Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bio-inspired, bioengineered and biomimetic drug delivery carriers

Key Points

  • There are various challenges and limitations associated with the delivery of free drugs. These include poor solubility, poor stability, unwanted toxicity and/or an inability to cross cell membranes.

  • Although there have been considerable advances in the development of synthetic drug carriers, it has emerged that natural carrier systems — such as those used by bacteria, viruses and various cells within the body — have the potential to be therapeutically exploited and may be highly effective in addressing these challenges.

  • Several strategies have been proposed that are based on the engineering of bacteria and viruses for therapeutic functions, including recombinant bacteria for protein delivery, tumour-targeting bacteria for chemotherapeutic applications, and viral gene vectors and virus-like particles for vaccination.

  • Pathogens such as bacteria and viruses induce diseases by evading immune responses and inducing favourable interactions with target cells, a mechanism that bears a striking resemblance to the action of many drug delivery carriers. Several synthetic carriers attempt to mimic these features to enhance their therapeutic function, especially for vaccination.

  • Various types of cells — including red blood cells, macrophages, dendritic cells and stem cells — have been used as carriers or they have inspired the design of new carriers.

  • Technologies that take advantage of the complex structural features that are seen in biological systems as well as precision engineering and production (as seen in synthetic carriers) have great potential for the advancement of effective drug delivery strategies.

Abstract

Synthetic carriers such as polymer and lipid particles often struggle to meet clinical expectations. Natural particulates — that range from pathogens to mammalian cells — are therefore worth examining in more depth, as they are highly optimized for their specific functions in vivo and possess features that are often desired in drug delivery carriers. With a better understanding of these biological systems, in conjunction with the availability of advanced biotechnology tools that are useful for re-engineering the various natural systems, researchers have started to exploit natural particulates for multiple applications in the delivery of proteins, small interfering RNA and other therapeutic agents. Here, we review the natural drug delivery carriers that have provided the basis and inspiration for new drug delivery systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bioengineered pathogens for drug delivery.
Figure 2: Virus-mimicking synthetic drug carriers.
Figure 3: Bioengineered eukaryotic cells for drug delivery.
Figure 4: Cell-mimicking synthetic drug particles.
Figure 5: Bioengineered, bio-inspired and biomimetic systems.

Similar content being viewed by others

References

  1. Allen, T. M. & Cullis, P. R. Drug delivery systems: entering the mainstream. Science 303, 1818–1822 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Farokhzad, O. C. & Langer, R. Impact of nanotechnology on drug delivery. ACS Nano 3, 16–20 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Langer, R. New methods of drug delivery. Science 249, 1527–1533 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Moghimi, S. M. & Kissel, T. Particulate nanomedicines. Adv. Drug Deliv. Rev. 58, 1451–1455 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Alcami, A. & Koszinowski, U. H. Viral mechanisms of immune evasion. Immunol. Today 21, 447–455 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ploegh, H. L. Viral strategies of immune evasion. Science 280, 248–253 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Mudhakir, D. & Harashima, H. Learning from the viral journey: how to enter cells and how to overcome intracellular barriers to reach the nucleus. AAPS J. 11, 65–77 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hornef, M. W., Wick, M. J., Rhen, M. & Normark, S. Bacterial strategies for overcoming host innate and adaptive immune responses. Nature Immunol. 3, 1033–1040 (2002).

    Article  CAS  Google Scholar 

  9. Wells, J. M. & Mercenier, A. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nature Rev. Microbiol. 6, 349–362 (2008). An overview of the use of recombinant GRAS bacteria for drug delivery.

    Article  CAS  Google Scholar 

  10. Wells, J. Mucosal vaccination and therapy with genetically modified lactic acid bacteria. Annu. Rev. Food Sci. Technol. 2, 423–445 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Yuvaraj, S., Peppelenbosch, M. P. & Bos, N. A. Transgenic probiotica as drug delivery systems: the golden bullet? Expert Opin. Drug Deliv. 4, 1–3 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Steidler, L. et al. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nature Biotech. 21, 785–789 (2003).

    Article  CAS  Google Scholar 

  13. Steidler, L. et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin10. Science 289, 1352–1355 (2000). This study demonstrated the in vivo delivery of therapeutic proteins that were produced by recombinant bacteria for the treatment of a specific disease.

    Article  CAS  PubMed  Google Scholar 

  14. Braat, H. et al. A phase I trial with transgenic bacteria expressing interleukin10 in Crohn's disease. Clin. Gastroenterol. Hepatol. 4, 754–759 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Caluwaerts, S. et al. AG013, a mouth rinse formulation of Lactococcus lactis secreting human Trefoil Factor 1, provides a safe and efficacious therapeutic tool for treating oral mucositis. Oral Oncol. 46, 564–570 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Ricci, S. et al. In vivo mucosal delivery of bioactive human interleukin 1 receptor antagonist produced by Streptococcus gordonii. BMC Biotechnol. 3, 15 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Porzio, S., Bossu, P., Ruggiero, P., Boraschi, D. & Tagliabue, A. Mucosal delivery of anti-inflammatory IL1-Ra by sporulating recombinant bacteria. BMC Biotechnol. 4, 27 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Pusch, O. et al. Bioengineering lactic acid bacteria to secrete the HIV1 virucide cyanovirin. J. Acquir. Immune Defic. Syndr. 40, 512–520 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Pusch, O. et al. An anti-HIV microbicide engineered in commensal bacteria: secretion of HIV1 fusion inhibitors by lactobacilli. AIDS 20, 1917–1922 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, X. et al. Engineered vaginal lactobacillus strain for mucosal delivery of the human immunodeficiency virus inhibitor cyanovirin-N. Antimicrob. Agents Chemother. 50, 3250–3259 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Robinson, K. et al. Mucosal and cellular immune responses elicited by recombinant Lactococcus lactis strains expressing tetanus toxin fragment C. Infect. Immun. 72, 2753–2761 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hanniffy, S. B., Carter, A. T., Hitchin, E. & Wells, J. M. Mucosal delivery of a pneumococcal vaccine using Lactococcus lactis affords protection against respiratory infection. J. Infect. Dis. 195, 185–193 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Poo, H. et al. Oral administration of human papilloma virus type 16 E7 displayed on Lactobacillus casei induces E7-specific antitumor effects in C57/BL6 mice. Int. J. Cancer 119, 1702–1709 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Mohamadzadeh, M., Duong, T., Sandwick, S. J., Hoover, T. & Klaenhammer, T. R. Dendritic cell targeting of Bacillus anthracis protective antigen expressed by Lactobacillus acidophilus protects mice from lethal challenge. Proc. Natl Acad. Sci. USA 106, 4331–4336 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheminay, C. & Hensel, M. Rational design of Salmonella recombinant vaccines. Int. J. Med. Microbiol. 298, 87–98 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Pawelek, J. M., Low, K. B. & Bermudes, D. Bacteria as tumour-targeting vectors. Lancet Oncol. 4, 548–556 (2003).

    Article  PubMed  Google Scholar 

  27. King, I. et al. Tumor-targeted Salmonella expressing cytosine deaminase as an anticancer agent. Hum. Gene Ther. 13, 1225–1233 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Low, K. B. et al. Lipid A mutant Salmonella with suppressed virulence and TNFα induction retain tumor-targeting in vivo. Nature Biotech. 17, 37–41 (1999).

    Article  CAS  Google Scholar 

  29. Pawelek, J. M., Low, K. B. & Bermudes, D. Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res. 57, 4537–4544 (1997).

    CAS  PubMed  Google Scholar 

  30. Schlechte, H. & Elbe, B. Recombinant plasmid DNA variation of Clostridium oncolyticum — model experiments of cancerostatic gene transfer. Zentralbl. Bakteriol. Mikrobiol. Hyg. A 268, 347–356 (1988).

    CAS  PubMed  Google Scholar 

  31. Jiang, Z. et al. Using attenuated Salmonella typhi as tumor targeting vector for MDR1 siRNA delivery. Cancer Biol. Ther. 6, 555–560 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, L. et al. Intratumoral delivery and suppression of prostate tumor growth by attenuated Salmonella enterica serovar typhimurium carrying plasmid-based small interfering RNAs. Cancer Res. 67, 5859–5864 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Xiang, S., Fruehauf, J. & Li, C. J. Short hairpin RNA-expressing bacteria elicit RNA interference in mammals. Nature Biotech. 24, 697–702 (2006). This study demonstrated that RNAi mediated by recombinant bacteria induces gene silencing in mammalian cells.

    Article  CAS  Google Scholar 

  34. Akin, D. et al. Bacteria-mediated delivery of nanoparticles and cargo into cells. Nature Nanotechnol. 2, 441–449 (2007). This was a report on a novel technique for delivering nanoparticles, which are carried on the bacterial surface.

    Article  CAS  Google Scholar 

  35. Witte, A., Wanner, G., Sulzner, M. & Lubitz, W. Dynamics of PhiX174 protein E-mediated lysis of Escherichia coli. Arch. Microbiol. 157, 381–388 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Lubitz, P., Mayr, U. B. & Lubitz, W. Applications of bacterial ghosts in biomedicine. Adv. Exp. Med. Biol. 655, 159–170 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Kudela, P. et al. Bacterial ghosts as novel efficient targeting vehicles for DNA delivery to the human monocyte-derived dendritic cells. J. Immunother. 28, 136–143 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Paukner, S. et al. DNA-loaded bacterial ghosts efficiently mediate reporter gene transfer and expression in macrophages. Mol. Ther. 11, 215–223 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Paukner, S., Kohl, G. & Lubitz, W. Bacterial ghosts as novel advanced drug delivery systems: antiproliferative activity of loaded doxorubicin in human Caco2 cells. J. Control Release 94, 63–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Talebkhan, Y. et al. Helicobacter pylori bacterial ghost containing recombinant Omp18 as a putative vaccine. J. Microbiol. Methods 82, 334–337 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Eko, F. O., Talin, B. A. & Lubitz, W. Development of a Chlamydia trachomatis bacterial ghost vaccine to fight human blindness. Hum. Vaccin. 4, 176–183 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Kudela, P., Koller, V. J. & Lubitz, W. Bacterial ghosts (BGs) — advanced antigen and drug delivery system. Vaccine 28, 5760–5767 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. van Roosmalen, M. L. et al. Mucosal vaccine delivery of antigens tightly bound to an adjuvant particle made from food-grade bacteria. Methods 38, 144–149 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Audouy, S. A. et al. Development of lactococcal GEM-based pneumococcal vaccines. Vaccine 25, 2497–2506 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Nuyts, S. et al. Clostridium spores for tumor-specific drug delivery. Anticancer Drugs 13, 115–125 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Toso, J. F. et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Clin. Oncol. 20, 142–152 (2002).

    Article  PubMed  Google Scholar 

  47. Schnierle, B. S. et al. Pseudotyping of murine leukemia virus with the envelope glycoproteins of HIV generates a retroviral vector with specificity of infection for CD4-expressing cells. Proc. Natl Acad. Sci. USA 94, 8640–8645 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pereboev, A. V. et al. Enhanced gene transfer to mouse dendritic cells using adenoviral vectors coated with a novel adapter molecule. Mol. Ther. 9, 712–720 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Everts, M. et al. Covalently linked Au nanoparticles to a viral vector: potential for combined photothermal and gene cancer therapy. Nano Lett. 6, 587–591 (2006). This was a demonstration of the use of gold nanoparticles that were attached to the surface of a viral vector for selective delivery to tumour cells, thus implicating the possibility of photothermal therapy and gene therapy as a combinational therapeutic approach.

    Article  CAS  PubMed  Google Scholar 

  50. Saini, V. et al. An adenoviral platform for selective self-assembly and targeted delivery of nanoparticles. Small 4, 262–269 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Huh, Y. et al. Hybrid nanoparticles for magnetic resonance imaging of target-specific viral gene delivery. Adv. Mater. 19, 3109–3112 (2007).

    Article  CAS  Google Scholar 

  52. You, J. O., Liu, Y. S., Liu, Y. C., Joo, K. I. & Peng, C. A. Incorporation of quantum dots on virus in polycationic solution. Int. J. Nanomedicine 1, 59–64 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Grgacic, E. V. & Anderson, D. A. Virus-like particles: passport to immune recognition. Methods 40, 60–65 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Villa, L. L. et al. Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: a randomised double-blind placebo-controlled multicentre phase II efficacy trial. Lancet Oncol. 6, 271–278 (2005).

    Article  PubMed  Google Scholar 

  55. Garland, S. M. et al. Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N. Engl. J. Med. 356, 1928–1943 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, M. et al. Inhibition of simian virus 40 large tumor antigen expression in human fetal glial cells by an antisense oligodeoxynucleotide delivered by the JC virus-like particle. Hum. Gene Ther. 15, 1077–1090 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Henke, S., Rohmann, A., Bertling, W. M., Dingermann, T. & Zimmer, A. Enhanced in vitro oligonucleotide and plasmid DNA transport by VP1 virus-like particles. Pharm. Res. 17, 1062–1070 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Pattenden, L. K., Middelberg, A. P., Niebert, M. & Lipin, D. I. Towards the preparative and large-scale precision manufacture of virus-like particles. Trends Biotechnol. 23, 523–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Datta, A. et al. High relaxivity gadolinium hydroxypyridonate-viral capsid conjugates: nanosized MRI contrast agents. J. Am. Chem. Soc. 130, 2546–2552 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Tong, G. J., Hsiao, S. C., Carrico, Z. M. & Francis, M. B. Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles. J. Am. Chem. Soc. 131, 11174–11178 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hooker, J. M., O'Neil, J. P., Romanini, D. W., Taylor, S. E. & Francis, M. B. Genome-free viral capsids as carriers for positron emission tomography radiolabels. Mol. Imaging Biol. 10, 182–191 (2008).

    Article  PubMed  Google Scholar 

  62. Wu, W., Hsiao, S. C., Carrico, Z. M. & Francis, M. B. Genome-free viral capsids as multivalent carriers for taxol delivery. Angew. Chem. Int. Ed. Engl. 48, 9493–9497 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Seow, Y. & Wood, M. J. Biological gene delivery vehicles: beyond viral vectors. Mol. Ther. 17, 767–777 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Takamura, S. et al. DNA vaccine-encapsulated virus-like particles derived from an orally transmissible virus stimulate mucosal and systemic immune responses by oral administration. Gene Ther. 11, 628–635 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. May, T., Gleiter, S. & Lilie, H. Assessment of cell type specific gene transfer of polyoma virus like particles presenting a tumor specific antibody Fv fragment. J. Virol. Methods 105, 147–157 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Manchester, M. & Singh, P. Virus-based nanoparticles (VNPs): platform technologies for diagnostic imaging. Adv. Drug Deliv. Rev. 58, 1505–1522 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Strable, E. & Finn, M. G. Chemical modification of viruses and virus-like particles. Curr. Top. Microbiol. Immunol. 327, 1–21 (2009).

    CAS  PubMed  Google Scholar 

  68. Sengupta, S. et al. Accelerated bioorthogonal conjugation: a practical method for the ligation of diverse functional molecules to a polyvalent virus scaffold. Bioconjug. Chem. 16, 1572–1579 (2005).

    Article  CAS  Google Scholar 

  69. Almeida, J. D., Edwards, D. C., Brand, C. M. & Heath, T. D. Formation of virosomes from influenza subunits and liposomes. Lancet 2, 899–901 (1975).

    Article  CAS  PubMed  Google Scholar 

  70. de Jonge, J. et al. Cellular gene transfer mediated by influenza virosomes with encapsulated plasmid DNA. Biochem. J. 405, 41–49 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Daemen, T. et al. Virosomes for antigen and DNA delivery. Adv. Drug Deliv. Rev. 57, 451–463 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Lakadamyali, M., Rust, M. J. & Zhuang, X. Endocytosis of influenza viruses. Microbes Infect. 6, 929–936 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Earp, L. J., Delos, S. E., Park, H. E. & White, J. M. The many mechanisms of viral membrane fusion proteins. Curr. Top. Microbiol. Immunol. 285, 25–66 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Leroux-Roels, G. Unmet needs in modern vaccinology adjuvants to improve the immune response. Vaccine 28 (Suppl. 3), 25–36 (2010).

    Article  Google Scholar 

  75. Chams, V., Bonnafous, P. & Stegmann, T. Influenza hemagglutinin mediated fusion of membranes containing poly(ethylene-glycol) grafted lipids: new insights into the fusion mechanism. FEBS Lett. 448, 28–32 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Waelti, E. et al. Targeting HER-2/neu with antirat Neu virosomes for cancer therapy. Cancer Res. 62, 437–444 (2002).

    CAS  PubMed  Google Scholar 

  77. de Jonge, J., Holtrop, M., Wilschut, J. & Huckriede, A. Reconstituted influenza virus envelopes as an efficient carrier system for cellular delivery of small-interfering RNAs. Gene Ther. 13, 400–411 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Hubbell, J. A., Thomas, S. N. & Swartz, M. A. Materials engineering for immunomodulation. Nature 462, 449–460 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Kovacsovics-Bankowski, M., Clark, K., Benacerraf, B. & Rock, K. L. Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages. Proc. Natl Acad. Sci. USA 90, 4942–4946 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Reis e Sousa, C. & Germain, R. N. Major histocompatibility complex class I presentation of peptides derived from soluble exogenous antigen by a subset of cells engaged in phagocytosis. J. Exp. Med. 182, 841–851 (1995).

    Article  CAS  PubMed  Google Scholar 

  81. Serre, K., Giraudo, L., Siret, C., Leserman, L. & Machy, P. CD4 T cell help is required for primary CD8 T cell responses to vesicular antigen delivered to dendritic cells in vivo. Eur. J. Immunol. 36, 1386–1397 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Harding, C. V., Collins, D. S., Slot, J. W., Geuze, H. J. & Unanue, E. R. Liposome-encapsulated antigens are processed in lysosomes, recycled, and presented to T cells. Cell 64, 393–401 (1991).

    Article  CAS  PubMed  Google Scholar 

  83. Shen, H. et al. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117, 78–88 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Junt, T. et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450, 110–114 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Manolova, V. et al. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 38, 1404–1413 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Reddy, S. T. et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nature Biotech. 25, 1159–1164 (2007).

    Article  CAS  Google Scholar 

  87. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. van Duin, D., Medzhitov, R. & Shaw, A. C. Triggering TLR signaling in vaccination. Trends Immunol. 27, 49–55 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Blander, J. M. & Medzhitov, R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440, 808–812 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Heit, A., Schmitz, F., Haas, T., Busch, D. H. & Wagner, H. Antigen co-encapsulated with adjuvants efficiently drive protective T cell immunity. Eur. J. Immunol. 37, 2063–2074 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Demento, S. L. et al. TLR9-targeted biodegradable nanoparticles as immunization vectors protect against West Nile encephalitis. J. Immunol. 185, 2989–2997 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Alving, C. R. & Rao, M. Lipid A and liposomes containing lipid A as antigens and adjuvants. Vaccine 26, 3036–3045 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Bershteyn, A. et al. Polymer-supported lipid shells, onions, and flowers. Soft Matter 4, 1787–1791 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brodsky, I. E. & Monack, D. NLR-mediated control of inflammasome assembly in the host response against bacterial pathogens. Semin. Immunol. 21, 199–207 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunol. 9, 847–856 (2008).

    Article  CAS  Google Scholar 

  96. Eisenbarth, S. C., Colegio, O. R., O'Connor, W., Sutterwala, F. S. & Flavell, R. A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sharp, F. A. et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc. Natl Acad. Sci. USA 106, 870–875 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Malyala, P., O'Hagan, D. T. & Singh, M. Enhancing the therapeutic efficacy of CpG oligonucleotides using biodegradable microparticles. Adv. Drug Deliv. Rev. 61, 218–225 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Xu, L. et al. Self-assembly of a virus-mimicking nanostructure system for efficient tumor-targeted gene delivery. Hum. Gene Ther. 13, 469–481 (2002). This study described a virus-mimetic synthetic system that resembles the structural and functional traits of a virus.

    Article  CAS  PubMed  Google Scholar 

  100. Lee, E. S., Kim, D., Youn, Y. S., Oh, K. T. & Bae, Y. H. A virus-mimetic nanogel vehicle. Angew. Chem. Int. Ed. Engl. 47, 2418–2421 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nature Nanotechnol. 2, 249–255 (2007).

    Article  CAS  Google Scholar 

  102. Muzykantov, V. R. Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin. Drug Deliv. 7, 403–427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hamidi, M., Zarrin, A., Foroozesh, M. & Mohammadi-Samani, S. Applications of carrier erythrocytes in delivery of biopharmaceuticals. J. Control Release 118, 145–160 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Gopal, V., Kumar, A., Usha, A., Karthik, A. & Udupa, N. Effective drug targeting by erythrocytes as carrier systems. Curr. Trends Biotechnol. Pharm. 1, 18–33 (2007).

    CAS  Google Scholar 

  105. Fraternale, A. et al. Macrophage protection by addition of glutathione (GSH)-loaded erythrocytes to AZT and DDI in a murine AIDS model. Antiviral Res. 56, 263–272 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Talwar, N. & Jain, N. Erythrocytes as carriers of metronidazole: in vitro characterization. Drug Dev. Ind. Pharm. 18, 1799–1812 (1992).

    Article  CAS  Google Scholar 

  107. Kravtzoff, R., Ropars, C., Laguerre, M., Muh, J. & Chassaigne, M. Erythrocytes as carriers for L-asparaginase. Methodological and mouse in-vivo studies. J. Pharm. Pharmacol. 42, 473 (1990).

    Article  CAS  PubMed  Google Scholar 

  108. Annese, V. et al. Erythrocytes-mediated delivery of dexamethasone in steroid-dependent IBD patients — a pilot uncontrolled study. Am. J. Gastroenterol. 100, 1370–1375 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Hamidi, M., Tajerzadeh, H., Dehpour, A. R., Rouini, M. R. & Ejtemaee-Mehr, S. In vitro characterization of human intact erythrocytes loaded by enalaprilat. Drug Deliv. 8, 223–230 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Lotero, L. A., Olmos, G. & Diez, J. C. Delivery to macrophages and toxic action of etoposide carried in mouse red blood cells. Biochim. Biophys. Acta 1620, 160–166 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Kim, S. H. et al. Opsonized erythrocyte ghosts for liver-targeted delivery of antisense oligodeoxynucleotides. Biomaterials 30, 959–967 (2009).

    Article  PubMed  CAS  Google Scholar 

  112. Flynn, G., McHale, L. & McHale, A. P. Methotrexate-loaded, photosensitized erythrocytes: a photo-activatable carrier/delivery system for use in cancer therapy. Cancer Lett. 82, 225–229 (1994).

    Article  CAS  PubMed  Google Scholar 

  113. Jain, S., Jain, S. K. & Dixit, V. Magnetically guided rat erythrocytes bearing isoniazid: preparation, characterization, and evaluation. Drug Dev. Ind. Pharm. 23, 999–1006 (1997).

    Article  CAS  Google Scholar 

  114. Chiarantini, L., Rossi, L., Fraternale, A. & Magnani, M. Modulated red blood cell survival by membrane protein clustering. Mol. Cell Biochem. 144, 53–59 (1995).

    Article  CAS  PubMed  Google Scholar 

  115. Chambers, E. & Mitragotri, S. Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. J. Control Release 100, 111–119 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Chambers, E. & Mitragotri, S. Long circulating nanoparticles via adhesion on red blood cells: mechanism and extended circulation. Exp. Biol. Med. (Maywood) 232, 958–966 (2007).

    CAS  Google Scholar 

  117. Murciano, J. C. et al. Prophylactic fibrinolysis through selective dissolution of nascent clots by tPA-carrying erythrocytes. Nature Biotech. 21, 891–896 (2003).

    Article  CAS  Google Scholar 

  118. Danielyan, K. et al. Cerebrovascular thromboprophylaxis in mice by erythrocyte-coupled tissue-type plasminogen activator. Circulation 118, 1442–1449 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zaitsev, S. et al. Human complement receptor type 1-directed loading of tissue plasminogen activator on circulating erythrocytes for prophylactic fibrinolysis. Blood 108, 1895–1902 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Burke, B., Sumner, S., Maitland, N. & Lewis, C. E. Macrophages in gene therapy: cellular delivery vehicles and in vivo targets. J. Leukoc. Biol. 72, 417–428 (2002).

    CAS  PubMed  Google Scholar 

  121. Dou, H. et al. Development of a macrophage-based nanoparticle platform for antiretroviral drug delivery. Blood 108, 2827–2835 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Liu, Y. et al. Ingress of blood-borne macrophages across the blood–brain barrier in murine HIV1 encephalitis. J. Neuroimmunol. 200, 41–52 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dou, H. et al. Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J. Immunol. 183, 661–669 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Bingle, L., Brown, N. J. & Lewis, C. E. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J. Pathol. 196, 254–265 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Choi, M. R. et al. A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors. Nano Lett. 7, 3759–3765 (2007). This was the first study of photothermal therapy that used TAMs as delivery carriers of gold nanoshells.

    Article  CAS  PubMed  Google Scholar 

  126. Alizadeh, D., Zhang, L., Hwang, J., Schluep, T. & Badie, B. Tumor-associated macrophages are predominant carriers of cyclodextrin-based nanoparticles into gliomas. Nanomedicine 6, 382–390 (2009).

    Article  PubMed  CAS  Google Scholar 

  127. Murdoch, C., Giannoudis, A. & Lewis, C. E. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104, 2224–2234 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Swiston, A. J. et al. Surface functionalization of living cells with multilayer patches. Nano Lett. 8, 4446–4453 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Swiston, A. J., Gilbert, J. B., Irvine, D. J., Cohen, R. E. & Rubner, M. F. Freely suspended cellular “backpacks” lead to cell aggregate self-assembly. Biomacromolecules 11, 1826–1832 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Stephan, M. T., Moon, J. J., Um, S. H., Bershteyn, A. & Irvine, D. J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nature Med. 16, 1035–1041 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Rosenberg, S. A., Restifo, N. P., Yang, J. C., Morgan, R. A. & Dudley, M. E. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nature Rev. Cancer 8, 299–308 (2008).

    Article  CAS  Google Scholar 

  132. June, C. Principles of adoptive T cell cancer therapy. J. Clin. Invest. 117, 1204–1212 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Studeny, M. et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J. Natl Cancer Inst. 96, 1593–1603 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Studeny, M. et al. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-β delivery into tumors. Cancer Res. 62, 3603–3608 (2002).

    CAS  PubMed  Google Scholar 

  135. Nakamizo, A. et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res. 65, 3307–3318 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Ren, C. et al. Cancer gene therapy using mesenchymal stem cells expressing interferon-β in a mouse prostate cancer lung metastasis model. Gene Ther. 15, 1446–1453 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ren, C. et al. Therapeutic potential of mesenchymal stem cells producing interferon-α in a mouse melanoma lung metastasis model. Stem Cells 26, 2332–2338 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Stagg, J., Lejeune, L., Paquin, A. & Galipeau, J. Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Hum. Gene Ther. 15, 597–608 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Nakamura, K. et al. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther. 11, 1155–1164 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Chen, X. et al. A tumor-selective biotherapy with prolonged impact on established metastases based on cytokine gene-engineered MSCs. Mol. Ther. 16, 749–756 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Danks, M. K. et al. Tumor-targeted enzyme/prodrug therapy mediates long-term disease-free survival of mice bearing disseminated neuroblastoma. Cancer Res. 67, 22–25 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Roger, M. et al. Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors. Biomaterials 31, 8393–8401 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Doshi, N., Zahr, A. S., Bhaskar, S., Lahann, J. & Mitragotri, S. Red blood cell-mimicking synthetic biomaterial particles. Proc. Natl Acad. Sci. USA 106, 21495–21499 (2009). This study described RBC-mimetic synthetic polymer particles that resemble natural RBCs in size, shape, mechanical flexibility as well as oxygen-carrying ability.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Haghgooie, R., Toner, M. & Doyle, P. Squishy non-spherical hydrogel microparticles. Macromol. Rapid Commun. 31, 128–134 (2010).

    CAS  PubMed  Google Scholar 

  145. Merkel, T. J. et al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc. Natl Acad. Sci. USA 108, 586–591 (2011). This paper demonstrated that particles that possess deformability that is comparable to RBCs exhibit longer circulation times.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Oldenborg, P. A. et al. Role of CD47 as a marker of self on red blood cells. Science 288, 2051–2054 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Ruoslahti, E., Bhatia, S. N. & Sailor, M. J. Targeting of drugs and nanoparticles to tumors. J. Cell Biol. 188, 759–768 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Yoo, J., Chambers, E. & Mitragotri, S. Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects. Curr. Pharm. Des. 16, 2298–2307 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Tsai, R. K. & Discher, D. E. Inhibition of “self” engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J. Cell Biol. 180, 989–1003 (2008). This was the first study to use CD47, a 'marker of self', on synthetic particles to obtain resistance to phagocytosis by macrophages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Bertram, J. P. et al. Intravenous hemostat: nanotechnology to halt bleeding. Sci. Transl. Med. 1, 11ra22 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Mitragotri, S. & Lahann, J. Physical approaches to biomaterial design. Nature Mater. 8, 15–23 (2009).

    Article  CAS  Google Scholar 

  152. Kisak, E. T., Coldren, B. & Zasadzinski, J. A. Nanocompartments enclosing vesicles, colloids, and macromolecules via interdigitated lipid bilayers. Langmuir 18, 284–288 (2002).

    Article  CAS  Google Scholar 

  153. Boyer, C. & Zasadzinski, J. A. Multiple lipid compartments slow vesicle contents release in lipases and serum. ACS Nano 1, 176–182 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sengupta, S. et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436, 568–572 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Kubowicz, S., Baussard, J. & Lutz, J. Multicompartment micelles formed by self-assembly of linear ABC triblock copolymers in aqueous medium. Angew. Chem. Int. Ed. Engl. 44, 5262–5265 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Li, Z., Kesselman, E., Talmon, Y., Hillmyer, M. A. & Lodge, T. P. Multicompartment micelles from ABC miktoarm stars in water. Science 306, 98–101 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Utada, A. S. et al. Monodisperse double emulsions generated from a microcapillary device. Science 308, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Nie, Z., Xu, S., Seo, M., Lewis, P. C. & Kumacheva, E. Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors. J. Am. Chem. Soc. 127, 8058–8063 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Berkland, C., Pollauf, E., Pack, D. W. & Kim, K. Uniform double-walled polymer microspheres of controllable shell thickness. J. Control Release 96, 101–111 (2004).

    Article  CAS  PubMed  Google Scholar 

  160. Roh, K.H., Martin, D. C. & Lahann, J. Biphasic Janus particles with nanoscale anisotropy. Nature Mater. 4, 759–763 (2005). This was the demonstration of a novel technique for synthesizing nanoparticles with biphasic geometry.

    Article  CAS  Google Scholar 

  161. Bhaskar, S., Hitt, J., Chang, S.W. L. & Lahann, J. Multicompartmental microcylinders. Angew. Chem. Int. Ed. Engl. 48, 4589–4593 (2009).

    Article  CAS  PubMed  Google Scholar 

  162. Dendukuri, D., Gu, S. S., Pregibon, D. C., Hatton, T. A. & Doyle, P. S. Stop-flow lithography in a microfluidic device. Lab Chip 7, 818–828 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Dendukuri, D., Pregibon, D. C., Collins, J., Hatton, T. A. & Doyle, P. S. Continuous-flow lithography for high-throughput microparticle synthesis. Nature Mater. 5, 365–369 (2006).

    Article  CAS  Google Scholar 

  164. Gentschev, I. et al. Recombinant attenuated bacteria for the delivery of subunit vaccines. Vaccine 19, 2621–2628 (2001).

    Article  CAS  PubMed  Google Scholar 

  165. Ebensen, T. et al. Bacterial ghosts are an efficient delivery system for DNA vaccines. J. Immunol. 172, 6858–6865 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Schmidt, U., Gunther, C., Rudolph, R. & Bohm, G. Protein and peptide delivery via engineered polyomavirus-like particles. FASEB J. 15, 1646–1648 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.E.D. acknowledges support from the US National Science Foundation (University of Pennsylvania's Materials Research Science and Engineering Center and Nano/Bio Interface Center) and the US National Institutes of Health (National Institute of Biomedical Imaging and Bioengineering and National Heart, Lung and Blood Institute). D.J.I. is an investigator of the Howard Hughes Medical Institute, and acknowledges support from the US National Institutes of Health (CA140476) and the US Department of Defense (Prostate Cancer Research Program). J.-W.Y. and S.M. acknowledge support from the University of California Discovery program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Mitragotri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Free drugs

Drugs that are not modified or processed to improve their physicochemical properties and pharmacokinetics profile.

Natural tropisms

The natural movement of a biological organism preferentially towards specific cell types in response to environmental stimuli.

Attenuated bacteria

Viable bacteria with a reduced degree of pathogenicity.

Photothermal therapy

A novel therapeutic use of electromagnetic radiation (for example, infrared) that is proposed to treat various medical conditions, including cancer, by producing heat to kill target cells.

Capsid

The protein shell of a virus that encloses and protects the genetic material inside the virus.

Reticuloendothelial system

(RES). A component of the immune system, which consists of phagocytic cells that are capable of engulfing abnormal cells) and foreign substances. Also called the mononuclear phagocyte system.

Tumour-associated macrophages

(TAMs). Macrophages that are derived from peripheral blood monocytes and recruited into the tumour stroma. Following their activation, TAMs release various growth factors, cytokines and inflammatory mediators for tumour progression.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, JW., Irvine, D., Discher, D. et al. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov 10, 521–535 (2011). https://doi.org/10.1038/nrd3499

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3499

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research