–98 (2012).

    CAS  Article  Google Scholar 

  56. Stepan, A. F. et al. Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: a perspective based on the critical examination of trends in the top 200 drugs marketed in the United States. Chem. Res. Toxicol. 24, 1345–1410 (2011).

    CAS  Article  PubMed  Google Scholar 

  57. Cooper, T. W., Campbell, I. B. & Macdonald, S. J. Factors determining the selection of organic reactions by medicinal chemists and the use of these reactions in arrays (small focused libraries). Angew. Chem. Int. Ed. Engl. 49, 8082–8091 (2010).

    CAS  Article  PubMed  Google Scholar 

  58. Roughley, S. D. & Jordan, A. M. The medicinal chemist's toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 54, 3451–3479 (2011).

    CAS  Article  PubMed  Google Scholar 

  59. Walters, W. P., Green, J., Weiss, J. R. & Murcko, M. A. What do medicinal chemists actually make? A 50-year retrospective. J. Med. Chem. 54, 6405–6416 (2011).

    CAS  Article  PubMed  Google Scholar 

  60. Pitt, W. R., Parry, D. M., Perry, B. G. & Groom, C. R. Heteroaromatic rings of the future. J. Med. Chem. 52, 2952–2963 (2009).

    CAS  Article  PubMed  Google Scholar 

  61. Darvas, F. et al. High pressure, high temperature reactions in continuous flow. Merging discovery and process chemistry. Chemistry Today 27, 40–43 (2009).

    CAS  Google Scholar 

  62. Wegner, J., Ceylan, S. & Kirschning, A. Ten key issues in modern flow chemistry. Chem. Commun. (Camb.) 47, 4583–4592 (2011).

    CAS  Article  Google Scholar 

  63. Nadin, A., Hattotuwagama, C. & Churcher, I. Lead-oriented synthesis: a new opportunity for synthetic chemistry. Angew. Chem. Int. Ed. Engl. 51, 1114–1122 (2011).

    Article  Google Scholar 

  64. Tan, D. S. Diversity-oriented synthesis: exploring the intersections between chemistry and biology. Nature Chem. Biol. 1, 74–84 (2005).

    CAS  Article  Google Scholar 

  65. Jones, S. B., Simmons, B., Mastracchio, A. & MacMillan, D. W. C. Collective synthesis of natural products by means of organocascade catalysis. Nature 475, 183–188 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Hill, A. P. & Young, R. J. Getting physical in drug discovery: a contemporary perspective on solubility and hydrophobicity. Drug Discov. Today 15, 648–655 (2010).

    CAS  Article  PubMed  Google Scholar 

  67. Young, R. J., Green, D. V., Luscombe, C. N. & Hill, A. P. Getting physical in drug discovery II: the impact of chromatographic hydrophobicity measurements and aromaticity. Drug Discov. Today 16, 822–830 (2011).

    CAS  Article  PubMed  Google Scholar 

  68. Hughes, J. D. et al. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg. Med. Chem. Lett. 18, 4872–4875 (2008).

    CAS  Article  PubMed  Google Scholar 

  69. Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nature Rev. Drug Discov. 9, 203–214 (2010).

    CAS  Article  Google Scholar 

  70. Dimitri, N. An assessment of R&D productivity in the pharmaceutical industry. Trends Pharm. Sci. 32, 683–685 (2011).

    CAS  Article  PubMed  Google Scholar 

  71. Butler, J. M. & Dressman, J. B. The developability classification system: application of biopharmaceutics concepts to formulation development. J. Pharm. Sci. 99, 4940–4954 (2010).

    CAS  Article  PubMed  Google Scholar 

  72. Bennani, Y. Drug discovery in the next decade: innovation needed ASAP. Drug Discov. Today 16, 779–792 (2011).

    Article  PubMed  Google Scholar 

  73. Abad-Zapatero, C. & Metz, J. T. Ligand efficiency indices as guideposts for drug discovery. Drug Discov. Today 10, 464–469 (2005).

    Article  PubMed  Google Scholar 

  74. Orita, M., Ohno, K. & Niimi, T. Two 'golden ratio' indices in fragment-based drug discovery. Drug Discov. Today 14, 321–328 (2009).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the many scientists who have contributed to the ideas presented in this article, in particular: A. Leach, D. Green, I. Churcher, C. Dollery, J. Butler, A. Brewster, R. Young, A. Hill and K. Valkó at GlaxoSmithKline; Á. Tarcsay, Zs. Hadady, O. Éliás, G. Szabó, A. Visegrády, J. Éles, Gy. Domány and Gy. T. Balogh at Gedeon Richter; G. G. Ferenczy at Sanofi; P. Leeson at AstraZeneca; and G. Williams at Astex Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György M. Keserü.

Ethics declarations

Competing interests

G.M.K. is an employee of Gedeon Richter. M.M.H. is an employee of GlaxoSmithKline.

Supplementary information

Supplementary information

Finding the sweet spot in medicinal chemistry (PDF 463 kb)

Related links

Related links

FURTHER INFORMATION

CheMBL database

The Binding Database

SCORPIO website

PDBCal data set

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hann, M., Keserü, G. Finding the sweet spot: the role of nature and nurture in medicinal chemistry. Nat Rev Drug Discov 11, 355–365 (2012). https://doi.org/10.1038/nrd3701

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3701

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing