Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting IAP proteins for therapeutic intervention in cancer

A Corrigendum to this article was published on 30 March 2012

This article has been updated

Key Points

  • Inhibitor of apoptosis (IAP) proteins are a family of anti-apoptotic proteins that promote cancer cell survival and inhibit cell death.

  • IAP proteins represent promising targets for therapeutic intervention in human cancers, as they are expressed at high levels in various malignancies and have been linked to tumour progression, treatment failure and poor prognosis.

  • Several therapeutic strategies have been designed in recent years to target IAP proteins, including second mitochondria-derived activator of caspase (SMAC)-mimicking IAP antagonists.

  • Preclinical studies indicate that the therapeutic potential of IAP antagonists might best be exploited in combination protocols, including conventional chemotherapeutics, death receptor agonists, signal transduction modulators or radiation therapy.

  • IAP antagonists have already entered the clinical stage and are currently being evaluated in early-stage clinical trials.

Abstract

Evasion of apoptosis is one of the crucial acquired capabilities used by cancer cells to fend off anticancer therapies. Inhibitor of apoptosis (IAP) proteins exert a range of biological activities that promote cancer cell survival and proliferation. X chromosome-linked IAP is a direct inhibitor of caspases — pro-apoptotic executioner proteases — whereas cellular IAP proteins block the assembly of pro-apoptotic protein signalling complexes and mediate the expression of anti-apoptotic molecules. Furthermore, mutations, amplifications and chromosomal translocations of IAP genes are associated with various malignancies. Among the therapeutic strategies that have been designed to target IAP proteins, the most widely used approach is based on mimicking the IAP-binding motif of second mitochondria-derived activator of caspase (SMAC), which functions as an endogenous IAP antagonist. Alternative strategies include transcriptional repression and the use of antisense oligonucleotides. This Review provides an update on IAP protein biology as well as current and future perspectives on targeting IAP proteins for therapeutic intervention in human malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell death pathways.
Figure 2: Canonical and non-canonical NF-κB signalling pathways.
Figure 3: Structure and development status of selected IAP antagonists.
Figure 4: Model for the induction of c-IAP protein ubiquitin ligase activity by IAP antagonists.

Similar content being viewed by others

Change history

  • 30 March 2012

    The chemical structure of the clinical candidate TL32711 in Figure 3 was incorrectly represented. The authors apologize for this unintended error.

References

  1. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Fulda, S. Tumor resistance to apoptosis. Int. J. Cancer 124, 511–515 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Galluzzi, L. et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 19, 107–120 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Crook, N. E., Clem, R. J. & Miller, L. K. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J. Virol. 67, 2168–2174 (1993). This study identified the first viral iap gene from the Cydia pomonella granulovirus baculovirus.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Birnbaum, M. J., Clem, R. J. & Miller, L. K. An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs. J. Virol. 68, 2521–2528 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Salvesen, G. S. & Duckett, C. S. IAP proteins: blocking the road to death's door. Nature Rev. Mol. Cell Biol. 3, 401–410 (2002).

    Article  CAS  Google Scholar 

  7. Ndubaku, C., Cohen, F., Varfolomeev, E. & Vucic, D. Targeting inhibitor of apoptosis (IAP) proteins for therapeutic intervention. Future Med. Chem. 1, 1509–1525 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Vaux, D. L. & Silke, J. IAPs, RINGs and ubiquitylation. Nature Rev. Mol. Cell Biol. 6, 287–297 (2005).

    Article  CAS  Google Scholar 

  9. Varfolomeev, E. & Vucic, D. (Un)expected roles of c-IAPs in apoptotic and NF-κB signaling pathways. Cell Cycle 7, 1511–1521 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Blankenship, J. W. et al. Ubiquitin binding modulates IAP antagonist-stimulated proteasomal degradation of c-IAP1 and c-IAP2. Biochem. J. 417, 149–160 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Gyrd-Hansen, M. et al. IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-κB as well as cell survival and oncogenesis. Nature Cell Biol. 10, 1309–1317 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Hauser, H. P., Bardroff, M., Pyrowolakis, G. & Jentsch, S. A giant ubiquitin-conjugating enzyme related to IAP apoptosis inhibitors. J. Cell Biol. 141, 1415–1422 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, Z. et al. A human IAP-family gene, apollon, expressed in human brain cancer cells. Biochem. Biophys. Res. Commun. 264, 847–854 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Jeyaprakash, A. A. et al. Structure of a survivin–borealin–INCENP core complex reveals how chromosomal passengers travel together. Cell 131, 271–285 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Liston, P. et al. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 379, 349–353 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Wilmanski, J. M., Petnicki-Ocwieja, T. & Kobayashi, K. S. NLR proteins: integral members of innate immunity and mediators of inflammatory diseases. J. Leukoc. Biol. 83, 13–30 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Altieri, D. C. Validating survivin as a cancer therapeutic target. Nature Rev. Cancer 3, 46–54 (2003).

    Article  CAS  Google Scholar 

  18. Hunter, A. M., LaCasse, E. C. & Korneluk, R. G. The inhibitors of apoptosis (IAPs) as cancer targets. Apoptosis 12, 1543–1568 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Geddes, K., Magalhaes, J. G. & Girardin, S. E. Unleashing the therapeutic potential of NOD-like receptors. Nature Rev. Drug Discov. 8, 465–479 (2009).

    Article  CAS  Google Scholar 

  20. Fulda, S. & Debatin, K. M. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25, 4798–4811 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Ashkenazi, A. Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor Rev. 19, 325–331 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Fulda, S., Galluzzi, L. & Kroemer, G. Targeting mitochondria for cancer therapy. Nature Rev. Drug Discov. 9, 447–464 (2010).

    Article  CAS  Google Scholar 

  23. Chai, J. et al. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406, 855–862 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Liu, Z. et al. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 408, 1004–1008 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Wu, G. et al. Structural basis of IAP recognition by Smac/DIABLO. Nature 408, 1008–1012 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Adams, J. M. & Cory, S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26, 1324–1337 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eckelman, B. P., Salvesen, G. S. & Scott, F. L. Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep. 7, 988–994 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Srinivasula, S. M. et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410, 112–116 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Shiozaki, E. N. et al. Mechanism of XIAP-mediated inhibition of caspase-9. Mol. Cell 11, 519–527 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Huang, Y. et al. Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell 104, 781–790 (2001).

    CAS  PubMed  Google Scholar 

  31. Chai, J. et al. Structural basis of caspase-7 inhibition by XIAP. Cell 104, 769–780 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Riedl, S. J. et al. Structural basis for the inhibition of caspase-3 by XIAP. Cell 104, 791–800 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Silke, J. et al. Direct inhibition of caspase 3 is dispensable for the anti-apoptotic activity of XIAP. EMBO J. 20, 3114–3123 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Scott, F. L. et al. XIAP inhibits caspase-3 and -7 using two binding sites: evolutionarily conserved mechanism of IAPs. EMBO J. 24, 645–655 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vucic, D. et al. Engineering ML-IAP to produce an extraordinarily potent caspase 9 inhibitor: implications for Smac-dependent anti-apoptotic activity of ML-IAP. Biochem. J. 385, 11–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Vucic, D., Dixit, V. M. & Wertz, I. E. Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nature Rev. Mol. Cell Biol. 12, 439–452 (2011).

    Article  CAS  Google Scholar 

  37. Hegde, R. et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J. Biol. Chem. 277, 432–438 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Verhagen, A. M. et al. HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J. Biol. Chem. 277, 445–454 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Martins, L. M. et al. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J. Biol. Chem. 277, 439–444 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Suzuki, Y. et al. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell 8, 613–621 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Liston, P. et al. Identification of XAF1 as an antagonist of XIAP anti-caspase activity. Nature Cell Biol. 3, 128–133 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Arora, V. et al. Degradation of survivin by the X-linked inhibitor of apoptosis (XIAP)–XAF1 complex. J. Biol. Chem. 282, 26202–26209 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Scheidereit, C. IκB kinase complexes: gateways to NF-κB activation and transcription. Oncogene 25, 6685–6705 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Bertrand, M. J. et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell 30, 689–700 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Varfolomeev, E. et al. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor α (TNFα)-induced NF-κB activation. J. Biol. Chem. 283, 24295–24299 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mahoney, D. J. et al. Both cIAP1 and cIAP2 regulate TNFα-mediated NF-κB activation. Proc. Natl Acad. Sci. USA 105, 11778–11783 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dynek, J. N. et al. c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J. 29, 4198–4209 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Haas, T. L. et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol. Cell 36, 831–844 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Varfolomeev, E. et al. Cellular inhibitors of apoptosis are global regulators of NF-κB and MAPK activation by TNF family receptors. Sci. Signal. (in the press).

  50. Tokunaga, F. et al. Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nature Cell Biol. 11, 123–132 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Ikeda, F. et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 471, 637–641 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tokunaga, F. et al. SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature 471, 633–636 (2011). The studies in REFS 50–53 identified Sharpin as a novel component of the linear ubiquitin chain assembly complex.

    Article  CAS  PubMed  Google Scholar 

  54. Keats, J. J. et al. Promiscuous mutations activate the noncanonical NF-κB pathway in multiple myeloma. Cancer Cell 12, 131–144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Annunziata, C. M. et al. Frequent engagement of the classical and alternative NF-κB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12, 115–130 (2007). The studies in REFS 54 and 55identified genetic abnormalities in several genes, including c-IAP proteins, of the canonical and non-canonical NF-κB pathways in multiple myeloma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Grech, A. P. et al. TRAF2 differentially regulates the canonical and noncanonical pathways of NF-κB activation in mature B cells. Immunity 21, 629–642 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. He, J. Q. et al. Rescue of TRAF3-null mice by p100 NF-κ B deficiency. J. Exp. Med. 203, 2413–2418 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Demchenko, Y. N. et al. Classical and/or alternative NF-κB pathway activation in multiple myeloma. Blood 115, 3541–3552 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Varfolomeev, E. et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-κB activation, and TNFα-dependent apoptosis. Cell 131, 669–681 (2007). This paper demonstrated that IAP antagonists induce apoptosis by triggering c-IAP1 degradation, NF-κB activation and autocrine TNF production, and identified c-IAP proteins as E3 ligases for NIK.

    Article  CAS  PubMed  Google Scholar 

  60. Vince, J. E. et al. IAP antagonists target cIAP1 to induce TNFα-dependent apoptosis. Cell 131, 682–693 (2007). This study demonstrated that IAP antagonists induce apoptosis by triggering c-IAP1 degradation, NF-κB activation and autocrine TNF production.

    Article  CAS  PubMed  Google Scholar 

  61. Vince, J. E. et al. TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1–TRAF2 complex to sensitize tumor cells to TNFα. J. Cell Biol. 182, 171–184 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xiao, G., Harhaj, E. W. & Sun, S. C. NF-κB-inducing kinase regulates the processing of NF-κB2 p100. Mol. Cell 7, 401–409 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 293, 1495–1499 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Dejardin, E. The alternative NF-κB pathway from biochemistry to biology: pitfalls and promises for future drug development. Biochem. Pharmacol. 72, 1161–1179 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Imoto, I. et al. Identification of cIAP1 as a candidate target gene within an amplicon at 11q22 in esophageal squamous cell carcinomas. Cancer Res. 61, 6629–6634 (2001).

    CAS  PubMed  Google Scholar 

  66. Imoto, I. et al. Expression of cIAP1, a target for 11q22 amplification, correlates with resistance of cervical cancers to radiotherapy. Cancer Res. 62, 4860–4866 (2002).

    CAS  PubMed  Google Scholar 

  67. Zender, L. et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125, 1253–1267 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Reardon, D. A. et al. Extensive genomic abnormalities in childhood medulloblastoma by comparative genomic hybridization. Cancer Res. 57, 4042–4047 (1997).

    CAS  PubMed  Google Scholar 

  69. Weber, R. G., Sommer, C., Albert, F. K., Kiessling, M. & Cremer, T. Clinically distinct subgroups of glioblastoma multiforme studied by comparative genomic hybridization. Lab. Invest. 74, 108–119 (1996).

    CAS  PubMed  Google Scholar 

  70. Dai, Z. et al. A comprehensive search for DNA amplification in lung cancer identifies inhibitors of apoptosis cIAP1 and cIAP2 as candidate oncogenes. Hum. Mol. Genet. 12, 791–801 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Bashyam, M. D. et al. Array-based comparative genomic hybridization identifies localized DNA amplifications and homozygous deletions in pancreatic cancer. Neoplasia 7, 556–562 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ma, O. et al. MMP13, Birc2 (cIAP1), and Birc3 (cIAP2), amplified on chromosome 9, collaborate with p53 deficiency in mouse osteosarcoma progression. Cancer Res. 69, 2559–2567 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dierlamm, J. et al. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood 93, 3601–3609 (1999).

    CAS  PubMed  Google Scholar 

  74. Akagi, T. et al. A novel gene, MALT1 at 18q21, is involved in t(11;18) (q21;q21) found in low-grade B-cell lymphoma of mucosa-associated lymphoid tissue. Oncogene 18, 5785–5794 (1999).

    CAS  PubMed  Google Scholar 

  75. Zhou, H., Du, M. Q. & Dixit, V. M. Constitutive NF-kB activation by the t(11;18)(q21;q21) product in MALT lymphoma is linked to deregulated ubiquitin ligase activity. Cancer Cell 7, 425–431 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Morgan, J. A. et al. Breakpoints of the t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma lie within or near the previously undescribed gene MALT1 in chromosome 18. Cancer Res. 59, 6205–6213 (1999). The studies in REFS 74, 75 and 77 identified the t(11;18)(q21;q21) translocation and the corresponding c-IAP2–MALT1 fusion protein in MALT lymphoma.

    CAS  PubMed  Google Scholar 

  77. Varfolomeev, E., Wayson, S. M., Dixit, V. M., Fairbrother, W. J. & Vucic, D. The inhibitor of apoptosis protein fusion c-IAP2•MALT1 stimulates NF-κB activation independently of TRAF1 AND TRAF2. J. Biol. Chem. 281, 29022–29029 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Waldele, K. et al. Requirement of the human T-cell leukemia virus (HTLV-1) tax-stimulated HIAP-1 gene for the survival of transformed lymphocytes. Blood 107, 4491–4499 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Tamm, I. et al. XIAP expression correlates with monocytic differentiation in adult de novo AML: impact on prognosis. Hematol. J. 5, 489–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Tamm, I. et al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin. Cancer Res. 6, 1796–1803 (2000).

    CAS  PubMed  Google Scholar 

  81. Carter, B. Z. et al. Caspase-independent cell death in AML: caspase inhibition in vitro with pan-caspase inhibitors or in vivo by XIAP or survivin does not affect cell survival or prognosis. Blood 102, 4179–4186 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Hess, C. J. et al. Activated intrinsic apoptosis pathway is a key related prognostic parameter in acute myeloid leukemia. J. Clin. Oncol. 25, 1209–1215 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Tamm, I. et al. High expression levels of X-linked inhibitor of apoptosis protein and survivin correlate with poor overall survival in childhood de novo acute myeloid leukemia. Clin. Cancer Res. 10, 3737–3744 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Sung, K. W. et al. Overexpression of X-linked inhibitor of apoptosis protein (XIAP) is an independent unfavorable prognostic factor in childhood de novo acute myeloid leukemia. J. Korean Med. Sci. 24, 605–613 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hundsdoerfer, P., Dietrich, I., Schmelz, K., Eckert, C. & Henze, G. XIAP expression is post-transcriptionally upregulated in childhood ALL and is associated with glucocorticoid response in T-cell ALL. Pediatr. Blood Cancer 55, 260–266 (2010).

    Article  PubMed  Google Scholar 

  86. Grzybowska-Izydorczyk, O., Cebula, B., Robak, T. & Smolewski, P. Expression and prognostic significance of the inhibitor of apoptosis protein (IAP) family and its antagonists in chronic lymphocytic leukaemia. Eur. J. Cancer 46, 800–810 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Vallat, L. et al. The resistance of B-CLL cells to DNA damage-induced apoptosis defined by DNA microarrays. Blood 101, 4598–4606 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Silva, K. L. et al. Apoptotic effect of fludarabine is independent of expression of IAPs in B-cell chronic lymphocytic leukemia. Apoptosis 11, 277–285 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Hussain, A. R. et al. Prognostic significance of XIAP expression in DLBCL and effect of its inhibition on AKT signalling. J. Pathol. 222, 180–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Ramp, U. et al. XIAP expression is an independent prognostic marker in clear-cell renal carcinomas. Hum. Pathol. 35, 1022–1028 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Yan, Y. et al. Disturbed balance of expression between XIAP and Smac/DIABLO during tumour progression in renal cell carcinomas. Br. J. Cancer 91, 1349–1357 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mizutani, Y. et al. Overexpression of XIAP expression in renal cell carcinoma predicts a worse prognosis. Int. J. Oncol. 30, 919–925 (2007).

    CAS  PubMed  Google Scholar 

  93. Li, M., Song, T., Yin, Z. F. & Na, Y. Q. XIAP as a prognostic marker of early recurrence of nonmuscular invasive bladder cancer. Chin. Med. J. 120, 469–473 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Che, X. et al. Nuclear cIAP1 overexpression is a tumor stage- and grade-independent predictor of poor prognosis in human bladder cancer patients. Urol. Oncol. 25 Jul 2011 (doi:10.1016/j.urolonc.2010.12.016).

  95. Xiang, G., Wen, X., Wang, H., Chen, K. & Liu, H. Expression of X-linked inhibitor of apoptosis protein in human colorectal cancer and its correlation with prognosis. J. Surg. Oncol. 100, 708–712 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Krajewska, M. et al. Analysis of apoptosis protein expression in early-stage colorectal cancer suggests opportunities for new prognostic biomarkers. Clin. Cancer Res. 11, 5451–5461 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Esposito, I. et al. Overexpression of cellular inhibitor of apoptosis protein 2 is an early event in the progression of pancreatic cancer. J. Clin. Pathol. 60, 885–895 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Augello, C. et al. Inhibitors of apoptosis proteins (IAPs) expression and their prognostic significance in hepatocellular carcinoma. BMC Cancer 9, 125 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shi, Y. H. et al. Expression of X-linked inhibitor-of-apoptosis protein in hepatocellular carcinoma promotes metastasis and tumor recurrence. Hepatology 48, 497–507 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Shibata, T. et al. Disturbed expression of the apoptosis regulators XIAP, XAF1, and Smac/DIABLO in gastric adenocarcinomas. Diagn. Mol. Pathol. 16, 1–8 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Seligson, D. B. et al. Expression of X-linked inhibitor of apoptosis protein is a strong predictor of human prostate cancer recurrence. Clin. Cancer Res. 13, 6056–6063 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Krajewska, M. et al. Elevated expression of inhibitor of apoptosis proteins in prostate cancer. Clin. Cancer Res. 9, 4914–4925 (2003).

    CAS  PubMed  Google Scholar 

  103. Zhang, Y. et al. X-linked inhibitor of apoptosis positive nuclear labeling: a new independent prognostic biomarker of breast invasive ductal carcinoma. Diagn. Pathol. 6, 49 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Liu, S. S. et al. Anti-apoptotic proteins, apoptotic and proliferative parameters and their prognostic significance in cervical carcinoma. Eur. J. Cancer 37, 1104–1110 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Ferreira, C. G. et al. Expression of X-linked inhibitor of apoptosis as a novel prognostic marker in radically resected non-small cell lung cancer patients. Clin. Cancer Res. 7, 2468–2474 (2001).

    CAS  PubMed  Google Scholar 

  106. Ferreira, C. G. et al. Assessment of IAP (inhibitor of apoptosis) proteins as predictors of response to chemotherapy in advanced non-small-cell lung cancer patients. Ann. Oncol. 12, 799–805 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Hiscutt, E. L. et al. Targeting X-linked inhibitor of apoptosis protein to increase the efficacy of endoplasmic reticulum stress-induced apoptosis for melanoma therapy. J. Invest. Dermatol. 130, 2250–2258 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Qi, S. et al. Expression of cIAP-1 correlates with nodal metastasis in squamous cell carcinoma of the tongue. Int. J. Oral Maxillofac. Surg. 37, 1047–1053 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Tanimoto, T. et al. Nuclear expression of cIAP-1, an apoptosis inhibiting protein, predicts lymph node metastasis and poor patient prognosis in head and neck squamous cell carcinomas. Cancer Lett. 224, 141–151 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Vucic, D., Stennicke, H. R., Pisabarro, M. T., Salvesen, G. S. & Dixit, V. M. ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr. Biol. 10, 1359–1366 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Wagener, N. et al. Expression of inhibitor of apoptosis protein livin in renal cell carcinoma and non-tumorous adult kidney. Br. J. Cancer 97, 1271–1276 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gong, J. et al. Melanoma inhibitor of apoptosis protein is expressed differentially in melanoma and melanocytic naevus, but similarly in primary and metastatic melanomas. J. Clin. Pathol. 58, 1081–1085 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nachmias, B. et al. Caspase-mediated cleavage converts livin from an antiapoptotic to a proapoptotic factor: implications for drug-resistant melanoma. Cancer Res. 63, 6340–6349 (2003).

    CAS  PubMed  Google Scholar 

  114. Dynek, J. N. et al. Microphthalmia-associated transcription factor is a critical transcriptional regulator of melanoma inhibitor of apoptosis in melanomas. Cancer Res. 68, 3124–3132 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Kempkensteffen, C. et al. Expression of the apoptosis inhibitor livin in renal cell carcinomas: correlations with pathology and outcome. Tumour Biol. 28, 132–138 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Haferkamp, A. et al. High nuclear livin expression is a favourable prognostic indicator in renal cell carcinoma. BJU Int. 102, 1700–1706 (2008).

    Article  PubMed  Google Scholar 

  117. Gazzaniga, P. et al. Expression and prognostic significance of LIVIN, SURVIVIN and other apoptosis-related genes in the progression of superficial bladder cancer. Ann. Oncol. 14, 85–90 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Kempkensteffen, C. et al. Expression of splicing variants of the inhibitor of apoptosis livin in testicular germ cell tumors. Tumour Biol. 29, 76–82 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Wang, T. S. et al. Expression of livin in gastric cancer and induction of apoptosis in SGC-7901 cells by shRNA-mediated silencing of livin gene. Biomed. Pharmacother. 64, 333–338 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Choi, J. et al. Expression of livin, an antiapoptotic protein, is an independent favorable prognostic factor in childhood acute lymphoblastic leukemia. Blood 109, 471–477 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. El-Mesallamy, H. O., Hegab, H. M. & Kamal, A. M. Expression of inhibitor of apoptosis protein (IAP) livin/BIRC7 in acute leukemia in adults: correlation with prognostic factors and outcome. Leuk. Res. 35, 1616–1622 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Nedelcu, T. et al. Livin and Bcl-2 expression in high-grade osteosarcoma. J. Cancer Res. Clin. Oncol. 134, 237–244 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Kim, D. K. et al. Expression of inhibitor-of-apoptosis protein (IAP) livin by neuroblastoma cells: correlation with prognostic factors and outcome. Pediatr. Dev. Pathol. 8, 621–629 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Mizutani, Y. et al. Downregulation of Smac/DIABLO expression in renal cell carcinoma and its prognostic significance. J. Clin. Oncol. 23, 448–454 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Kempkensteffen, C. et al. Expression levels of the mitochondrial IAP antagonists Smac/DIABLO and Omi/HtrA2 in clear-cell renal cell carcinomas and their prognostic value. J. Cancer Res. Clin. Oncol. 134, 543–550 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Mizutani, Y., Katsuoka, Y. & Bonavida, B. Prognostic significance of second mitochondria-derived activator of caspase (Smac/DIABLO) expression in bladder cancer and target for therapy. Int. J. Oncol. 37, 503–508 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Endo, K. et al. Clinical significance of Smac/DIABLO expression in colorectal cancer. Oncol. Rep. 21, 351–355 (2009).

    PubMed  Google Scholar 

  128. Yan, H. et al. Prognostic value of Smac expression in rectal cancer patients treated with neoadjuvant therapy. Med. Oncol. 25 Jan 2011 (doi:10.1007/s12032-011-9819-x).

  129. Pluta, P. et al. Correlation of Smac/DIABLO protein expression with the clinico-pathological features of breast cancer patients. Neoplasma 58, 430–435 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Dobrzycka, B. et al. Prognostic significance of smac/DIABLO in endometrioid endometrial cancer. Folia Histochem. Cytobiol. 48, 678–681 (2011).

    Article  Google Scholar 

  131. Arellano-Llamas, A. et al. High Smac/DIABLO expression is associated with early local recurrence of cervical cancer. BMC Cancer 6, 256 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sekimura, A. et al. Expression of Smac/DIABLO is a novel prognostic marker in lung cancer. Oncol. Rep. 11, 797–802 (2004).

    CAS  PubMed  Google Scholar 

  133. Pluta, A. et al. Influence of high expression of Smac/DIABLO protein on the clinical outcome in acute myeloid leukemia patients. Leuk. Res. 34, 1308–1313 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Vucic, D. & Fairbrother, W. J. The inhibitor of apoptosis proteins as therapeutic targets in cancer. Clin. Cancer Res. 13, 5995–6000 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Vucic, D., Kaiser, W. J., Harvey, A. J. & Miller, L. K. Inhibition of Reaper-induced apoptosis by interaction with inhibitor of apoptosis proteins (IAPs). Proc. Natl Acad. Sci. USA 94, 10183–10188 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Vucic, D., Kaiser, W. J. & Miller, L. K. Inhibitor of apoptosis proteins physically interact with and block apoptosis induced by Drosophila proteins HID and GRIM. Mol. Cell Biol. 18, 3300–3309 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Verhagen, A. M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53 (2000). The studies in REFS 138 and 139 identified the mitochondrial protein SMAC as a mammalian IAP antagonist that promotes caspase activation by neutralizing IAP proteins.

    Article  CAS  PubMed  Google Scholar 

  139. LaCasse, E. C. et al. IAP-targeted therapies for cancer. Oncogene 27, 6252–6275 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Franklin, M. C. et al. Structure and function analysis of peptide antagonists of melanoma inhibitor of apoptosis (ML-IAP). Biochemistry 42, 8223–8231 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Grether, M. E., Abrams, J. M., Agapite, J., White, K. & Steller, H. The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev. 9, 1694–1708 (1995).

    Article  CAS  PubMed  Google Scholar 

  142. Vucic, D. et al. SMAC negatively regulates the anti-apoptotic activity of melanoma inhibitor of apoptosis (ML-IAP). J. Biol. Chem. 277, 12275–12279 (2002). This was the first evidence that SMAC-mimicking peptides can sensitize cancer cells to chemotherapeutic agents.

    Article  CAS  PubMed  Google Scholar 

  143. Fulda, S., Wick, W., Weller, M. & Debatin, K. M. Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nature Med. 8, 808–815 (2002). This was the first in vivo proof-of-concept study to show that antagonizing IAP proteins by a SMAC mimetic represents a promising strategy for sensitizing cancer cells to TRAIL-induced apoptosis.

    Article  CAS  PubMed  Google Scholar 

  144. Arnt, C. R., Chiorean, M. V., Heldebrant, M. P., Gores, G. J. & Kaufmann, S. H. Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in situ. J. Biol. Chem. 277, 44236–44243 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Yang, L. et al. Predominant suppression of apoptosome by inhibitor of apoptosis protein in non-small cell lung cancer H460 cells: therapeutic effect of a novel polyarginine-conjugated Smac peptide. Cancer Res. 63, 831–837 (2003).

    CAS  PubMed  Google Scholar 

  146. Oost, T. K. et al. Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J. Med. Chem. 47, 4417–4426 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Sharma, S. K., Straub, C. & Zawel, L. Development of peptidomimetics targeting IAPs. Int. J. Pept. Res. Ther. 12, 21–32 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kipp, R. A. et al. Molecular targeting of inhibitor of apoptosis proteins based on small molecule mimics of natural binding partners. Biochemistry 41, 7344–7349 (2002).

    Article  CAS  PubMed  Google Scholar 

  149. Flygare, J. A. & Fairbrother, W. J. Small-molecule pan-IAP antagonists: a patent review. Expert Opin. Ther. Pat. 20, 251–267 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Zobel, K. et al. Design, synthesis, and biological activity of a potent Smac mimetic that sensitizes cancer cells to apoptosis by antagonizing IAPs. ACS Chem. Biol. 1, 525–533 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Gaither, A. et al. A Smac mimetic rescue screen reveals roles for inhibitor of apoptosis proteins in tumor necrosis factor-α signaling. Cancer Res. 67, 11493–11498 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Sun, H. et al. Design of small-molecule peptidic and nonpeptidic Smac mimetics. Acc. Chem. Res. 41, 1264–1277 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Cohen, F. et al. Orally bioavailable antagonists of inhibitor of apoptosis proteins based on an azabicyclooctane scaffold. J. Med. Chem. 52, 1723–1730 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Sun, H. et al. Structure-based design, synthesis, and evaluation of conformationally constrained mimetics of the second mitochondria-derived activator of caspase that target the X-linked inhibitor of apoptosis protein/caspase-9 interaction site. J. Med. Chem. 47, 4147–4150 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  156. Li, L. et al. A small molecule Smac mimic potentiates TRAIL- and TNFα-mediated cell death. Science 305, 1471–1474 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Sun, H. et al. Design, synthesis, and characterization of a potent, nonpeptide, cell-permeable, bivalent Smac mimetic that concurrently targets both the BIR2 and BIR3 domains in XIAP. J. Am. Chem. Soc. 129, 15279–15294 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Petersen, S. L. et al. Autocrine TNFα signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 12, 445–456 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Gao, Z. et al. A dimeric Smac/diablo peptide directly relieves caspase-3 inhibition by XIAP. Dynamic and cooperative regulation of XIAP by Smac/Diablo. J. Biol. Chem. 282, 30718–30727 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Varfolomeev, E. et al. X chromosome-linked inhibitor of apoptosis regulates cell death induction by proapoptotic receptor agonists. J. Biol. Chem. 284, 34553–34560 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Jost, P. J. et al. XIAP discriminates between type I and type II FAS-induced apoptosis. Nature 460, 1035–1039 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Feltham, R. et al. Smac mimetics activate the E3 ligase activity of cIAP1 protein by promoting RING domain dimerization. J. Biol. Chem. 286, 17015–17028 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Mace, P. D. et al. Structures of the cIAP2 RING domain reveal conformational changes associated with ubiquitin-conjugating enzyme (E2) recruitment. J. Biol. Chem. 283, 31633–31640 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Dueber, E. C. et al. Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination. Science 334, 376–380 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Ndubaku, C. et al. Antagonism of c-IAP and XIAP proteins is required for efficient induction of cell death by small-molecule IAP antagonists. ACS Chem. Biol. 4, 557–566 (2009).

    Article  CAS  PubMed  Google Scholar 

  166. Schimmer, A. D., Dalili, S., Batey, R. A. & Riedl, S. J. Targeting XIAP for the treatment of malignancy. Cell Death Differ. 13, 179–188 (2006).

    Article  CAS  PubMed  Google Scholar 

  167. Wu, T. Y., Wagner, K. W., Bursulaya, B., Schultz, P. G. & Deveraux, Q. L. Development and characterization of nonpeptidic small molecule inhibitors of the XIAP/caspase-3 interaction. Chem. Biol. 10, 759–767 (2003).

    Article  CAS  PubMed  Google Scholar 

  168. Schimmer, A. D. et al. Small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity. Cancer Cell 5, 25–35 (2004).

    Article  CAS  PubMed  Google Scholar 

  169. Gonzalez-Lopez, M. et al. Design, synthesis and evaluation of monovalent Smac mimetics that bind to the BIR2 domain of the anti-apoptotic protein XIAP. Bioorg. Med. Chem. Lett. 21, 4332–4336 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Jansen, B. & Zangemeister-Wittke, U. Antisense therapy for cancer — the time of truth. Lancet Oncol. 3, 672–683 (2002).

    Article  CAS  PubMed  Google Scholar 

  171. LaCasse, E. C. et al. Preclinical characterization of AEG35156/GEM 640, a second-generation antisense oligonucleotide targeting X-linked inhibitor of apoptosis. Clin. Cancer Res. 12, 5231–5241 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. Shaw, T. J., Lacasse, E. C., Durkin, J. P. & Vanderhyden, B. C. Downregulation of XIAP expression in ovarian cancer cells induces cell death in vitro and in vivo. Int. J. Cancer 122, 1430–1434 (2008).

    Article  CAS  PubMed  Google Scholar 

  173. Cao, C., Mu, Y., Hallahan, D. E. & Lu, B. XIAP and survivin as therapeutic targets for radiation sensitization in preclinical models of lung cancer. Oncogene 23, 7047–7052 (2004).

    Article  CAS  PubMed  Google Scholar 

  174. McManus, D. C. et al. Loss of XIAP protein expression by RNAi and antisense approaches sensitizes cancer cells to functionally diverse chemotherapeutics. Oncogene 23, 8105–8117 (2004).

    Article  CAS  PubMed  Google Scholar 

  175. Holt, S. V., Brookes, K. E., Dive, C. & Makin, G. W. Down-regulation of XIAP by AEG35156 in paediatric tumour cells induces apoptosis and sensitises cells to cytotoxic agents. Oncol. Rep. 25, 1177–1181 (2011).

    CAS  PubMed  Google Scholar 

  176. Hu, Y. et al. Antisense oligonucleotides targeting XIAP induce apoptosis and enhance chemotherapeutic activity against human lung cancer cells in vitro and in vivo. Clin. Cancer Res. 9, 2826–2836 (2003).

    CAS  PubMed  Google Scholar 

  177. Amantana, A., London, C. A., Iversen, P. L. & Devi, G. R. X-linked inhibitor of apoptosis protein inhibition induces apoptosis and enhances chemotherapy sensitivity in human prostate cancer cells. Mol. Cancer Ther. 3, 699–707 (2004).

    CAS  PubMed  Google Scholar 

  178. Dean, E. et al. Phase I trial of AEG35156 administered as a 7-day and 3-day continuous intravenous infusion in patients with advanced refractory cancer. J. Clin. Oncol. 27, 1660–1666 (2009).

    Article  CAS  PubMed  Google Scholar 

  179. Schimmer, A. D. et al. PhaseI/II trial of AEG35156 X-linked inhibitor of apoptosis protein antisense oligonucleotide combined with idarubicin and cytarabine in patients with relapsed or primary refractory acute myeloid leukemia. J. Clin. Oncol. 27, 4741–4746 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Carter, B. Z. et al. XIAP antisense oligonucleotide (AEG35156) achieves target knockdown and induces apoptosis preferentially in CD34+38 cells in a Phase 1/2 study of patients with relapsed/refractory AML. Apoptosis 16, 67–74 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Schimmer, A. D. et al. Addition of AEG35156 XIAP antisense oligonucleotide in reinduction chemotherapy does not improve remission rates in patients with primary refractory acute myeloid leukemia in a randomized Phase II study. Clin. Lymphoma Myeloma Leuk. 11, 433–438 (2011).

    Article  CAS  PubMed  Google Scholar 

  182. Stadel, D. et al. Requirement of NF-κB for Smac mimetic-mediated sensitization of pancreatic carcinoma cells for gemcitabine-induced apoptosis. Neoplasia (in the press).

  183. Cheng, Y. J. et al. XIAP-mediated protection of H460 lung cancer cells against cisplatin. Eur. J. Pharmacol. 627, 75–84 (2010).

    Article  CAS  PubMed  Google Scholar 

  184. Loeder, S. et al. RIP is required for IAP inhibitor-mediated sensitization of childhood acute leukemia cells to chemotherapy-induced apoptosis. Leukemia (in the press).

  185. Carter, B. Z. et al. Small-molecule XIAP inhibitors derepress downstream effector caspases and induce apoptosis of acute myeloid leukemia cells. Blood 105, 4043–4050 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Dean, E. J. et al. A small molecule inhibitor of XIAP induces apoptosis and synergises with vinorelbine and cisplatin in NSCLC. Br. J. Cancer 102, 97–103 (2010).

    Article  CAS  PubMed  Google Scholar 

  187. Probst, B. L. et al. Smac mimetics increase cancer cell response to chemotherapeutics in a TNF-α-dependent manner. Cell Death Differ. 17, 1645–1654 (2010).

    Article  CAS  PubMed  Google Scholar 

  188. Bockbrader, K. M., Tan, M. & Sun, Y. A small molecule Smac-mimic compound induces apoptosis and sensitizes TRAIL- and etoposide-induced apoptosis in breast cancer cells. Oncogene 24, 7381–7388 (2005).

    Article  CAS  PubMed  Google Scholar 

  189. Metwalli, A. R. et al. Smac mimetic reverses resistance to TRAIL and chemotherapy in human urothelial cancer cells. Cancer Biol. Ther. 10, 885–892 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Chauhan, D. et al. Targeting mitochondrial factor Smac/DIABLO as therapy for multiple myeloma (MM). Blood 109, 1220–1227 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Guo, F. et al. Ectopic overexpression of second mitochondria-derived activator of caspases (Smac/diablo) or cotreatment with N-terminus of Smac/diablo peptide potentiates epothilone B derivative-(BMS 247550) and Apo-2L/TRAIL-induced apoptosis. Blood 99, 3419–3426 (2002).

    Article  CAS  PubMed  Google Scholar 

  192. Ziegler, D. S. et al. A small-molecule IAP inhibitor overcomes resistance to cytotoxic therapies in malignant gliomas in vitro and in vivo. Neuro Oncol. 13, 820–829 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Servida, F. et al. Novel second mitochondria-derived activator of caspases (Smac) mimetic compounds sensitize human leukemic cell lines to conventional chemotherapeutic drug-induced and death receptor-mediated apoptosis. Invest. New Drugs 29, 1264–1275 (2011).

    Article  CAS  PubMed  Google Scholar 

  194. Dineen, S. P. et al. Smac mimetic increases chemotherapy response and improves survival in mice with pancreatic cancer. Cancer Res. 70, 2852–2861 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Fandy, T. E., Shankar, S. & Srivastava, R. K. Smac/DIABLO enhances the therapeutic potential of chemotherapeutic drugs and irradiation, and sensitizes TRAIL-resistant breast cancer cells. Mol. Cancer 7, 60 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Fingas, C. D. et al. A Smac mimetic reduces TNF related apoptosis inducing ligand (TRAIL)-induced invasion and metastasis of cholangiocarcinoma cells. Hepatology 52, 550–561 (2010).

    Article  CAS  PubMed  Google Scholar 

  197. Crnkovic-Mertens, I., Hoppe-Seyler, F. & Butz, K. Induction of apoptosis in tumor cells by siRNA-mediated silencing of the livin/ML-IAP/KIAP gene. Oncogene 22, 8330–8336 (2003).

    Article  CAS  PubMed  Google Scholar 

  198. Lecis, D. et al. Novel SMAC-mimetics synergistically stimulate melanoma cell death in combination with TRAIL and bortezomib. Br. J. Cancer 102, 1707–1716 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Dai, Y. et al. A Smac-mimetic sensitizes prostate cancer cells to TRAIL-induced apoptosis via modulating both IAPs and NF-κB. BMC Cancer 9, 392 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Cheung, H. H., Mahoney, D. J., Lacasse, E. C. & Korneluk, R. G. Down-regulation of c-FLIP enhances death of cancer cells by Smac mimetic compound. Cancer Res. 69, 7729–7738 (2009).

    Article  CAS  PubMed  Google Scholar 

  201. Ren, X., Xu, Z., Myers, J. N. & Wu, X. Bypass NFκB-mediated survival pathways by TRAIL and Smac. Cancer Biol. Ther. 6, 1031–1035 (2007).

    Article  CAS  PubMed  Google Scholar 

  202. Petrucci, E. et al. A small molecule Smac mimic potentiates TRAIL-mediated cell death of ovarian cancer cells. Gynecol. Oncol. 105, 481–492 (2007).

    Article  CAS  PubMed  Google Scholar 

  203. Frenzel, L. P. et al. Novel X-linked inhibitor of apoptosis inhibiting compound as sensitizer for TRAIL-mediated apoptosis in chronic lymphocytic leukaemia with poor prognosis. Br. J. Haematol. 152, 191–200 (2011).

    Article  CAS  PubMed  Google Scholar 

  204. Stadel, D. et al. TRAIL-induced apoptosis is preferentially mediated via TRAIL receptor 1 in pancreatic carcinoma cells and profoundly enhanced by XIAP inhibitors. Clin. Cancer Res. 16, 5734–5749 (2010).

    Article  CAS  PubMed  Google Scholar 

  205. Siegelin, M. D., Gaiser, T. & Siegelin, Y. The XIAP inhibitor embelin enhances TRAIL-mediated apoptosis in malignant glioma cells by down-regulation of the short isoform of FLIP. Neurochem. Int. 55, 423–430 (2009).

    Article  CAS  PubMed  Google Scholar 

  206. Haag, C. et al. Identification of c-FLIPL and c-FLIPS as critical regulators of death receptor-induced apoptosis in pancreatic cancer cells. Gut 60, 225–237 (2011).

    Article  CAS  PubMed  Google Scholar 

  207. Kater, A. P. et al. Inhibitors of XIAP sensitize CD40-activated chronic lymphocytic leukemia cells to CD95-mediated apoptosis. Blood 106, 1742–1748 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Lu, J. et al. Therapeutic potential and molecular mechanism of a novel, potent, nonpeptide, Smac mimetic SM-164 in combination with TRAIL for cancer treatment. Mol. Cancer Ther. 10, 902–914 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Mori, T. et al. Effect of the XIAP inhibitor embelin on TRAIL-induced apoptosis of pancreatic cancer cells. J. Surg. Res. 142, 281–286 (2007).

    Article  CAS  PubMed  Google Scholar 

  210. Loeder, S. et al. A novel paradigm to trigger apoptosis in chronic lymphocytic leukemia. Cancer Res. 69, 8977–8986 (2009).

    Article  CAS  PubMed  Google Scholar 

  211. Vogler, M. et al. Small molecule XIAP inhibitors enhance TRAIL-induced apoptosis and antitumor activity in preclinical models of pancreatic carcinoma. Cancer Res. 69, 2425–2434 (2009).

    Article  CAS  PubMed  Google Scholar 

  212. Loeder, S., Drensek, A., Jeremias, I., Debatin, K. M. & Fulda, S. Small molecule XIAP inhibitors sensitize childhood acute leukemia cells for CD95-induced apoptosis. Int. J. Cancer 126, 2216–2228 (2010).

    CAS  PubMed  Google Scholar 

  213. Geserick, P. et al. Cellular IAPs inhibit a cryptic CD95-induced cell death by limiting RIP1 kinase recruitment. J. Cell Biol. 187, 1037–1054 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Wang, L., Du, F. & Wang, X. TNF-α induces two distinct caspase-8 activation pathways. Cell 133, 693–703 (2008).

    Article  CAS  PubMed  Google Scholar 

  215. Laukens, B. et al. Smac mimetic bypasses apoptosis resistance in FADD- or caspase-8-deficient cells by priming for tumor necrosis factor α-induced necroptosis. Neoplasia 13, 971–979 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Vanlangenakker, N. et al. cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death Differ. 18, 656–665 (2011).

    Article  CAS  PubMed  Google Scholar 

  217. Vellanki, S. H. et al. Small-molecule XIAP inhibitors enhance γ-irradiation-induced apoptosis in glioblastoma. Neoplasia 11, 743–752 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Giagkousiklidis, S., Vellanki, S. H., Debatin, K. M. & Fulda, S. Sensitization of pancreatic carcinoma cells for γ-irradiation-induced apoptosis by XIAP inhibition. Oncogene 26, 7006–7016 (2007).

    Article  CAS  PubMed  Google Scholar 

  219. Dai, Y. et al. Natural IAP inhibitor embelin enhances therapeutic efficacy of ionizing radiation in prostate cancer. Am. J. Cancer Res. 1, 128–143 (2011).

    CAS  PubMed  Google Scholar 

  220. Dai, Y. et al. Molecularly targeted radiosensitization of human prostate cancer by modulating inhibitor of apoptosis. Clin. Cancer Res. 14, 7701–7710 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Berger, R. et al. NF-κB is required for Smac mimetic-mediated sensitization of glioblastoma cells for γ-irradiation-induced apoptosis. Mol. Cancer Ther. 10, 1867–1875 (2011).

    Article  CAS  PubMed  Google Scholar 

  222. Weisberg, E. et al. Potentiation of antileukemic therapies by Smac mimetic, LBW242: effects on mutant FLT3-expressing cells. Mol. Cancer Ther. 6, 1951–1961 (2007).

    Article  CAS  PubMed  Google Scholar 

  223. Ziegler, D. S. et al. Resistance of human glioblastoma multiforme cells to growth factor inhibitors is overcome by blockade of inhibitor of apoptosis proteins. J. Clin. Invest. 118, 3109–3122 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Foster, F. M. et al. Targeting inhibitor of apoptosis proteins in combination with ErbB antagonists in breast cancer. Breast Cancer Res. 11, R41 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Weisberg, E. et al. Smac mimetics: implications for enhancement of targeted therapies in leukemia. Leukemia 24, 2100–2109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Aird, K. M., Ghanayem, R. B., Peplinski, S., Lyerly, H. K. & Devi, G. R. X-linked inhibitor of apoptosis protein inhibits apoptosis in inflammatory breast cancer cells with acquired resistance to an ErbB1/2 tyrosine kinase inhibitor. Mol. Cancer Ther. 9, 1432–1442 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Weisberg, E. et al. Beneficial effects of combining a type II ATP competitive inhibitor with an allosteric competitive inhibitor of BCR-ABL for the treatment of imatinib-sensitive and imatinib-resistant CML. Leukemia 24, 1375–1378 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Infante, J. R. et al. A Phase I study of LCL-161, an oral IAP inhibitor, in patients with advanced cancer. in: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research (17–21 Apr 2010; Washington DC, USA; Abstract 2775).

  229. Amaravadi, R. K. et al. Phase 1 study of the Smac mimetic TL32711 in adult subjects with advanced solid tumors and lymphoma to evaluate safety, pharmacokinetics, pharmacodynamics and antitumor activity. in: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research (2–6 Apr 2011; Orlando, Florida; Abstract LB-406).

  230. Sikic, B. I. et al. Safety, pharmacokinetics (PK), and pharmacodynamics (PD) of HGS1029, an inhibitor of apoptosis protein (IAP) inhibitor, in patients (Pts) with advanced solid tumors: Results of a phase I study. J. Clin. Oncol. (Meeting Abstracts) 29, 3008 (2011).

    Article  Google Scholar 

  231. Dougan, M. et al. IAP inhibitors enhance co-stimulation to promote tumor immunity. J. Exp. Med. 207, 2195–2206 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Hinds, M. G., Norton, R. S., Vaux, D. L. & Day, C. L. Solution structure of a baculoviral inhibitor of apoptosis (IAP) repeat. Nature Struct. Biol. 6, 648–651 (1999).

    Article  CAS  PubMed  Google Scholar 

  233. Sun, C. et al. NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 401, 818–822 (1999).

    Article  CAS  PubMed  Google Scholar 

  234. Cai, Q. et al. A potent and orally active antagonist (SM-406/AT-406) of multiple inhibitor of apoptosis proteins (IAPs) in clinical development for cancer treatment. J. Med. Chem. 54, 2714–2726 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Larisch, S. et al. A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif. Nature Cell Biol. 2, 915–921 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. Fairbrother, K. Deshayes, E. Dueber and other researchers at Genentech who provided help with comments, figures and suggestions; we also thank C. Hugenberg for expert secretarial assistance. This work has been partially supported by grants from the German Research Foundation (Deutsche Forschungsgemeinschaft), the Federal Ministry of Education and Research (BMBF), the José Carreras Foundation, the European Commission and IAP6/18 (to S.F.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Simone Fulda or Domagoj Vucic.

Ethics declarations

Competing interests

Domagoj Vucic is an employee of Genentech.

Supplementary information

Supplementary information S1 (table)

Role of IAP proteins in cancer (PDF 211 kb)

Supplementary information S2 (table)

Combination treatments with IAP antagonists (PDF 221 kb)

Related links

Related links

FURTHER INFORMATION

Simone Fulda's homepage

Domagoj Vucic's homepage

ClinicalTrials.gov website (A Study Evaluating the Safety, Tolerability and Pharmacokinetics of GDC-0917 Administered to Patients With Refractory Solid Tumors or Lymphoma)

Glossary

Inhibitor of apoptosis

(IAP). An anti-apoptotic protein family that encompasses the caspase inhibitor X chromosome-linked IAP and the regulators of nuclear factor-κB signalling — the cellular IAPs.

Baculoviral IAP repeat

(BIR). A signature zinc ion-coordinating domain that is crucial for caspase inhibition and many protein–protein interactions.

RING domain

A ubiquitin ligase domain defined by a catalytic zinc finger-like module that coordinates two zinc ions.

IAP antagonists

Molecules that bind to inhibitor of apoptosis (IAP) proteins and block IAP-mediated inhibition of cell death.

Extrinsic (death receptor) pathway of apoptosis

An apoptotic pathway initiated at the plasma membrane by specific transmembrane receptors of the tumour necrosis factor receptor superfamily. Ligation of these receptors results in the formation of a death-inducing signalling complex that drives caspase 8 activation.

Intrinsic (mitochondrial) pathway of apoptosis

An apoptotic pathway that is triggered by cellular stresses (such as DNA damage) or intracellular stimuli (such as the production of reactive oxygen species or calcium overload).

Tumour necrosis factor

(TNF). A cytokine that is involved in systemic inflammation and is necessary for the single-agent pro-apoptotic activity of inhibitor of apoptosis protein antagonists.

Second mitochondria-derived activator of caspase

(SMAC). A pro-apoptotic protein that leaves mitochondria and enters the cytoplasm following apoptotic insult; in the cytoplasm, it binds to and neutralizes inhibitor of apoptosis proteins.

Nuclear factor-κB

(NF-κB). A protein complex that regulates the expression of several cytokines and anti-apoptotic proteins. NF-κB signalling proceeds via the canonical or non-canonical pathways.

Canonical NF-κB pathway

A signalling pathway mediated by nuclear factor-κB (NF-κB) that predominantly results in the activation of transcription factor RELA (also known as p65)–p50 heterodimers.

Non-canonical NF-κB pathway

A signalling pathway mediated by nuclear factor-κB (NF-κB) that predominantly results in the activation of transcription factor RELB–p52 heterodimers.

Duke's staging

Classification system for colorectal cancer based on pathology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fulda, S., Vucic, D. Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov 11, 109–124 (2012). https://doi.org/10.1038/nrd3627

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3627

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer