Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Diagnosing the decline in pharmaceutical R&D efficiency

Abstract

The past 60 years have seen huge advances in many of the scientific, technological and managerial factors that should tend to raise the efficiency of commercial drug research and development (R&D). Yet the number of new drugs approved per billion US dollars spent on R&D has halved roughly every 9 years since 1950, falling around 80-fold in inflation-adjusted terms. There have been many proposed solutions to the problem of declining R&D efficiency. However, their apparent lack of impact so far and the contrast between improving inputs and declining output in terms of the number of new drugs make it sensible to ask whether the underlying problems have been correctly diagnosed. Here, we discuss four factors that we consider to be primary causes, which we call the 'better than the Beatles' problem; the 'cautious regulator' problem; the 'throw money at it' tendency; and the 'basic research–brute force' bias. Our aim is to provoke a more systematic analysis of the causes of the decline in R&D efficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Eroom's Law in pharmaceutical R&D.
Figure 2: How can some parts of the R&D process improve, yet the overall efficiency decline?
Figure 3: Venn diagram illustrating hypothetical headwinds to R&D efficiency.

Similar content being viewed by others

References

  1. Hogan, J. C. Combinatorial chemistry in drug discovery. Nature Biotech. 15, 328–330 (1997).

    Article  CAS  Google Scholar 

  2. Geysen, H. M., Schoenen, F., Wagner, D. & Wagner, R. Combinatorial compound libraries for drug discovery: an ongoing challenge. Nature Rev. Drug Discov. 2, 222–230 (2003).

    Article  Google Scholar 

  3. [No authors listed.] Combinatorial chemistry. Nature Biotech. 18, IT50–IT52 (2000).

  4. Dolle, R. E. Historical overview of chemical library design. Methods Mol. Biol. 685, 3–25 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Sanger, F. Sequences, sequences, and sequences. Annu. Rev. Biochem. 57, 1–28 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Sanger, F. et al. Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265, 687–695 (1977).

    Article  CAS  PubMed  Google Scholar 

  7. Meldrum, C., Doyle, M. A. & Tothill, R. W. Next-generation sequencing for cancer diagnostics: a practical perspective. Clin. Biochem. Rev. 32, 177–195 (2011).

    PubMed  PubMed Central  Google Scholar 

  8. Joachimiak, A. High-throughput crystallography for structural genomics. Curr. Opin. Struct. Biol. 19, 573–584 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Van Brunt, J. Protein architecture: designing from the ground up. Nature Biotech. 4, 277–283 (1986).

    Article  CAS  Google Scholar 

  10. Mayr, L. M. & Fuerst, P. The future of high-throughput screening. J. Biomol. Screen. 13, 443–448 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Schnee, J. E. Development cost: determinants and overruns. J. Bus. 45, 347–374 (1972).

    Article  Google Scholar 

  12. Baily, M. N. Research and development costs and returns: the U.S. pharmaceutical industry. J. Polit. Econ. 80, 70–85 (1972).

    Article  Google Scholar 

  13. Comanor, W. Research and technical change in the pharmaceutical industry. Rev. Econ. Stat. 47, 182–190 (1965).

    Article  Google Scholar 

  14. Grabowski, H. G., Vernon, J. M. & Thomas, L. G. Estimating the effects of regulation on innovation: an international comparative analysis of the pharmaceutical industry. J. Law Econ. 21, 133–165 (1978).

    Article  CAS  PubMed  Google Scholar 

  15. Grabowski, H. & Vernon, J. A new look at the returns and risks to pharmaceutical R&D. Manage. Sci. 36, 804–821 (1990).

    Article  Google Scholar 

  16. Jensen, E. J. Research expenditures and the discovery of new drugs. J. Ind. Econ. 36, 83–95 (1987).

    Article  Google Scholar 

  17. Joglekar, P. & Paterson, M. L. A closer look at the returns and risks of pharmaceutical R&D. J. Health Econ. 5, 153–177 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. Elias, T., Gordian, M., Singh, N. & Zemmel, R. Why products fail in Phase III. In Vivo 24, 49–56 (2006).

  19. Pammolli, F., Magazzini, L. & Riccaboni, M. The productivity crisis in pharmaceutical R&D. Nature Rev. Drug Discov. 10, 428–438 (2011).

    Article  CAS  Google Scholar 

  20. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nature Rev. Drug Discov. 3, 711–715 (2004).

    Article  CAS  Google Scholar 

  21. DiMasi, J. A., Feldman, L., Seckler, A. & Wilson, A. Trends in risks associated with new drug development: success rates for investigational drugs. Clin. Pharmacol. Ther. 87, 272–277 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nature Rev. Drug Discov. 9, 203–214 (2010).

    Article  CAS  Google Scholar 

  23. US Food and Drug Administration. Innovation or Stagnation: Challenge and Opportunity on the Critical Path to New Medical Products. FDA website [online], (2004).

  24. Munos, B. Lessons from 60 years of pharmaceutical innovation. Nature Rev. Drug Discov. 8, 959–968 (2010).

    Article  Google Scholar 

  25. Borhani, D. W. & Butts, J. A. Rethinking clinical trials: biology's mysteries. Science 334, 1346–1347 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. David, E., Tramontin, T. & Zemmel, R. Pharmaceutical R&D: the road to positive returns. Nature Rev. Drug Discov. 8, 609–610 (2009).

    Article  CAS  Google Scholar 

  27. Garnier, J. P. Rebuilding the R&D engine in big pharma. Harv. Bus. Rev. 86, 68–79 (2008).

    PubMed  Google Scholar 

  28. Agarwal, S. et al. Unlocking the value in big pharma. McKinsey Quarterly 2, 65–73 (2001).

    Google Scholar 

  29. Ruffolo, R. R. Engineering success: Wyeth redefines its research & development organisation. Drug Discovery World website [online], (2005).

    Google Scholar 

  30. Douglas, F. L., Narayanan, V. K., Mitchell, L. & Litan, R. E. The case for entrepreneurship in R&D in the pharmaceutical industry. Nature Rev. Drug Discov. 9, 683–689 (2010).

    Article  CAS  Google Scholar 

  31. Zhong, X. & Moseley, G. B. Mission possible: managing innovation in drug discovery. Nature Biotech. 25, 945–946 (2007).

    Article  CAS  Google Scholar 

  32. Horrobin, D. Realism in drug discovery — could Cassandra be right? Nature Biotech. 19, 1099–1100 (2001).

    Article  CAS  Google Scholar 

  33. Horrobin, D. F. Innovation in the pharmaceutical industry. J. R. Soc. Med. 93, 341–345 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Horrobin, D. F. Modern biomedical research: an internally self-consistent universe with little contact with medical reality? Nature Rev. Drug Discov. 2, 151–154 (2003).

    Article  CAS  Google Scholar 

  35. Ruffolo, R. R. Why has R&D productivity declined in the pharmaceutical industry? Expert Opin. Drug Discov. 1 99–102 (2006).

    Article  PubMed  Google Scholar 

  36. Le Fanu, J. The Rise and Fall of Modern Medicine (Little Brown, London, 1999).

    Book  Google Scholar 

  37. Pisano, G. Science Business: The Promise, the Reality, and the Future of Biotech. (Harvard Business School Press, Boston, 2006).

    Google Scholar 

  38. Young, M. P. Prediction v Attrition. Drug Discovery World website [online], (2008).

    Google Scholar 

  39. Hopkins, A. L., Mason, J. S. & Overington, J. P. Can we rationally design promiscuous drugs? Curr. Opin. Struct. Biol. 16, 127–136 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Tollman, P., Morieux, Y., Murphy, J. K. & Schulze, U. Identifying R&D outliers. Nature Rev. Drug Discov. 10, 653–654 (2011).

    Article  CAS  Google Scholar 

  41. Ford, E. S. et al. Explaining the decrease in U.S. deaths from coronary disease, 1980–2000. N. Engl. J. Med. 356, 2388–2398 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Lichtenberg, F. The impact of drug launches on longevity: evidence from longitudinal disease-level data from 52 countries, 1982–2001. Int. J. Health Care Finance Econ. 5, 47–73 (2005).

    Article  PubMed  Google Scholar 

  43. Schnee, J. E. R&D strategy in the U.S. pharmaceutical industry. Res. Policy 8, 364–382 (1979).

    Article  Google Scholar 

  44. Hopkins, A. L. & Groom, C. R. The druggable genome. Nature Rev. Drug Discov. 1, 727–730 (2002).

    CAS  Google Scholar 

  45. Russ, A. P. & Lampel, S. The druggable genome: an update. Drug Discov. Today 10, 1607–1610 (2005).

    Article  PubMed  Google Scholar 

  46. Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nature Rev. Drug Discov. 5, 993–996 (2006).

    Article  CAS  Google Scholar 

  47. Roth, B. L., Sheffer, D. L. & Kroeze, W. K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nature Rev. Drug Discov. 3, 353–359 (2004).

    Article  CAS  Google Scholar 

  48. Wurtman, R. J. & Bettiker, R. L. The slowing of treatment discovery, 1965–1995. Nature Med. 1, 1122–1125 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Healy, D. The Psychopharmacologists: Volume 2 93–118 (Hodder Arnold, London, 1999).

    Google Scholar 

  50. Healy, D. The Psychopharmacologists: Volume 2 259–264 (Hodder Arnold, London, 1999).

    Google Scholar 

  51. Healy, D. The Antidepressant Era (Harvard University Press, Cambridge, Massachusetts, 1997).

    Google Scholar 

  52. Weatherall, M. An end to the search for new drugs? Nature 296, 387–390 (1982).

    Article  Google Scholar 

  53. Richard, J. & Wurtman, M. D. What went right: why is HIV a treatable infection? Nature Med. 3, 714–717 (1997).

    Article  Google Scholar 

  54. [No authors listed.] A dearth of new drugs. Nature 283, 609 (1980).

  55. Persson, C. G., Erjefält, J. S., Uller, L., Andersson, M. & Greiff, L. Unbalanced research. Trends Pharmacol. Sci. 22, 538–541 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Ainsworth, C. Networking for new drugs. Nature Med. 17, 1166–1168 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Denome, S. A., Elf, P. K., Henderson, T. A., Nelson, D. E. & Young, K. D. Escherichia coli mutants lacking all possible combinations of eight penicillin binding proteins: viability, characteristics, and implications for peptidoglycan synthesis. J. Bacteriol. 181, 3981–3993 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Keith, C. T., Borisy, A. A. & Stockwell, B. R. Multicomponent therapeutics for networked systems. Nature Rev. Drug Discov. 4, 71–78 (2005).

    Article  CAS  Google Scholar 

  59. Lombardino, J. G. & Lowe, J. A. The role of the medicinal chemist in drug discovery — then and now. Nature Rev. Drug Discov. 3, 853–862 (2004).

    Article  CAS  Google Scholar 

  60. Swinney, D. C. & Anthony, J. How were new medicines discovered? Nature Rev. Drug Discov. 10, 507–519 (2011).

    Article  CAS  Google Scholar 

  61. Reichert, J. M. Probabilities of success for antibody therapeutics. mAbs 1, 387–389 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Steward, F. & Wibberly, G. Drug innovation — what's slowing it down? Nature 284, 118–120 (1980).

    Article  CAS  PubMed  Google Scholar 

  63. Collins, F. S. Medical and societal consequences of the Human Genome Project. N. Engl. J. Med. 341, 28–37 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Rees, J. Post-genome integrative biology: so that's what they call clinical science. Clin. Med. 1, 393–400 (2001).

    Article  CAS  Google Scholar 

  65. Grove, A. Rethinking clinical trials. Science 333, 1679 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. O'Shaughnessy, J. et al. Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N. Engl. J. Med. 364, 205–214 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. O'Shaughnessy, J. et al. A randomized Phase III study of iniparib (BSI-201) in combination with gemcitabine/carboplatin (G/C) in metastatic triple-negative breast cancer (TNBC). J. Clin. Oncol. 29, Abstr. 1007 (2011).

    Article  Google Scholar 

  68. Guha, M. PARP inhibitors stumble in breast cancer. Nature Biotech. 29, 373–374 (2011).

    Article  CAS  Google Scholar 

  69. Soda, M. et al. Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. [No authors listed.] Regulatory watch: leading hedgehog inhibitor submitted for approval as skin cancer drug. Nature Rev. Drug Discov. 10, 802–803 (2011).

  72. DeMonaco, H. J., Ali, A. & von Hippel, E. The major role of clinicians in the discovery of off-label drug therapies. Pharmacotherapy 26, 323–332 (2006).

    Article  PubMed  Google Scholar 

  73. Mathieu, M. P. (ed.) Parexel's Bio/Pharmaceutical R&D Statistical Sourcebook 2010/2011 163–261 (Barnett International, Needham, Massachusetts, 2010).

    Google Scholar 

  74. Marshall, G. et al. Streptomycin treatment of pulmonary tuberculosis. BMJ 30, 769–782 (1948).

    Google Scholar 

  75. MacNeil, J. S. H. Changes in the characteristics of approved New Drug Applications for antihypertensives. Thesis, Massachusetts Institute of Technology (2007).

    Google Scholar 

  76. Lin, H. S. Changes in the characteristics of new drug applications for the treatment and prevention of diabetes mellitus. Thesis, Massachusetts Institute of Technology (2007).

    Google Scholar 

  77. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian simvastatin survival study (4S). Lancet 344, 1383–1389 (1994).

  78. Munos, B. How to avert biopharma's R&D crisis. In Vivo 29, 2011800050 (2011).

    Google Scholar 

  79. Macarron, R. et al. Impact of high-throughput screening in biomedical research. Nature Rev. Drug Discov. 10, 188–195 (2011).

    Article  CAS  Google Scholar 

  80. Bohacek, R. S., McMartin, C. & Guida, W. C. The art and practice of structure-based drug design: a molecular modeling perspective. Med. Res. Rev. 16, 3–50 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Brown, D. Future pathways for combinatorial chemistry. Mol. Divers. 2, 217–222 (1996).

    Article  Google Scholar 

  82. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Gleeson, M. P., Hersey, A., Montanari, D. & Overington, J. Probing the links between in vitro potency, ADMET and physicochemical parameters. Nature Rev. Drug Discov. 10, 197–208 (2011).

    Article  CAS  Google Scholar 

  84. Kay, J. Obliquity: Why our goals are best achieved indirectly (Profile Books, London, 2010).

    Google Scholar 

  85. Watts, D. J. & Strogatz, S. H. Collective dynamics of 'small-world' networks. Nature 393, 440–442 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Pharmaceutical Research and Manufacturers of America. Pharmaceutical Industry Profile 2011. PhRMA website [online], (Washington DC, PhRMA, April 2011).

  87. Congress of the United States: Congressional Budget Office. Research and Development in the Pharmaceutical Industry. Congressional Budget Office (CBO) website [online], (October 2006).

Download references

Acknowledgements

W. Bains, T. Curtis, B. Charlton, M. Young, O. Imasogie, G. Porges, and B. Munos were generous with their time and ideas during various stages in the genesis of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack W. Scannell.

Ethics declarations

Competing interests

Jack Scannell, Alex Blanckley and Helen Boldon are employees of Sanford C. Bernstein and declare the following interests: accounts over which Bernstein and/or their affiliates exercise investment discretion own more than 1% of the outstanding common stock of the following companies: Shire PLC. Bernstein currently makes a market in the following companies: Shire PLC. One or more of the officers, directors or employees of Sanford C. Bernstein & Co. LLC, Sanford C. Bernstein Limited, Sanford C. Bernstein (Hong Kong) Limited, Sanford C. Bernstein (business registration number 53193989L), a unit of AllianceBernstein (Singapore) Ltd., which is a licensed entity under the Securities and Futures Act and registered with Company Registration No. 199703364C, and/or their affiliates may at any time hold, increase or decrease positions in securities of any company mentioned herein. Bernstein or its affiliates may provide investment management or other services to the pension or profit sharing plans, or employees of any company mentioned herein, and may give advice to others as to investments in such companies. These entities may effect transactions that are similar to or different from those recommended herein.

Brian Warrington is a co-founder of BB consultants Ltd and provides advice to Phoenix IP Ventures.

Supplementary information

Supplementary information S1 (table)

New drug and cost estimates (XLS 123 kb)

Supplementary information S2 (Box)

Searching chemical space (PDF 219 kb)

Related links

Related links

FURTHER INFORMATION

RCSB Protein Data Bank database

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scannell, J., Blanckley, A., Boldon, H. et al. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov 11, 191–200 (2012). https://doi.org/10.1038/nrd3681

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3681

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research