Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting cancer metabolism: a therapeutic window opens

Key Points

  • Proliferating cells exhibit different metabolic requirements to non-proliferating cells, and the changes in cell metabolism that are associated with cancer support the increased biosynthesis of these proliferating cells to enable the characteristic dysregulated cell proliferation that is observed in cancer.

  • All cancer cells have to solve the same metabolic problem of directing available nutrients into biosynthetic pathways while maintaining adequate levels of ATP to maintain homeostasis, which suggests that targeting metabolic pathways is a therapeutic approach that could be applied to many cancers.

  • Normal proliferating cells have similar metabolic requirements to cancer cells, which raises questions about whether a sufficient therapeutic window exists to develop anticancer drugs that target cell metabolism.

  • Tumour metabolism is heterogeneous, with both genetics and the tumour microenvironment influencing metabolism; this can create potential therapeutic opportunities to limit toxicity resulting from the effects of anticancer therapies on normal proliferating cells.

  • Some currently successful cancer therapies have been shown to target metabolism, which demonstrates that it is possible to safely target tumour metabolism in patients.

  • Preclinical studies have indicated specific metabolic enzymes as targets for cancer therapy, and ongoing efforts to understand how cell metabolism is regulated in tumour cells will define the most effective way of translating these ideas into better patient care.

Abstract

Genetic events in cancer activate signalling pathways that alter cell metabolism. Clinical evidence has linked cell metabolism with cancer outcomes. Together, these observations have raised interest in targeting metabolic enzymes for cancer therapy, but they have also raised concerns that these therapies would have unacceptable effects on normal cells. However, some of the first cancer therapies that were developed target the specific metabolic needs of cancer cells and remain effective agents in the clinic today. Research into how changes in cell metabolism promote tumour growth has accelerated in recent years. This has refocused efforts to target metabolic dependencies of cancer cells as a selective anticancer strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cancer cell metabolism.
Figure 2: Existing chemotherapies targeting specific metabolic enzymes.
Figure 3: Targeting metabolic enzymes as a strategy to block biosynthesis or induce energy stress.

Similar content being viewed by others

References

  1. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Luo, J., Solimini, N. L. & Elledge, S. J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tennant, D. A., Duran, R. V. & Gottlieb, E. Targeting metabolic transformation for cancer therapy. Nature Rev. Cancer 10, 267–277 (2010).

    Article  CAS  Google Scholar 

  4. Deberardinis, R. J., Lum, J. J., Hatzivassiliou, G. & Thompson, C. B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell. Metab. 7, 11–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Cairns, R. A., Harris, I. S. & Mak, T. W. Regulation of cancer cell metabolism. Nature Rev. Cancer 11, 85–95 (2011).

    Article  CAS  Google Scholar 

  6. Groves, A. M., Win, T., Haim, S. B. & Ell, P. J. Non-[18F]FDG PET in clinical oncology. Lancet Oncol. 8, 822–830 (2007).

    Article  PubMed  Google Scholar 

  7. Dimitrakopoulou-Strauss, A. & Strauss, L. G. PET imaging of prostate cancer with 11C-acetate. J. Nucl. Med. 44, 556–558 (2003).

    PubMed  Google Scholar 

  8. Ben-Haim, S. & Ell, P. 18F-FDG PET and PET/CT in the evaluation of cancer treatment response. J. Nucl. Med. 50, 88–99 (2009).

    Article  PubMed  Google Scholar 

  9. Tessem, M. B. et al. Evaluation of lactate and alanine as metabolic biomarkers of prostate cancer using 1H HR-MAS spectroscopy of biopsy tissues. Magn. Reson. Med. 60, 510–516 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaelin, W. G., Jr & Ratcliffe, P. J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30, 393–402 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Semenza, G. L. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29, 625–634 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Zoncu, R., Efeyan, A. & Sabatini, D. M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Rev. Mol. Cell Biol. 12, 21–35 (2011).

    Article  CAS  Google Scholar 

  13. Vander Heiden, M. G. et al. Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329, 1492–1499 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Calle, E. E. & Kaaks, R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nature Rev. Cancer 4, 579–591 (2004).

    Article  CAS  Google Scholar 

  15. Pollak, M. Insulin and insulin-like growth factor signalling in neoplasia. Nature Rev. Cancer 8, 915–928 (2008).

    Article  CAS  Google Scholar 

  16. Wellen, K. E. & Thompson, C. B. Cellular metabolic stress: considering how cells respond to nutrient excess. Mol. Cell 40, 323–332 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Calle, E. E., Rodriguez, C., Walker-Thurmond, K. & Thun, M. J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U. S. adults. N. Engl. J. Med. 348, 1625–1638 (2003).

    Article  PubMed  Google Scholar 

  18. Jee, S. H. et al. Fasting serum glucose level and cancer risk in Korean men and women. JAMA 293, 194–202 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Weiser, M. A. et al. Relation between the duration of remission and hyperglycemia during induction chemotherapy for acute lymphocytic leukemia with a hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone/methotrexate-cytarabine regimen. Cancer 100, 1179–1185 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Meyerhardt, J. A. et al. Impact of diabetes mellitus on outcomes in patients with colon cancer. J. Clin. Oncol. 21, 433–440 (2003).

    Article  PubMed  Google Scholar 

  21. Maestu, I. et al. Pretreatment prognostic factors for survival in small-cell lung cancer: a new prognostic index and validation of three known prognostic indices on 341 patients. Ann. Oncol. 8, 547–553 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Eschwege, E. & Balkau, B. Hyperglycaemia: link to excess mortality. Int. J. Clin. Pract. Suppl. 123, S3–S6 (2001).

    Google Scholar 

  23. Evans, J. M., Donnelly, L. A., Emslie-Smith, A. M., Alessi, D. R. & Morris, A. D. Metformin and reduced risk of cancer in diabetic patients. BMJ 330, 1304–1305 (2005). This paper was the first to report a decreased risk of death from cancer for patients with diabetes who were taking metformin, which sparked a series of papers examining the possible benefits of metformin in cancer therapy.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bowker, S. L., Majumdar, S. R., Veugelers, P. & Johnson, J. A. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care 29, 254–258 (2006).

    Article  PubMed  Google Scholar 

  25. El-Mir, M. Y. et al. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J. Biol. Chem. 275, 223–228 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Buzzai, M. et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 67, 6745–6752 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–1646 (2005). This study was the first to link the effects of metformin on hepatic gluconeogenesis with LKB1-dependent AMPK activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kalaany, N. Y. & Sabatini, D. M. Tumours with PI3K activation are resistant to dietary restriction. Nature 458, 725–731 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hirsch, H. A., Iliopoulos, D., Tsichlis, P. N. & Struhl, K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 69, 7507–7511 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiralerspong, S. et al. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J. Clin. Oncol. 27, 3297–3302 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Algire, C. et al. Diet and tumor LKB1 expression interact to determine sensitivity to anti-neoplastic effects of metformin in vivo. Oncogene 30, 1174–1182 (2011). This study showed that LKB1-deficient tumour cells are more sensitive to metformin, thus suggesting an AMPK activation-independent effect of metformin and indicating a patient population that might benefit from the drug.

    Article  CAS  PubMed  Google Scholar 

  32. Memmott, R. M. et al. Metformin prevents tobacco carcinogen–induced lung tumorigenesis. Cancer Prev. Res. (Phila) 3, 1066–1076 (2010).

    Article  CAS  Google Scholar 

  33. Hosono, K. et al. Metformin suppresses colorectal aberrant crypt foci in a short-term clinical trial. Cancer Prev. Res. (Phila) 3, 1077–1083 (2010).

    Article  CAS  Google Scholar 

  34. Pollak, M. Metformin and other biguanides in oncology: advancing the research agenda. Cancer Prev. Res. (Phila) 3, 1060–1065 (2010).

    Article  CAS  Google Scholar 

  35. Maki, R. G. Small is beautiful: insulin-like growth factors and their role in growth, development, and cancer. J. Clin. Oncol. 28, 4985–4995 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stacchiotti, S. et al. Sunitinib malate and figitumumab in solitary fibrous tumor: patterns and molecular bases of tumor response. Mol. Cancer Ther. 9, 1286–1297 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Shaw, R. J. & Cantley, L. C. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441, 424–430 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Duvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171–183 (2010). This paper presents a comprehensive genetic and metabolomic analysis of how mTORC1 signalling influences cell metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Engelman, J. A. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nature Rev. Cancer 9, 550–562 (2009).

    Article  CAS  Google Scholar 

  40. Garcia-Echeverria, C. & Sellers, W. R. Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene 27, 5511–5526 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Locasale, J. W., Cantley, L. C. & Vander Heiden, M. G. Cancer's insatiable appetite. Nature Biotech. 27, 916–917 (2009).

    Article  CAS  Google Scholar 

  42. Stratton, M. R. Exploring the genomes of cancer cells: progress and promise. Science 331, 1553–1558 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Engelman, J. A. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nature Med. 14, 1351–1356 (2008). Although not the focus of this paper, this study linked responses by PET scanning to targeted therapy responses in genetically well-defined mouse models of lung cancer.

    Article  CAS  PubMed  Google Scholar 

  44. Holdsworth, C. H. et al. CT and PET: early prognostic indicators of response to imatinib mesylate in patients with gastrointestinal stromal tumor. AJR Am. J. Roentgenol. 189, W324–W330 (2007).

    Article  PubMed  Google Scholar 

  45. Yun, J. et al. Glucose deprivation contributes to the development of kras pathway mutations in tumor cells. Science 325, 1555–1559 (2009). This study showed that a major selective force driving KRAS mutations was the requirement of tumours to take up adequate glucose.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Linardou, H., Dahabreh, I. J., Bafaloukos, D., Kosmidis, P. & Murray, S. Somatic EGFR mutations and efficacy of tyrosine kinase inhibitors in NSCLC. Nature Rev. Clin. Oncol. 6, 352–366 (2009).

    Article  CAS  Google Scholar 

  47. Normanno, N. et al. Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nature Rev. Clin. Oncol. 6, 519–527 (2009).

    Article  CAS  Google Scholar 

  48. Yuneva, M., Zamboni, N., Oefner, P., Sachidanandam, R. & Lazebnik, Y. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J. Cell Biol. 178, 93–105 (2007). This study was among the first to demonstrate that cancer cells can be dependent on glutamine, and identified a connection between MYC and this dependence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wise, D. R. et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl Acad. Sci. USA 105, 18782–18787 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gao, P. et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458, 762–765 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Clem, B. et al. Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol. Cancer Ther. 7, 110–120 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Shim, H. et al. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc. Natl Acad. Sci. USA 94, 6658–6663 (1997). The paper reported a link between MYC and metabolism and identified LDHA as a potential target for cancer therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Le, A. et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc. Natl Acad. Sci. USA 107, 2037–2042 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhou, R., Vander Heiden, M. G. & Rudin, C. M. Genotoxic exposure is associated with alterations in glucose uptake and metabolism. Cancer Res. 62, 3515–3520 (2002).

    CAS  PubMed  Google Scholar 

  55. Scott, R. B. Cancer chemotherapy — the first twenty-five years. BMJ 4, 259–265 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chabner, B. A. & Roberts, T. G. Jr. Timeline: chemotherapy and the war on cancer. Nature Rev. Cancer 5, 65–72 (2005).

    Article  CAS  Google Scholar 

  57. Neuman, R. E. & McCoy, T. A. Dual requirement of Walker carcinosarcoma 256 in vitro for asparagine and glutamine. Science 124, 124–125 (1956).

    Article  CAS  PubMed  Google Scholar 

  58. Derst, C., Henseling, J. & Rohm, K. H. Engineering the substrate specificity of Escherichia coli asparaginase. II. Selective reduction of glutaminase activity by amino acid replacements at position 248. Protein Sci. 9, 2009–2017 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ollenschlager, G. et al. Asparaginase-induced derangements of glutamine metabolism: the pathogenetic basis for some drug-related side-effects. Eur. J. Clin. Invest. 18, 512–516 (1988).

    Article  CAS  PubMed  Google Scholar 

  60. Curthoys, N. P. & Watford, M. Regulation of glutaminase activity and glutamine metabolism. Annu. Rev. Nutr. 15, 133–159 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Bach, S. J. & Swaine, D. The effect of arginase on the retardation of tumour growth. Br. J. Cancer 19, 379–386 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ni, Y., Schwaneberg, U. & Sun, Z. H. Arginine deiminase, a potential anti-tumor drug. Cancer Lett. 261, 1–11 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Yang, T. S. et al. A randomised phase II study of pegylated arginine deiminase (ADI-PEG 20) in Asian advanced hepatocellular carcinoma patients. Br. J. Cancer 103, 954–960 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. DeVita, V. T., Hellman, S. & Rosenberg, S. A. Cancer, Principles and Practice of Oncology (Lippincott Williams & Wilkins, Philadelphia, 2005).

    Google Scholar 

  65. Potten, C. S., Kellett, M., Rew, D. A. & Roberts, S. A. Proliferation in human gastrointestinal epithelium using bromodeoxyuridine in vivo: data for different sites, proximity to a tumour, and polyposis coli. Gut 33, 524–529 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rew, D. A. & Wilson, G. D. Cell production rates in human tissues and tumours and their significance. Part II: clinical data. Eur. J. Surg. Oncol. 26, 405–417 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Chen, K. et al. Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc. Natl Acad. Sci. USA 106, 17413–17418 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kumei, Y., Nakajima, T., Sato, A., Kamata, N. & Enomoto, S. Reduction of G1 phase duration and enhancement of c-myc gene expression in HeLa cells at hypergravity. J. Cell Sci. 93, 221–226 (1989).

    CAS  PubMed  Google Scholar 

  69. Brown, J. M. & Attardi, L. D. The role of apoptosis in cancer development and treatment response. Nature Rev. Cancer 5, 231–237 (2005).

    Article  CAS  Google Scholar 

  70. Thirion, P. et al. Modulation of fluorouracil by leucovorin in patients with advanced colorectal cancer: an updated meta-analysis. J. Clin. Oncol. 22, 3766–3775 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Hatzivassiliou, G. et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8, 311–321 (2005). This study was among the first to explore the targeting of a specific pathway required for cells to generate a biomass component other than DNA that is needed for cell growth.

    Article  CAS  PubMed  Google Scholar 

  72. Tainter, M. L., Cutting, W. C. & Stockton, A. B. Use of dinitrophenol in nutritional disorders: a critical survey of clinical results. Am. J. Public Health Nations Health 24, 1045–1053 (1934).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kurhanewicz, J., Bok, R., Nelson, S. J. & Vigneron, D. B. Current and potential applications of clinical13C MR spectroscopy. J. Nucl. Med. 49, 341–344 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Brindle, K. New approaches for imaging tumour responses to treatment. Nature Rev. Cancer 8, 94–107 (2008). References 73 and 74 review the clinical use of 13C-MR spectroscopy as a technique to image metabolism in patients that could considerably aid the development of drugs targeting cancer metabolism.

    Article  CAS  Google Scholar 

  75. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Jones, R. G. & Thompson, C. B. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev. 23, 537–548 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kim, J. W., Tchernyshyov, I., Semenza, G. L. & Dang, C. V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell. Metab. 3, 177–185 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L. & Denko, N. C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell. Metab. 3, 187–197 (2006). The two studies reported in references 77 and 78 linked hypoxia signalling to inhibition of PDK, thus raising interest in targeting this metabolic node for cancer therapy.

    Article  CAS  PubMed  Google Scholar 

  79. Holness, M. J. & Sugden, M. C. Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem. Soc. Trans. 31, 1143–1151 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Bonnet, S. et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11, 37–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Michelakis, E. D. et al. Metabolic modulation of glioblastoma with dichloroacetate. Sci. Transl. Med. 2, 31ra34 (2010). This study showed that DCA can be given safely to patients with glioma and it can have effects on mitochondria in tumour cells, thus confirming that a therapeutic window can exist for agents targeting central metabolism.

    Article  CAS  PubMed  Google Scholar 

  82. Yamamoto, T. et al. Over-expression of facilitative glucose transporter genes in human cancer. Biochem. Biophys. Res. Commun. 170, 223–230 (1990).

    Article  CAS  PubMed  Google Scholar 

  83. Macheda, M. L., Rogers, S. & Best, J. D. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J. Cell Physiol. 202, 654–662 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. El Mjiyad, N., Caro-Maldonado, A., Ramirez-Peinado, S. & Munoz-Pinedo, C. Sugar-free approaches to cancer cell killing. Oncogene 30, 253–264 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Aft, R. L., Zhang, F. W. & Gius, D. Evaluation of 2-deoxy-D-glucose as a chemotherapeutic agent: mechanism of cell death. Br. J. Cancer 87, 805–812 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kaplan, O. et al. Effects of 2-deoxyglucose on drug-sensitive and drug-resistant human breast cancer cells: toxicity and magnetic resonance spectroscopy studies of metabolism. Cancer Res. 50, 544–551 (1990).

    CAS  PubMed  Google Scholar 

  87. Landau, B. R., Laszlo, J., Stengle, J. & Burk, D. Certain metabolic and pharmacologic effects in cancer patients given infusions of 2-deoxy-D-glucose. J. Natl Cancer Inst. 21, 485–494 (1958). This clinical study exploring the use of 2DG in patients was arguably the first trial of an agent targeting increased glucose uptake in cancer.

    CAS  PubMed  Google Scholar 

  88. Mohanti, B. K. et al. Improving cancer radiotherapy with 2-deoxy-D-glucose: phase I/II clinical trials on human cerebral gliomas. Int. J. Radiat. Oncol. Biol. Phys. 35, 103–111 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Singh, D. et al. Optimizing cancer radiotherapy with 2-deoxy-D-glucose dose escalation studies in patients with glioblastoma multiforme. Strahlenther. Onkol. 181, 507–514 (2005).

    Article  PubMed  Google Scholar 

  90. Dwarakanath, B. & Jain, V. Targeting glucose metabolism with 2-deoxy-D-glucose for improving cancer therapy. Future Oncol. 5, 581–585 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Mathupala, S. P., Ko, Y. H. & Pedersen, P. L. Hexokinase-2 bound to mitochondria: cancer's stygian link to the “Warburg Effect” and a pivotal target for effective therapy. Semin. Cancer Biol. 19, 17–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Wolf, A. et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J. Exp. Med. 208, 313–326 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Robey, R. B. & Hay, N. Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene 25, 4683–4696 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Galluzzi, L., Kepp, O., Tajeddine, N. & Kroemer, G. Disruption of the hexokinase–VDAC complex for tumor therapy. Oncogene 27, 4633–4635 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Ko, Y. H. et al. Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem. Biophys. Res. Commun. 324, 269–275 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Pereira da Silva, A. P. et al. Inhibition of energy-producing pathways of HepG2 cells by 3-bromopyruvate. Biochem. J. 417, 717–726 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Mazurek, S. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int. J. Biochem. Cell Biol. 43, 969–980 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Takenaka, M. et al. Isolation and characterization of the human pyruvate kinase M gene. Eur. J. Biochem. 198, 101–106 (1991).

    Article  CAS  PubMed  Google Scholar 

  99. Christofk, H. R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Christofk, H. R., Vander Heiden, M. G., Wu, N., Asara, J. M. & Cantley, L. C. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452, 181–186 (2008). The studies in references 99 and 100 showed that PKM2 provides a selective advantage for tumour growth in vivo , and demonstrated a link between growth signalling and decreased PKM2 activity.

    Article  CAS  PubMed  Google Scholar 

  101. Spoden, G. A. et al. Isotype-specific inhibitors of the glycolytic key regulator pyruvate kinase subtype M2 moderately decelerate tumor cell proliferation. Int. J. Cancer 123, 312–321 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Vander Heiden, M. G. et al. Identification of small molecule inhibitors of pyruvate kinase M2. Biochem. Pharmacol. 79, 1118–1124 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Boxer, M. B. et al. Evaluation of substituted N,N′-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase. J. Med. Chem. 53, 1048–1055 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jiang, J. K. et al. Evaluation of thieno[3,2-b]pyrrole[3,2-d]pyridazinones as activators of the tumor cell specific M2 isoform of pyruvate kinase. Bioorg Med. Chem. Lett. 20, 3387–3393 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yalcin, A., Telang, S., Clem, B. & Chesney, J. Regulation of glucose metabolism by 6-phosphofructo- 2-kinase/fructose-2,6-bisphosphatases in cancer. Exp. Mol. Pathol. 86, 174–179 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Atsumi, T. et al. High expression of inducible 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase (iPFK-2; PFKFB3) in human cancers. Cancer Res. 62, 5881–5887 (2002).

    CAS  PubMed  Google Scholar 

  107. Telang, S. et al. Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene 25, 7225–7234 (2006). This study was among the first to link RAS transformation to glycolysis and proposed PFKFB3 as a target in RAS -transformed cells.

    Article  CAS  PubMed  Google Scholar 

  108. Marsin, A. S., Bouzin, C., Bertrand, L. & Hue, L. The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase. J. Biol. Chem. 277, 30778–30783 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Manes, N. P. & El-Maghrabi, M. R. The kinase activity of human brain 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is regulated via inhibition by phosphoenolpyruvate. Arch. Biochem. Biophys. 438, 125–136 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Dimmer, K. S., Friedrich, B., Lang, F., Deitmer, J. W. & Broer, S. The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem. J. 350, 219–227 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gallagher, S. M., Castorino, J. J., Wang, D. & Philp, N. J. Monocarboxylate transporter 4 regulates maturation and trafficking of CD147 to the plasma membrane in the metastatic breast cancer cell line MDA-MB-231. Cancer Res. 67, 4182–4189 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Kennedy, K. M. & Dewhirst, M. W. Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol. 6, 127–148 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Sonveaux, P. et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 118, 3930–3942 (2008). This study proposed the idea that a symbiotic relationship can exist within tumours, with some cells using the lactate secreted by other cells as a fuel source.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Murray, C. M. et al. Monocarboxylate transporter MCT1 is a target for immunosuppression. Nature Chem. Biol. 1, 371–376 (2005).

    Article  CAS  Google Scholar 

  115. Ovens, M. J., Manoharan, C., Wilson, M. C., Murray, C. M. & Halestrap, A. P. The inhibition of monocarboxylate transporter 2 (MCT2) by AR-C155858 is modulated by the associated ancillary protein. Biochem. J. 431, 217–225 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Halestrap, A. P. & Meredith, D. The SLC16 gene family — from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch. 447, 619–628 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Fantin, V. R., St-Pierre, J. & Leder, P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9, 425–434 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Yu, Y. et al. Selective active site inhibitors of human lactate dehydrogenases A4, B4, and C4. Biochem. Pharmacol. 62, 81–89 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Garten, A., Petzold, S., Korner, A., Imai, S. & Kiess, W. Nampt: linking NAD biology, metabolism and cancer. Trends Endocrinol. Metab. 20, 130–138 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Hasmann, M. & Schemainda, I. FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Res. 63, 7436–7442 (2003).

    CAS  PubMed  Google Scholar 

  121. Pittelli, M. et al. Inhibition of nicotinamide phosphoribosyltransferase: cellular bioenergetics reveals a mitochondrial insensitive NAD pool. J. Biol. Chem. 285, 34106–34114 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bruzzone, S. et al. Catastrophic NAD+ depletion in activated T lymphocytes through Nampt inhibition reduces demyelination and disability in EAE. PLoS ONE 4, e7897 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Holen, K., Saltz, L. B., Hollywood, E., Burk, K. & Hanauske, A. R. The pharmacokinetics, toxicities, and biologic effects of FK866, a nicotinamide adenine dinucleotide biosynthesis inhibitor. Invest. New Drugs 26, 45–51 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Burgos, E. S. NAMPT in regulated NAD biosynthesis and its pivotal role in human metabolism. Curr. Med. Chem. 18, 1947–1961 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008). This paper reported the presence of IDH1 mutations in human cancer, sparking a flurry of research on the role of mutated IDH in cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mardis, E. R. et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med. 361, 1058–1066 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009). This study showed that IDH mutations lead to a gain-of-function activity, thus suggesting that this enzyme could be a therapeutic target.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ward, P. S. et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17, 225–234 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gross, S. et al. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J. Exp. Med. 207, 339–344 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Verhaak, R. G. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Marcucci, G. et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J. Clin. Oncol. 28, 2348–2355 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010). This study showed that mutations in IDH and TET2 are mutually exclusive in acute myeloid leukaemia, which suggests that mutations in IDH promote cancer by influencing chromatin structure and cellular differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chowdhury, R. et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep. 12, 463–469 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ko, M. et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468, 839–843 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tennant, D. A. et al. Reactivating HIF prolyl hydroxylases under hypoxia results in metabolic catastrophe and cell death. Oncogene 28, 4009–4021 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. DeBerardinis, R. J. et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl Acad. Sci. USA 104, 19345–19350 (2007). This paper was one of the first detailed characterizations of metabolism in cancer cells. Using NMR spectroscopy and13C-labelling, it demonstrated that glutamine can be an important nutrient for cancer cells to replenish metabolites that are depleted from the TCA cycle for biosynthesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Vousden, K. H. Alternative fuel — another role for p53 in the regulation of metabolism. Proc. Natl Acad. Sci. USA 107, 7117–7118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hu, W. et al. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc. Natl Acad. Sci. USA 107, 7455–7460 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang, J. B. et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 18, 207–219 (2010). This study showed that the chemical inhibition of glutaminase can be used to selectively target cancer cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Seltzer, M. J. et al. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res. 70, 8981–8987 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ardawi, M. S. & Newsholme, E. A. Glutamine metabolism in lymphocytes of the rat. Biochem. J. 212, 835–842 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ookhtens, M., Kannan, R., Lyon, I. & Baker, N. Liver and adipose tissue contributions to newly formed fatty acids in an ascites tumor. Am. J. Physiol. 247, R146–R153 (1984).

    CAS  PubMed  Google Scholar 

  146. Menendez, J. A. & Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nature Rev. Cancer 7, 763–777 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Nomura, D. K. et al. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140, 49–61 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kuo, W., Lin, J. & Tang, T. K. Human glucose-6-phosphate dehydrogenase (G6PD) gene transforms NIH 3T3 cells and induces tumors in nude mice. Int. J. Cancer 85, 857–864 (2000).

    Article  CAS  PubMed  Google Scholar 

  149. Cocco, P. Does G6PD deficiency protect against cancer? A critical review. J. Epidemiol. Community Health 41, 89–93 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Boros, L. G. et al. Nonoxidative pentose phosphate pathways and their direct role in ribose synthesis in tumors: is cancer a disease of cellular glucose metabolism? Med. Hypotheses 50, 55–59 (1998). This study was among the first modern studies to track carbon in cancer cells, and called into question common assumptions about cancer metabolism.

    Article  CAS  PubMed  Google Scholar 

  151. Shlomi, T., Benyamini, T., Gottlieb, E., Sharan, R. & Ruppin, E. Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the warburg effect. PLoS Comput. Biol. 7, e1002018 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Farber, S. et al. The action of pteroylglutamic conjugates on man. Science 106, 619–621 (1947).

    Article  CAS  PubMed  Google Scholar 

  153. Farber, S., Diamond, L. K., Mercer, R. D., Sylvester, R. F. & Wolff, J. A. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N. Engl. J. Med. 238, 787–793 (1948). This classic paper reported the first clinical efficacy of a cancer therapy targeting metabolism.

    Article  CAS  PubMed  Google Scholar 

  154. Li, M. C., Hertz, R. & Bergenstal, D. M. Therapy of choriocarcinoma and related trophoblastic tumors with folic acid and purine antagonists. N. Engl. J. Med. 259, 66–74 (1958).

    Article  CAS  PubMed  Google Scholar 

  155. Jaffe, N., Frei, E., Traggis, D. & Bishop, Y. Adjuvant methotrexate and citrovorum-factor treatment of osteogenic sarcoma. N. Engl. J. Med. 291, 994–997 (1974).

    Article  CAS  PubMed  Google Scholar 

  156. Kidd, J. G. Regression of transplanted lymphomas induced in vivo by means of normal guinea pig serum. I. Course of transplanted cancers of various kinds in mice and rats given guinea pig serum, horse serum, or rabbit serum. J. Exp. Med. 98, 565–582 (1953).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Clementi, A. Desamidation enzymatique de l'asparagine. Arch. Internat. Physiol. 19, 369–398 (1922).

    CAS  Google Scholar 

  158. Broome, J. D. Evidence that the L-asparaginase activity of guinea pig serum is responsible for its antilymphoma effects. Nature 191, 1114–1115 (1961).

    Article  CAS  Google Scholar 

  159. Tallal, L. et al. E. coli L-asparaginase in the treatment of leukemia and solid tumors in 131 children. Cancer 25, 306–320 (1970).

    Article  CAS  PubMed  Google Scholar 

  160. Larson, R. A. et al. A five-drug remission induction regimen with intensive consolidation for adults with acute lymphoblastic leukemia: cancer and leukemia group B study 8811. Blood 85, 2025–2037 (1995).

    CAS  PubMed  Google Scholar 

  161. Furuta, E., Okuda, H., Kobayashi, A. & Watabe, K. Metabolic genes in cancer: their roles in tumor progression and clinical implications. Biochim. Biophys. Acta 1805, 141–152 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Dang, C. V. Glutaminolysis: supplying carbon or nitrogen or both for cancer cells? Cell Cycle 9, 3884–3886 (2010).

    Article  CAS  PubMed  Google Scholar 

  163. Locasale, J. W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nature Genet. 31 Jul 2011 (doi:10.1038/ng.890).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 14 Jul 2011 (doi:10.1038/nature10350).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Flavin, R., Peluso, S., Nguyen, P. L. & Loda, M. Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol. 6, 551–562 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. Bauer, D. E., Hatzivassiliou, G., Zhao, F., Andreadis, C. & Thompson, C. B. ATP citrate lyase is an important component of cell growth and transformation. Oncogene 24, 6314–6322 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Chajes, V., Cambot, M., Moreau, K., Lenoir, G. M. & Joulin, V. Acetyl-CoA carboxylase α is essential to breast cancer cell survival. Cancer Res. 66, 5287–5294 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Evans, M. J., Saghatelian, A., Sorensen, E. J. & Cravatt, B. F. Target discovery in small-molecule cell-based screens by in situ proteome reactivity profiling. Nature Biotech. 23, 1303–1307 (2005).

    Article  CAS  Google Scholar 

  169. Yang, C. et al. Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res. 69, 7986–7993 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Cheng, T. et al. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc. Natl Acad. Sci. USA 108, 8674–8679 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zaugg, K. et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev. 25, 1041–1051 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to D. Schenkein, L. Whitesell, B. Wolpin, K. Courtney, P. Ward and members of the Vander Heiden Laboratory for helpful discussions and comments on the manuscript. Special thanks to B. Bevis and S. Y. Lunt for advice and help with the generation of the figures. The author acknowledges support from the Burrough's Wellcome Fund, the Smith Family Foundation, the Starr Cancer Consortium, the Damon Runyon Cancer Research Foundation and the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew G. Vander Heiden.

Ethics declarations

Competing interests

Matthew Vander Heiden discloses an advisory relationship with Agios Pharmaceuticals.

Related links

Related links

FURTHER INFORMATION

The Vander Heiden Lab

Glossary

Therapeutic window

A term describing the ability of a drug to treat a disease effectively without causing unacceptable toxicity.

Aerobic glycolysis

The metabolism of glucose to lactate in the presence of oxygen. This is sometimes also referred to as the 'Warburg effect'.

18F-deoxyglucose positron emission tomography

(FDG–PET). A medical imaging test that is used in the clinic to visualize tissues with increased glucose uptake, including tumours.

Tumour microenvironment

The local conditions experienced by cells in a tumour, including the levels of nutrients, oxygen and signalling molecules such as growth factors and cytokines.

Metabolic enzymes

Proteins that catalyse the interconversion of two metabolites.

Cancer cell metabolism

The enzymes and pathways used by cancer cells to transform nutrients into the chemical precursors that make up a cell, and to generate ATP and reducing equivalents that support cellular processes.

Auxotroph

A term describing the inability of a cell (or organism) to synthesize a chemical compound that is required for growth or survival.

Lactic acidosis

A condition of low blood pH (metabolic acidosis) that is caused by the accumulation of lactate.

Metabolite profiling

The measurement of multiple metabolite levels in cells or in body fluid. This is sometimes also referred to as metabolomics. Metabolites are usually detected using nuclear magnetic resonance spectroscopy or mass spectrometry.

Mitochondrial membrane potential

The electrochemical proton gradient across the inner mitochondrial membrane that is generated by the mitochondrial electron transport chain. This gradient is used to synthesize ATP and transport molecules across the inner mitochondrial membrane.

Central carbon metabolism

The core metabolic pathways used by cells to generate ATP, reducing equivalents and the main precursors for amino acid, nucleic acid and lipid biosynthesis.

Bioenergetics

A term referring to how energy flows through living systems.

Lymphopaenia

A clinical term referring to an abnormally low number of lymphocytes in the blood.

Metabolic flux

The rate by which molecules flow through a metabolic pathway. Flux through metabolic pathways is regulated by cells to support cellular processes, and is the composite outcome of: enzyme levels; genetic, allosteric and post-translational regulation of enzymes; and concentrations of metabolites.

Anapleurosis

A term describing the requirement of metabolites to replenish a metabolic cycle when the metabolic intermediates that are involved in the cycle are depleted for use in reactions outside the cycle. The classic example of this process is replenishing those intermediates that are depleted from the tricarboxylic acid cycle for biosynthesis, in order to allow the cycle to continue functioning.

Redox state

A term capturing the reduction–oxidation state of a system. For cells this refers to the propensity of redox couples — such as reduced and oxidized glutathione or NADH and NAD+ — to be in one state or the other.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vander Heiden, M. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 10, 671–684 (2011). https://doi.org/10.1038/nrd3504

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3504

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer