Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bridging the efficacy–effectiveness gap: a regulator's perspective on addressing variability of drug response

Abstract

Drug regulatory agencies should ensure that the benefits of drugs outweigh their risks, but licensed medicines sometimes do not perform as expected in everyday clinical practice. Failure may relate to lower than anticipated efficacy or a higher than anticipated incidence or severity of adverse effects. Here we show that the problem of benefit–risk is to a considerable degree a problem of variability in drug response. We describe biological and behavioural sources of variability and how these contribute to the long-known efficacy–effectiveness gap. In this context, efficacy describes how a drug performs under conditions of clinical trials, whereas effectiveness describes how it performs under conditions of everyday clinical practice. We argue that a broad range of pre- and post-licensing technologies will need to be harnessed to bridge the efficacy–effectiveness gap. Successful approaches will not be limited to the current notion of pharmacogenomics-based personalized medicines, but will also entail the wider use of electronic health-care tools to improve drug prescribing and patient adherence.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Average benefit–risk of drugs as a function of treatment scenario.
Figure 2: Signal-to-noise ratio in clinical trials.
Figure 3: The onion skin model of drug licensing.
Figure 4: The role of electronic drug information in reducing the efficacy–effectiveness gap.

References

  1. 1

    Danish Medicines Agency. Conclusions and recommendations from the Pharmaceutical Forum. Danish Medicines Agency [online], (2010).

  2. 2

    Luce, B. R. et al. EBM, HTA, and CER: clearing the confusion. Millbank Q. 88, 256–276 (2010).

    Google Scholar 

  3. 3

    European Medicines Agency. European Medicines Agency recommends measures to manage contamination of heparin-containing medicines. European Medicines Agency [online], (2008).

  4. 4

    European Medicines Agency. Studies assessed by the EMEA indicate no increased risk of developing cancer for patients who have taken Viracept contaminated with ethyl mesilate. European Medicines Agency [online]. (2008).

  5. 5

    Dal Pan, G. J., Blackburn, S. & Karwoski, C. in Textbook of Pharmacoepidemiology (eds Strom, B. L. & Kimmel, S. E.) (John Wiley & Sons, New Jersey), (in the press).

  6. 6

    Pocock, S. J. & Lubsen, J. More on subgroup analyses in clinical trials. N. Engl. J. Med. 358, 2076 (2008).

    CAS  PubMed  Google Scholar 

  7. 7

    Ingelman-Sundberg, M. Pharmacogenetics: an opportunity for a safer and more efficient pharmacotherapy. J. Intern. Med. 250, 186–200 (2001).

    CAS  PubMed  Google Scholar 

  8. 8

    Roses, A. D. Pharmacogenetics in drug discovery and development: a translational perspective. Nature Rev. Drug Discov. 7, 807–817 (2008).

    CAS  Google Scholar 

  9. 9

    Pharoa, P. D. & Hollingworth, W. Cost effectiveness of lowering cholesterol concentration with statins in patients with and without pre-existing coronary heart disease: life table method applied to health authority population. BMJ 312, 1443–1448 (1996).

    Google Scholar 

  10. 10

    Poole, S. G. & Dooley, M. J. Off-label prescribing in oncology. Support Care Cancer 12, 302–305 (2004).

    PubMed  Google Scholar 

  11. 11

    Hsien, L. et al. Off-label drug use among hospitalised children: identifying areas with the highest need for research. Pharm. World Sci. 30, 497–502 (2008).

    PubMed  Google Scholar 

  12. 12

    [No authors listed.] Guidance for off-label use of drugs. Lancet Neurol. 7, 285 (2008).

  13. 13

    Schosser, R. Risk/benefit evaluation of drugs: the role of the pharmaceutical industry in Germany. Eur. Surg. Res. 34, 203–207 (2008).

    Google Scholar 

  14. 14

    Friedman, M. A. et al. The safety of newly approved medicines: do recent market removals mean there is a problem? JAMA 281, 1728–1734 (1999).

    CAS  PubMed  Google Scholar 

  15. 15

    [No authors listed.] How a statin might destroy a drug company. Lancet 361, 793 (2003).

  16. 16

    European Medicines Agency. EPAR Avandia. European Medicines Agency [online], (2009).

  17. 17

    Forslund, T. et al. Usage, risk and benefit of weight-loss drugs in primary care. Journal of Obesity [online], (2010).

  18. 18

    Center for Medical Technology Policy. Effectiveness Guidance Document: Pragmatic Phase 3 Pharmaceutical Trials. Release Date: September 14, 2010. Center for Medical Technology Policy [online], (2010).

  19. 19

    Petak, I. et al. Integrating molecular diagnostics into anticancer drug discovery. Nature Rev. Drug Discov. 9, 523–535 (2010).

    CAS  Google Scholar 

  20. 20

    Heerdink, E. R., Urquhart, J. & Leufkens, H. G. Changes in prescribed doses after market introduction. Pharmacoepidemiol. Drug Saf. 11, 447–453 (2002).

    PubMed  Google Scholar 

  21. 21

    Cross, J. et al. Postmarketing drug dosage changes of 499 FDA-approved new molecular entities, 1980–1999. Pharmacoepidemiol. Drug Saf. 11, 439–446 (2002).

    Google Scholar 

  22. 22

    Trusheim, M. R. et al. Stratified medicine: strategic and economic implications of combining drugs and clinical biomarkers. Nature Rev. Drug Discov. 6, 287–293 (2007).

    CAS  Google Scholar 

  23. 23

    European Medicines Agency. Herceptin EPAR. European Medicines Agency [online], (Last updated 19 May 2011).

  24. 24

    Barron, J. J., Cziraky, M. J., Weisman, T. & Hicks, D. G. HER2 testing and subsequent trastuzumab treatment for breast cancer in a managed care environment. Oncologist 14, 760–768 (2009).

    CAS  PubMed  Google Scholar 

  25. 25

    European Medicines Agency. EPAR Ziagen. European Medicines Agency [online], (Last updated 18 Apr 2011).

  26. 26

    Stocco, G., Crews, K. R. & Evans, W. E. Genetic polymorphism of inosine-triphosphate- pyrophosphatase influences mercaptopurine metabolism and toxicity during treatment of acute lymphoblastic leukemia individualized for thiopurine-S-methyl-transferase status. Expert Opin. Drug Saf. 9, 23–37 (2010).

    CAS  PubMed  Google Scholar 

  27. 27

    Zaza, G., Granata, S., Sallustio, F., Grandaliano, G. & Schena, F. P. Pharmacogenomics: a new paradigm to personalize treatments in nephrology patients. Clin. Exp. Immunol. 159, 268–280 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    ICH Expert Working Group. International Conference on Harmonisation Guideline E5(R1): Ethnic Factors in the Acceptability of Foreign Clinical Data. ICH Harmonisation For Better Health [online], (1998).

  29. 29

    Falagas, M. E. & Karageorgopoulos, D. E. Adjustment of dosing of antimicrobial agents for bodyweight in adults. Lancet 375, 248–251 (2010).

    PubMed  Google Scholar 

  30. 30

    Kirsch, I. et al. Initial severity and antidepressant benefits: a meta-analysis of data submitted to the Food and Drug Administration. PLoS Med. 5, 260–268 (2008).

    Google Scholar 

  31. 31

    van Staa, T.-P., Leufkens, H. G., Zhang, B. & Smeeth, L. A comparison of cost effectiveness using data from randomized trials or actual clinical practice: selective Cox-2 inhibitors as an example. PLoS Med. 6, e1000194 (2009).

    PubMed  PubMed Central  Google Scholar 

  32. 32

    Greenblatt, D. J. Analysis of drug interactions involving fruit beverages and organic anion-transporting polypeptides. J. Clin. Pharmacol. 49, 1403–1407 (2009).

    CAS  PubMed  Google Scholar 

  33. 33

    Bailey, D. G. Fruit juice inhibition of uptake transport: a new type of food–drug interaction. Br. J. Clin. Pharmacol. 70, 645–655 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Klaasen, R., Wijbrandts, C. A., Gerlag, D. M. & Tak, P. P. Body mass index and clinical response to infliximab in rheumatoid arthritis. Arthritis Rheum. 63, 359–364 (2011).

    CAS  PubMed  Google Scholar 

  35. 35

    US Government Accountability Office: Report to the Ranking Member, Committee on Finance, US Senate. Prescription drugs: FDA's oversight of the promotion of drugs for off-label uses; July 2008. US Government Accountability Office [online], (2008).

  36. 36

    Radley, D.C., Finkelstein, S.N. & Stafford, R. S. Off-label prescribing among office-based physicians. Arch. Intern. Med. 166, 1021–1026 (2006).

    PubMed  Google Scholar 

  37. 37

    Jonville-Béra, A. P., Béra, F. & Autret-Lecaq, E. Are incorrectly used drugs more frequently involved in adverse drug reactions? A retrospective study. Eur. J. Clin. Pharmacol. 61, 231–236 (2005).

    PubMed  Google Scholar 

  38. 38

    Cereza, G., Pedros, C., Garcia, N. & Laporte, J. R. Topiramate in non-approved indications and acute myopia or angle-closure glaucoma. Br. J. Clin. Pharmacol. 60, 578–579 (2005).

    PubMed  PubMed Central  Google Scholar 

  39. 39

    Kohn, L. T., Corrigan, J. M., & Donaldson, M. S. (eds) To Err is Human: Building a Safer Health System (National Academy Press, Washington DC, 2000).

    Google Scholar 

  40. 40

    Bonaccorso, S. & Sturchio, J. L. Perspectives from the pharmaceutical industry. BMJ 327, 863–864 (2003).

    PubMed  PubMed Central  Google Scholar 

  41. 41

    WHO. Adherence to long-term therapies: evidence for action. World Health Organization [online], (2003).

  42. 42

    Urquhart, J. The odds of the three nons when an aptly prescribed medicine isn't working: non-compliance, non-absorption, non-response. Br. J. Clin. Pharmacol. 54, 212–220 (2002).

    PubMed  PubMed Central  Google Scholar 

  43. 43

    Horwitz, R. I. et al. Treatment adherence and risk of death after a myocardial infarction. Lancet 336, 542–545 (1990).

    CAS  PubMed  Google Scholar 

  44. 44

    Cramer, J. A, Benedict, Á, Muszbek, N., Keskinaslan, A. & Khan, Z. M. The significance of compliance and persistence in the treatment of diabetes, hypertension and dyslipidaemia: a review. Int. J. Clin. Pract. 62, 76–87 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Vrijens, B., Gross, R. & Urquhart, J. The odds that clinically unrecognised poor or partial adherence confuses population pharmacokinetic/pharmacodynamic analyses. Basic Clin. Pharmacol. Toxicol. 96, 225–227 (2005).

    CAS  PubMed  Google Scholar 

  46. 46

    Urquhart, J. Getting a handle on why good drugs sometimes don't work. J. R. Coll. Physicians Edinb. 34, 95–98 (2004).

    Google Scholar 

  47. 47

    Centers for Disease Control and Prevention. Achievements in Public Health, 1900–1999 Family Planning. MMWR Morb. Mortal. Wkly. Rep. 48, 1073–1080 (1999).

  48. 48

    Vrijens, B. et al. Modellling the association between adherence and viral load in HIV-infected patients. Stat. Med. 24, 2719–2731 (2005).

    PubMed  Google Scholar 

  49. 49

    Vrijens, B. & Urquhart, J. Patient adherence to prescribed antimicrobial drug dosing regimens. J. Antimicrob. Chemother. 55, 616–627 (2005).

    CAS  PubMed  Google Scholar 

  50. 50

    Olfson, M., West, J. C., Wilk, J. E. & Marcus, S. Factors affecting the effectiveness of clinical decisions in treating schizophrenia. in Proc. of the American Psychiatric Assoc. 156th Annual Meeting (17–22 May 2003; San Francisco, California, USA; Abstract S28C).

  51. 51

    Vrijens, B., Vincze, G., Kristanto, P., Urquhart, J. & Burnier, M. Adherence to prescribed antihypertensive drug treatments: longitudinal study of electronically compiled dosing histories. BMJ 336, 1114–1117 (2008).

    PubMed  PubMed Central  Google Scholar 

  52. 52

    Vincent, O. et al. Effect of concomitant CYP2D6 inhibitor use and tamoxifen adherence on breast cancer recurrence in early-stage breast cancer. J. Clin. Oncol. 28, 2423–2429 (2010).

    Google Scholar 

  53. 53

    Saevarsdottir, S. et al. Patients with early rheumatoid arthritis who smoke are less likely to respond to treatment with methotrexate and tumor necrosis factor inhibitors. Arthtitis Rheum. 63. 26–36 (2011).

    CAS  Google Scholar 

  54. 54

    Harter, J. G. & Peck, C. C. Chronobiology: suggestions for integrating it into drug development. Ann. N. Y. Acad. Sci. 618, 563–571 (1991).

    CAS  PubMed  Google Scholar 

  55. 55

    Rothwell, P. M. Factors that can affect the external validity of randomised controlled trials. PLoS Clin. Trials 1, e9 (2006).

    PubMed  PubMed Central  Google Scholar 

  56. 56

    Thorpe, K. E. et al. A pragmatic-explanatory continuum indicator summary (PRECIS): a tool to help trial designers. CMAJ 180, e47–e57 (2009).

    PubMed  PubMed Central  Google Scholar 

  57. 57

    Temple, R. Enrichment of clinical study populations. Clin. Pharmacol. Ther. 88, 774–778 (2010).

    CAS  PubMed  Google Scholar 

  58. 58

    Goldstein, J. Why Medicare Pays so Much For Cancer Drugs. European Medicines Agency. Wall Street Journal [online], (2009).

  59. 59

    Barbui, C. & Garattini, S. Regulatory policies on medicines for psychiatric disorders: is Europe on target? Br. J. Psychiatry 190, 91–93 (2007).

    PubMed  PubMed Central  Google Scholar 

  60. 60

    Woosley, R. L. & Rice, G. A new system for moving drugs to market. Issues Sci. Technol. XXI, 63–68 (2005).

    Google Scholar 

  61. 61

    Eichler, H. G., Pignatti, F., Flamion, B., Leufkens, H. & Breckenridge, A. Balancing early market access to new drugs with the need for benefit/risk data: a mounting dilemma. Nature Rev. Drug Discov. 7, 818–826 (2008).

    CAS  Google Scholar 

  62. 62

    [No authors listed.] Road map to 2015. European Medicines Agency [online], (2010).

  63. 63

    Maxwell, S., Eichler, H. G., Bucsics, A., Haefeli, W. E. & Gustafsson, L.L. on behalf of the e-SPC consortium. e-SPC — delivering drug information in the 21st century: developing new approaches to deliver drug information to prescribers. Br. J. Clin. Pharmacol. 6 Apr 2011 (doi:10.1111/j.1365–21252011.03981.x.).

  64. 64

    Urquhart, J. Patient noncompliance with drug regimens: measurement, clinical correlates, economic impact. Eur. Heart J. 17 (Suppl. A), 8–15 (1996).

    PubMed  Google Scholar 

  65. 65

    Leufkens, H. G. & Urquhart, J. Variability in patterns of drug usage. J. Pharm. Pharmacol. 46 (Suppl. 1), 433–437 (1994).

    PubMed  Google Scholar 

  66. 66

    McQuay, H. J. & Moore, R. A. Using numerical results from systematic reviews in clinical practice. Ann. Intern. Med. 126, 712–720 (1997).

    CAS  PubMed  Google Scholar 

  67. 67

    Woodcock, J. Assessing the clinical utility of diagnostics used in drug therapy. Clin. Pharmacol. Ther. 88, 765–773 (2010).

    CAS  PubMed  Google Scholar 

  68. 68

    Mok, T. S. et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Donnelly, L. A. et al. A paucimorphic variant in the HMG-CoA reductase gene is associated with lipid-lowering response to statin treatment in diabetes: a GoDARTS study. Pharmacogenet. Genomics 18, 1021–1026 (2008).

    CAS  PubMed  Google Scholar 

  70. 70

    Flockhart, D. A. Pharmacogenetic testing of CYP2C9 and VKORC1 alleles for warfarin. Genet. Med. 10, 139–150 (2008).

    CAS  PubMed  Google Scholar 

  71. 71

    Ginsburg, G. S. & Voora, D. The long and winding road to warfarin pharmacogenetic testing. J. Am. Coll. Cardiol. 55, 2813–2815 (2010).

    CAS  PubMed  Google Scholar 

  72. 72

    Kamali, F. & Wynne, H. Pharmacogenetics of warfarin. Annu. Rev. Med. 61, 63–75 (2010).

    CAS  PubMed  Google Scholar 

  73. 73

    Schilsky, R. L. Personalised medicine in oncology. Nature Rev. Drug Discov. 9, 363–366 (2010).

    CAS  Google Scholar 

  74. 74

    Roses, A. D. Pharmacogenetics in drug discovery and development: a translational perspective. Nature Rev. Drug Discov. 7, 807–817 (2008).

    CAS  Google Scholar 

  75. 75

    European Medicines Agency. Reflection paper on co-development of pharmacogenomic biomarkers and assays in the context of drug development. European Medicines Agency [online], (2010).

  76. 76

    FDA. International Pharmaceutical Regulatory Monitor: US FDA draft guidance explains new drug development tools. FDA News [online], (2010).

  77. 77

    European Medicines Agency. Qualification of novel methodologies for drug development: guidance to applicants. European Medicines Agency [online], (2009).

  78. 78

    McClellan, M. et al. An accelerated pathway for targeted cancer therapies. Nature Rev. Drug Discov. 10, 79–80 (2011).

    CAS  Google Scholar 

  79. 79

    [No authors listed.] Rethinking therapeutic cancer vaccines. Nature Rev. Drug Discov. 8, 685–686 (2009).

  80. 80

    Hampel, H. et al. Biomarkers for Alzheimer's disease therapeutic trials. Prog. Neurobiol. 2 Dec 2010 (doi:10.1016/j.pneurobio.2010.11.005).

    CAS  PubMed  Google Scholar 

  81. 81

    Falissard, B. et al. Relative effectiveness assessment of listed drugs (REAL): a new method for an early comparison of the effectiveness of approved health technologies. Int. J. Technol. Assess Health Care 26, 124–130 (2010).

    PubMed  Google Scholar 

  82. 82

    Birkett, D. et al. Clinical pharmacology in research, teaching and health care: considerations by IUPHAR, the Inter-national Union of Basic and Clinical Pharmacology. Basic Clin. Pharmacol. Toxicol. 107, 531–559 (2010).

    PubMed  Google Scholar 

  83. 83

    Pocock, S. J., Assmann, S. E., Enos, L. E. & Kasten, L. E. Subgroup analysis, covariate adjustment and baseline comparisons in clinical trial reporting: current practice and problems. Stat. Med. 21, 2917–2930 (2002).

    PubMed  Google Scholar 

  84. 84

    Aarons, L. et al. Role of modelling and simulation in Phase I drug development. Eur. J. Pharm. Sci. 13, 115–122 (2001).

    CAS  PubMed  Google Scholar 

  85. 85

    Manolis, E. & Pons, G. Proposals for model-based paediatric medicinal development within the current European Union regulatory framework. Br. J. Clin. Pharmacol. 68, 493–501 (2009).

    PubMed  PubMed Central  Google Scholar 

  86. 86

    [No authors listed.] How to reduce prescribing errors. Lancet 374, 1945 (2009).

  87. 87

    [No authors listed.] Evidence-based Practice Centres: synthesizing scientific evidence to improve quality and effectiveness in health care. Agency for Healthcare Research and Quality [online], (2011).

  88. 88

    Bahri, P. Public pharmacovigilance communication: a process calling for evidence-based, objective-driven strategies. Drug Saf. 33, 1065–1079 (2010).

    PubMed  Google Scholar 

  89. 89

    Smalley, W. et al. Contraindicated use of cisapride: impact of food and drug administration regulatory action. JAMA 284, 3036–3039 (2000).

    CAS  PubMed  Google Scholar 

  90. 90

    John, J. et al. HER2 testing and subsequent trastuzumab treatment for breast cancer in a managed care environment. Oncologist 14, 760–768 (2009).

    Google Scholar 

  91. 91

    Gustafsson, L. L. et al. The “Wise List” — a comprehensive concept to select, communicate and achieve recommendations of essential drugs in ambulatory care in Stockholm. Basic Clin. Pharmacol. Toxicol. 108, 224–233 (2011).

    CAS  PubMed  Google Scholar 

  92. 92

    Shea, S. & Hripcsak, G. Accelerating the use of electronic health records in physician practices. N. Engl. J. Med. 362, 192–195 (2010).

    CAS  PubMed  Google Scholar 

  93. 93

    Sjöborg, B. et al. Design and implementation of a point-of-care computerized system for drug therapy in Stockholm metropolitan health region-bridging the gap between knowledge and practice. Int. J. Med. Inform. 76, 497–506 (2007).

    PubMed  Google Scholar 

  94. 94

    Classen, D. C., Avery, A. J. & Bates, D. W. Evaluation and certification of computerized provider order entry systems. J. Am. Med. Inform. Assoc. 14, 48–55 (2007).

    PubMed  PubMed Central  Google Scholar 

  95. 95

    Böttiger, Y. et al. SFINX — a drug–drug interaction database desgined for clinical decision support systems. Eur. J. Clin. Pharmacol. 95, 627–633 (2009).

    Google Scholar 

  96. 96

    Wettermark, B. et al. The new Swedish Prescribed Drug Register—opportunities for pharmacoepidemiological research and experience from the first six months. Pharmacoepidemiol. Drug Saf. 16, 726–735 (2007).

    PubMed  Google Scholar 

  97. 97

    Cutler, D. & Everett, W. Thinking outside the pillbox — medication adherence as a priority for health care reform. N. Engl. J. Med. 362, 1553–1555 (2010).

    CAS  PubMed  Google Scholar 

  98. 98

    Modi, A. C. & Quittner, A. L. Barriers to treatment adherence for children with cystic fibrosis and asthma: what gets in the way? J. Pediatr. Psychol. 31, 846–858 (2006).

    PubMed  Google Scholar 

  99. 99

    Osterberg, L. G., Urquhart, J. & Blaschke, T. F. Understanding forgiveness: minding and mining the gaps between pharmacokinetics and therapeutics. Clin. Pharmacol. Ther. 88, 457–459 (2010).

    CAS  PubMed  Google Scholar 

  100. 100

    Frieden, T. R., Fujiwara, P. I., Washko, R. M. & Hamburg, M. A. Tuberculosis in New York City — turning the tide. N. Engl. J. Med. 333, 229–233 (1995).

    CAS  PubMed  Google Scholar 

  101. 101

    Lester, R. T. et al. Effects of a mobile phone short message service on antiretroviral treatment adherence in Kenya (WelTel Kenya1): a randomised trial. Lancet 376, 1838–1845 (2010).

    PubMed  Google Scholar 

  102. 102

    Chi, B. H. & Stringer, J. S. A. Mobile phones to improve HIV treatment adherence. Lancet 376, 1807–1808 (2010).

    PubMed  Google Scholar 

  103. 103

    Ogedegbe, G. Self-titration for treatment of uncomplicated hypertension. Lancet 376, 144–146 (2010).

    PubMed  PubMed Central  Google Scholar 

  104. 104

    Singer, E. Message from a pill bottle. Technology Review [online], (2010).

    Google Scholar 

  105. 105

    Au-Yeung, K. Y. et al. A networked system for self-management of drug therapy and wellness. ACM Digital Library [online], (2010).

    Google Scholar 

  106. 106

    Sokol, M. C., McGuigan, K. A., Verbrugge, R. R. & Epstein, R. S. Impact of medication adherence on hospitalization risk and healthcare cost. Med. Care 43, 521–530 (2005).

    PubMed  Google Scholar 

  107. 107

    Ware, J. H. & Hamel, M. B. Pragmatic trials — guide to better patient care? N. Engl. J. Med. 364, 1685–1687 (2011).

    CAS  PubMed  Google Scholar 

  108. 108

    Hughes, B. 2009 FDA drug approvals. Nature Rev. Drug Discov. 9, 89–92 (2010).

    CAS  Google Scholar 

  109. 109

    Eichler, H. G., Aronsson, B., Abadie, E. & Salmonson, T. New drug approval success rate in Europe in 2009. Nature Rev. Drug Discov. 9, 355–356 (2010).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Brigitte Bloechl-Daum.

Ethics declarations

Competing interests

The views expressed in this article are the personal views of the authors and may not be understood or quoted as being made on behalf of or reflecting the position of the regulatory agencies, health technology assessment bodies or other organizations that the authors work for.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eichler, HG., Abadie, E., Breckenridge, A. et al. Bridging the efficacy–effectiveness gap: a regulator's perspective on addressing variability of drug response. Nat Rev Drug Discov 10, 495–506 (2011). https://doi.org/10.1038/nrd3501

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing