Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Potential therapeutic uses of BDNF in neurological and psychiatric disorders

Key Points

  • Brain-derived neurotrophic factor (BDNF) is widely produced in the cortex throughout life, where it influences neuronal function. Levels of BDNF become deficient in the cerebral cortex in Alzheimer's disease.

  • In animal models of Alzheimer's disease, BDNF exhibits potent therapeutic effects that include prevention of cell death, stimulation of neuronal function, improvement in synaptic markers and improvements in learning and memory. Accordingly, BDNF represents a potentially promising therapeutic avenue in Alzheimer's disease.

  • Other neurological and psychiatric disorders — for example, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and depression — could also respond to BDNF treatment.

  • Therapeutic BDNF delivery to the brain is a major challenge. BDNF does not readily cross the blood–brain barrier, and widespread central administration causes intolerable adverse effects. Localized and sustained delivery of the growth factor will be required to treat many neurological disorders.

  • Gene therapy may be a useful method of delivering BDNF to specific brain regions in neurological disorders. For example, clinical trials involving BDNF gene delivery to the entorhinal and/or the hippocampal circuitry regions in Alzheimer's disease are planned.

  • Other methods for increasing BDNF levels in the brain include the use of small peptide mimetics, drug-induced increases in BDNF and even exercise. It remains to be established, however, whether these methods can induce sufficient increases in BDNF levels to effectively treat neurological diseases.

Abstract

The growth factor brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase receptor type B (TRKB) are actively produced and trafficked in multiple regions in the adult brain, where they influence neuronal activity, function and survival throughout life. The diverse presence and activity of BDNF suggests a potential role for this molecule in the pathogenesis and treatment of both neurological and psychiatric disorders. This article reviews the current understanding and future directions in BDNF-related research in the central nervous system, with an emphasis on the possible therapeutic application of BDNF in modifying fundamental processes underlying neural disease.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Summary of potential sites in the human brain for BDNF treatment for specific types of diseases.

References

  1. Levi-Montalcini, R. & Hamburger, V. Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J. Exp. Zool. 116, 321–361 (1951).

    Article  CAS  PubMed  Google Scholar 

  2. Johnson, E. M. Jr & Tuszynski, M. H. in CNS Regeneration (eds. Kordower, J. H. & Tuszynski, M. H.) 95–144 (Academic Press, San Diego, 2008).

    Book  Google Scholar 

  3. Barde, Y. A., Edgar, D. & Thoenen, H. Purification of a new neurotrophic factor from mammalian brain. EMBO J. 1, 549–553 (1982). This landmark article presented the discovery of BDNF.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mowla, S. J. et al. Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. J. Biol. Chem. 276, 12660–12666 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Mowla, S. J. et al. Differential sorting of nerve growth factor and brain-derived neurotrophic factor in hippocampal neurons. J. Neurosci. 19, 2069–2080 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee, R., Kermani, P., Teng, K. K. & Hempstead, B. L. Regulation of cell survival by secreted proneurotrophins. Science 294, 1945–1948 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Nikoletopoulou, V. et al. Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature 467, 59–63 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Rauskolb, S. et al. Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for dendritic growth. J. Neurosci. 30, 1739–1749 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Matsumoto, T. et al. Biosynthesis and processing of endogenous BDNF: CNS neurons store and secrete BDNF, not pro-BDNF. Nature Neurosci. 11, 131–133 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Soppet, D. et al. The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell 65, 895–903 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Carter, B. D. et al. Selective activation of NF-κB by nerve growth factor through the neurotrophin receptor p75. Science 272, 542–545 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Tanaka, J. et al. Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science 319, 1683–1687 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Horch, H. W. & Katz, L. C. BDNF release from single cells elicits local dendritic growth in nearby neurons. Nature Neurosci. 5, 1177–1184 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Figurov, A., Pozzo-Miller, L. D., Olafsson, P., Wang, T. & Lu, B. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381, 706–709 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Kang, H. & Schuman, E. M. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 267, 1658–1662 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Yamada, K., Mizuno, M. & Nabeshima, T. Role for brain-derived neurotrophic factor in learning and memory. Life Sci. 70, 735–744 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Egan, M. F. et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257–269 (2003). An important study that described a Val66Met BDNF gene polymorphism that is associated with memory deficits and altered hippocampal function.

    Article  CAS  PubMed  Google Scholar 

  18. Cathomas, F., Vogler, C., Euler-Sigmund, J. C., de Quervain, D. J. & Papassotiropoulos, A. Fine-mapping of the brain-derived neurotrophic factor (BDNF) gene supports an association of the Val66Met polymorphism with episodic memory. Int. J. Neuropsychopharmacol. 13, 975–980 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Xu, B. et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nature Neurosci. 6, 736–742 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Cao, L. et al. Molecular therapy of obesity and diabetes by a physiological autoregulatory approach. Nature Med. 15, 447–454 (2009). This study used gene delivery techniques to control BDNF expression in an animal model of obesity.

    Article  CAS  PubMed  Google Scholar 

  21. Nagahara, A. H. et al. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease. Nature Med. 15, 331–337 (2009). This article demonstrated the therapeutic effects of BDNF in six animal models of Alzheimer's disease, ranging from mouse models to non-human primate models.

    Article  CAS  PubMed  Google Scholar 

  22. Smith, D. E., Roberts, J., Gage, F. H. & Tuszynski, M. H. Age-associated neuronal atrophy occurs in the primate brain and is reversible by growth factor gene therapy. Proc. Natl Acad. Sci. USA 96, 10893–10898 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kordower, J. H. et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science 290, 767–773 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Tuszynski, M. H. et al. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nature Med. 11, 551–555 (2005). A report on the first clinical trial of growth factor gene therapy in a human neurodegenerative disorder: Alzheimer's disease.

    Article  CAS  PubMed  Google Scholar 

  25. Bradley, W. G. A phase I/II study of recombinant brain-derived neurotrophic factor in patients with ALS. Ann. Neurol. 38, 971 (1995).

    Article  Google Scholar 

  26. Apfel, S. C. et al. Recombinant human nerve growth factor in the treatment of diabetic polyneuropathy. NGF Study Group. Neurology 51, 695–702 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Kordower, J. H. et al. Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson's disease. Ann. Neurol. 46, 419–424 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. (Berl.) 82, 239–259 (1991).

    Article  CAS  Google Scholar 

  29. Kordower, J. H. et al. Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann. Neurol. 49, 202–213 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Masliah, E. et al. Synaptic and neuritic alterations during the progression of Alzheimer's disease. Neurosci. Lett. 174, 67–72 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Yan, Q. et al. Expression of brain-derived neurotrophic factor protein in the adult rat central nervous system. Neuroscience 78, 431–448 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Altar, C. A. et al. Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 389, 856–860 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Kovalchuk, Y., Hanse, E., Kafitz, K. W. & Konnerth, A. Postsynaptic induction of BDNF-mediated long-term potentiation. Science 295, 1729–1734 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Connor, B. et al. Brain-derived neurotrophic factor is reduced in Alzheimer's disease. Brain Res. Mol. Brain Res. 49, 71–81 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Hock, C., Heese, K., Hulette, C., Rosenberg, C. & Otten, U. Region-specific neurotrophin imbalances in Alzheimer disease: decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas. Arch. Neurol. 57, 846–851 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Narisawa-Saito, M., Wakabayashi, K., Tsuji, S., Takahashi, H. & Nawa, H. Regional specificity of alterations in NGF, BDNF and NT-3 levels in Alzheimer's disease. Neuroreport 7, 2925–2928 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Mucke, L. et al. High-level neuronal expression of Aβ1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J. Neurosci. 20, 4050–4058 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Burbach, G. J. et al. Induction of brain-derived neurotrophic factor in plaque-associated glial cells of aged APP23 transgenic mice. J. Neurosci. 24, 2421–2430 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Blurton-Jones, M. et al. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc. Natl Acad. Sci. USA 106, 13594–13599 (2009). An important paper indicating that BDNF that is secreted by transplanted embryonic stem cells exerts therapeutic effects in a mouse model of Alzheimer's disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Olanow, C. W. & Tatton, W. G. Etiology and pathogenesis of Parkinson's disease. Annu. Rev. Neurosci. 22, 123–144 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Hyman, C. et al. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350, 230–232 (1991).

    Article  CAS  PubMed  Google Scholar 

  42. Mogi, M. et al. Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson's disease. Neurosci. Lett. 270, 45–48 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Parain, K. et al. Reduced expression of brain-derived neurotrophic factor protein in Parkinson's disease substantia nigra. Neuroreport 10, 557–561 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Levivier, M., Przedborski, S., Bencsics, C. & Kang, U. J. Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson's disease. J. Neurosci. 15, 7810–7820 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Frim, D. M. et al. Implanted fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevent 1-methyl-4-phenylpyridinium toxicity to dopaminergic neurons in the rat. Proc. Natl Acad. Sci. USA 91, 5104–5108 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tsukahara, T., Takeda, M., Shimohama, S., Ohara, O. & Hashimoto, N. Effects of brain-derived neurotrophic factor on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- induced parkinsonism in monkeys. Neurosurgery 37, 733–741 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Orr, H. T. & Zoghbi, H. Y. Trinucleotide repeat disorders. Annu. Rev. Neurosci. 30, 575–621 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Walker, F. O. Huntington's disease. Lancet 369, 218–228 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Zuccato, C. et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease. Science 293, 493–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Baquet, Z. C., Gorski, J. A. & Jones, K. R. Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J. Neurosci. 24, 4250–4258 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gauthier, L. R. et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118, 127–138 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Strand, A. D. et al. Expression profiling of Huntington's disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration. J. Neurosci. 27, 11758–11768 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zala, D. et al. Progressive and selective striatal degeneration in primary neuronal cultures using lentiviral vector coding for a mutant huntingtin fragment. Neurobiol. Dis. 20, 785–798 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Canals, J. M. et al. Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington's disease. J. Neurosci. 24, 7727–7739 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Simmons, D. A. et al. Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington's disease knockin mice. Proc. Natl Acad. Sci. USA 106, 4906–4911 (2009). This article reported that ampakines increase BDNF expression in the brain and reduce deficits in a transgenic mouse model of Huntington's disease.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kells, A. P., Henry, R. A. & Connor, B. AAV–BDNF mediated attenuation of quinolinic acid-induced neuropathology and motor function impairment. Gene Ther. 15, 966–977 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Kaplan, D. R. & Miller, F. D. Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 10, 381–391 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Wijesekera, L. C. & Leigh, P. N. Amyotrophic lateral sclerosis. Orphanet J. Rare Dis. 4, 3 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tuszynski, M. H., Mafong, E. & Meyer, S. BDNF and NT-4/5 prevent injury-induced motor neuron degeneration in the adult central nervous system. Neuroscience 71, 761–771 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Giehl, K. M. & Tetzlaff, W. BDNF and NT-3, but not NGF, prevent axotomy-induced death of rat corticospinal neurons in vivo. Eur. J. Neurosci. 8, 1167–1175 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Mitsumoto, H. et al. Arrest of motor neuron disease in wobbler mice cotreated with CNTF and BDNF. Science 265, 1107–1110 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. [No authors listed.] A controlled trial of recombinant methionyl human BDNF in ALS: the BDNF study group (Phase III). Neurology 52, 1427–1433 (1999). This was a major report on a Phase III multicentre trial of BDNF protein administration in a neurodegenerative disease: ALS.

  63. Beck, M. et al. Autonomic dysfunction in ALS: a preliminary study on the effects of intrathecal BDNF. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 6, 100–103 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Ochs, G. et al. A phase I/II trial of recombinant methionyl human brain derived neurotrophic factor administered by intrathecal infusion to patients with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 1, 201–206 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Ankeny, D. P. et al. Pegylated brain-derived neurotrophic factor shows improved distribution into the spinal cord and stimulates locomotor activity and morphological changes after injury. Exp. Neurol. 170, 85–100 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Pardridge, W. M., Wu, D. & Sakane, T. Combined use of carboxyl-directed protein pegylation and vector-mediated blood–brain barrier drug delivery system optimizes brain uptake of brain-derived neurotrophic factor following intravenous administration. Pharm. Res. 15, 576–582 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Doyle, K. P., Simon, R. P. & Stenzel-Poore, M. P. Mechanisms of ischemic brain damage. Neuropharmacology 55, 310–318 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ferrer, I. et al. Brain-derived neurotrophic factor reduces cortical cell death by ischemia after middle cerebral artery occlusion in the rat. Acta Neuropathol. 101, 229–238 (2001).

    CAS  PubMed  Google Scholar 

  69. Muller, H. D. et al. Brain-derived neurotrophic factor but not forced arm use improves long-term outcome after photothrombotic stroke and transiently upregulates binding densities of excitatory glutamate receptors in the rat brain. Stroke 39, 1012–1021 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Larsson, E., Nanobashvili, A., Kokaia, Z. & Lindvall, O. Evidence for neuroprotective effects of endogenous brain-derived neurotrophic factor after global forebrain ischemia in rats. J. Cereb. Blood Flow Metab. 19, 1220–1228 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Huang, E. J. & Reichardt, L. F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gordon, T., Sulaiman, O. & Boyd, J. G. Experimental strategies to promote functional recovery after peripheral nerve injuries. J. Peripher. Nerv. Syst. 8, 236–250 (2003).

    Article  PubMed  Google Scholar 

  73. Tobias, C. A. et al. Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration. Exp. Neurol. 184, 97–113 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Blesch, A. & Tuszynski, M. H. Transient growth factor delivery sustains regenerated axons after spinal cord injury. J. Neurosci. 27, 10535–10545 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lu, P., Blesch, A. & Tuszynski, M. H. Neurotrophism without neurotropism: BDNF promotes survival but not growth of lesioned corticospinal neurons. J. Comp. Neurol. 436, 456–470 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Stokols, S. & Tuszynski, M. H. Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials 27, 443–451 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Blesch, A. & Tuszynski, M. H. Spinal cord injury: plasticity, regeneration and the challenge of translational drug development. Trends Neurosci. 32, 41–47 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Alto, L. T. et al. Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury. Nature Neurosci. 12, 1106–1113 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Hollis, E. R., Jamshidi, P., Low, K., Blesch, A. & Tuszynski, M. H. Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation. Proc. Natl Acad. Sci. USA 106, 7215–7220 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Plunet, W. T. et al. Dietary restriction started after spinal cord injury improves functional recovery. Exp. Neurol. 213, 28–35 (2008).

    Article  PubMed  Google Scholar 

  81. Ying, Z. et al. BDNF-exercise interactions in the recovery of symmetrical stepping after a cervical hemisection in rats. Neuroscience 155, 1070–1078 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Schumacher, J. et al. Evidence for a relationship between genetic variants at the brain-derived neurotrophic factor (BDNF) locus and major depression. Biol. Psychiatry 58, 307–314 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Post, R. M. Role of BDNF in bipolar and unipolar disorder: clinical and theoretical implications. J. Psychiatr. Res. 41, 979–990 (2007).

    Article  PubMed  Google Scholar 

  84. Kato, M. & Serretti, A. Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol. Psychiatry 15, 473–500 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Campbell, S., Marriott, M., Nahmias, C. & MacQueen, G. M. Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am. J. Psychiatry 161, 598–607 (2004).

    Article  PubMed  Google Scholar 

  86. Dwivedi, Y. et al. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch. Gen. Psychiatry 60, 804–815 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Brunoni, A. R., Lopes, M. & Fregni, F. A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: implications for the role of neuroplasticity in depression. Int. J. Neuropsychopharmacol. 11, 1169–1180 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Vermetten, E., Vythilingam, M., Southwick, S. M., Charney, D. S. & Bremner, J. D. Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder. Biol. Psychiatry 54, 693–702 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sen, S., Duman, R. & Sanacora, G. Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol. Psychiatry 64, 527–532 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shimizu, E. et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol. Psychiatry 54, 70–75 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Chen, B., Dowlatshahi, D., MacQueen, G. M., Wang, J. F. & Young, L. T. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol. Psychiatry 50, 260–265 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Cotman, C. W. & Berchtold, N. C. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 25, 295–301 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Neeper, S. A., Gomez-Pinilla, F., Choi, J. & Cotman, C. W. Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res. 726, 49–56 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Fuss, J. et al. Voluntary exercise induces anxiety-like behavior in adult C57BL/6J mice correlating with hippocampal neurogenesis. Hippocampus 20, 364–376 (2010).

    PubMed  Google Scholar 

  95. Shimizu, E., Hashimoto, K. & Iyo, M. Ethnic difference of the BDNF 196G/A (val166met) polymorphism frequencies: the possibility to explain ethnic mental traits. Am. J. Med. Genet. B Neuropsychiatr. Genet. 126B, 122–123 (2004).

    Article  PubMed  Google Scholar 

  96. Dempster, E. et al. Association between BDNF val66 met genotype and episodic memory. Am. J. Med. Genet. B Neuropsychiatr. Genet. 134B, 73–75 (2005).

    Article  PubMed  Google Scholar 

  97. Hariri, A. R. et al. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J. Neurosci. 23, 6690–6694 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pezawas, L. et al. The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J. Neurosci. 24, 10099–10102 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Erickson, K. I. et al. Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. J. Neurosci. 30, 5368–5375 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rybakowski, J. K. BDNF gene: functional Val66Met polymorphism in mood disorders and schizophrenia. Pharmacogenomics 9, 1589–1593 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Sugiyama, N., Kanba, S. & Arita, J. Temporal changes in the expression of brain-derived neurotrophic factor mRNA in the ventromedial nucleus of the hypothalamus of the developing rat brain. Brain Res. Mol. Brain Res. 115, 69–77 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Pelleymounter, M. A., Cullen, M. J. & Wellman, C. L. Characteristics of BDNF-induced weight loss. Exp. Neurol. 131, 229–238 (1995).

    Article  CAS  PubMed  Google Scholar 

  103. Fox, E. A. & Byerly, M. S. A mechanism underlying mature-onset obesity: evidence from the hyperphagic phenotype of brain-derived neurotrophic factor mutants. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R994–R1004 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Rios, M. et al. Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol. Endocrinol. 15, 1748–1757 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Gray, J. et al. Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene. Diabetes 55, 3366–3371 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Yeo, G. S. et al. A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nature Neurosci. 7, 1187–1189 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Tonra, J. R. et al. Brain-derived neurotrophic factor improves blood glucose control and alleviates fasting hyperglycemia in C57BLKS-Leprdb/leprdb mice. Diabetes 48, 588–594 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Ono, M. et al. Intermittent administration of brain-derived neurotrophic factor ameliorates glucose metabolism in obese diabetic mice. Metabolism 49, 129–133 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Fujinami, A. et al. Serum brain-derived neurotrophic factor in patients with type 2 diabetes mellitus: relationship to glucose metabolism and biomarkers of insulin resistance. Clin. Biochem. 41, 812–817 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Winkler, J. et al. Reversible Schwann cell hyperplasia and sprouting of sensory and sympathetic neurites after intraventricular administration of nerve growth factor. Ann. Neurol. 41, 82–93 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Williams, L. R. Hypophagia is induced by intracerebroventricular administration of nerve growth factor. Exp. Neurol. 113, 31–37 (1991).

    Article  CAS  PubMed  Google Scholar 

  112. Eriksdotter Jonhagen, M. et al. Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer's disease. Dement. Geriatr. Cogn. Disord. 9, 246–257 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Isaacson, L. G., Saffran, B. N. & Crutcher, K. A. Intracerebral NGF infusion induces hyperinnervation of cerebral blood vessels. Neurobiol. Aging 11, 51–55 (1990).

    Article  CAS  PubMed  Google Scholar 

  114. Nutt, J. G. et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 60, 69–73 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Lang, A. E. et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann. Neurol. 59, 459–466 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Hovland, D. N. Jr et al. Six-month continuous intraputamenal infusion toxicity study of recombinant methionyl human glial cell line-derived neurotrophic factor (r-metHuGDNF in rhesus monkeys. Toxicol. Pathol. 35, 1013–1029 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Gasmi, M. et al. Striatal delivery of neurturin by CERE-120, an AAV2 vector for the treatment of dopaminergic neuron degeneration in Parkinson's disease. Mol. Ther. 15, 62–68 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Christine, C. W. et al. Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 73, 1662–1669 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Feigin, A. et al. Modulation of metabolic brain networks after subthalamic gene therapy for Parkinson's disease. Proc. Natl Acad. Sci. USA 104, 19559–19564 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Marks, W. J. Jr et al. Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson's disease: an open-label, phase I trial. Lancet Neurol. 7, 400–408 (2008). This article reported the results of gene delivery of the growth factor neurturin in a clinical trial of Parkinson's disease.

    Article  PubMed  Google Scholar 

  121. Worgall, S. et al. Treatment of late infantile neuronal ceroid lipofuscinosis by CNS administration of a serotype 2 adeno-associated virus expressing CLN2 cDNA. Hum. Gene Ther. 19, 463–474 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Marks, W. J. Jr et al. Gene delivery of AAV2–neurturin for Parkinson's disease: a double-blind, randomised, controlled trial. Lancet Neurol. 9, 1164–1172 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Herzog, C. D. et al. Expression, bioactivity, and safety 1 year after adeno-associated viral vector type 2-mediated delivery of neurturin to the monkey nigrostriatal system support cere-120 for Parkinson's disease. Neurosurgery 64, 602–613 (2009).

    Article  PubMed  Google Scholar 

  124. Fiandaca, M. S. et al. Real-time MR imaging of adeno-associated viral vector delivery to the primate brain. Neuroimage 47 (Suppl. 2), 27–35 (2009).

    Article  Google Scholar 

  125. Martinowich, K. et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302, 890–893 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Roth, T. L., Lubin, F. D., Funk, A. J. & Sweatt, J. D. Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol. Psychiatry 65, 760–769 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lubin, F. D., Roth, T. L. & Sweatt, J. D. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J. Neurosci. 28, 10576–10586 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ma, D. K. et al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323, 1074–1077 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tsankova, N. M. et al. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nature Neurosci. 9, 519–525 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Young, W. Review of lithium effects on brain and blood. 18, 951–975 Cell Transplant. (2009).

    Article  PubMed  Google Scholar 

  131. Drzyzga, L. R., Marcinowska, A. & Obuchowicz, E. Antiapoptotic and neurotrophic effects of antidepressants: a review of clinical and experimental studies. Brain Res. Bull. 79, 248–257 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Quiroz, J. A., Machado-Vieira, R., Zarate, C. A. Jr & Manji, H. K. Novel insights into lithium's mechanism of action: neurotrophic and neuroprotective effects. Neuropsychobiology 62, 50–60 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Leyhe, T. et al. Increase of BDNF serum concentration in lithium treated patients with early Alzheimer's disease. J. Alzheimers Dis. 16, 649–656 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Adessi, C. & Soto, C. Converting a peptide into a drug: strategies to improve stability and bioavailability. Curr. Med. Chem. 9, 963–978 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. O'Leary, P. D. & Hughes, R. A. Design of potent peptide mimetics of brain-derived neurotrophic factor. J. Biol. Chem. 278, 25738–25744 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Longo, F. M. et al. Small molecule neurotrophin receptor ligands: novel strategies for targeting Alzheimer's disease mechanisms. Curr. Alzheimer Res. 4, 503–506 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Price, R. D., Milne, S. A., Sharkey, J. & Matsuoka, N. Advances in small molecules promoting neurotrophic function. Pharmacol. Ther. 115, 292–306 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Vaynman, S., Ying, Z. & Gomez-Pinilla, F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci. 20, 2580–2590 (2004).

    Article  PubMed  Google Scholar 

  139. Lee, J., Duan, W., Long, J. M., Ingram, D. K. & Mattson, M. P. Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats. J. Mol. Neurosci. 15, 99–108 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Molteni, R., Barnard, R. J., Ying, Z., Roberts, C. K. & Gomez-Pinilla, F. A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience 112, 803–814 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Maswood, N. et al. Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson's disease. Proc. Natl Acad. Sci. USA 101, 18171–18176 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Duan, W. & Mattson, M. P. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease. J. Neurosci. Res. 57, 195–206 (1999).

    Article  CAS  PubMed  Google Scholar 

  143. Duan, W., Guo, Z., Jiang, H., Ware, M. & Mattson, M. P. Reversal of behavioral and metabolic abnormalities, and insulin resistance syndrome, by dietary restriction in mice deficient in brain-derived neurotrophic factor. Endocrinology 144, 2446–2453 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Pang, T. Y., Stam, N. C., Nithianantharajah, J., Howard, M. L. & Hannan, A. J. Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in Huntington's disease transgenic mice. Neuroscience 141, 569–584 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Nichol, K., Deeny, S. P., Seif, J., Camaclang, K. & Cotman, C. W. Exercise improves cognition and hippocampal plasticity in APOE ɛ4 mice. Alzheimers Dement. 5, 287–294 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Goverdhana, S. et al. Regulatable gene expression systems for gene therapy applications: progress and future challenges. Mol. Ther. 12, 189–211 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Su, X. et al. Real-time MR imaging with gadoteridol predicts distribution of transgenes after convection-enhanced delivery of AAV2 vectors. Mol. Ther. 18, 1490–1495 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Massa, S. M. et al. Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. J. Clin. Invest. 120, 1774–1785 (2010). A recent study that revealed the potential effects of small peptide mimetics of BDNF in neurodegenerative disease models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yan, Q. et al. Immunocytochemical localization of TrkB in the central nervous system of the adult rat. J. Comp. Neurol. 378, 135–157 (1997).

    Article  CAS  PubMed  Google Scholar 

  150. Lu, B., Buck, C. R., Dreyfus, C. F. & Black, I. B. Expression of NGF and NGF receptor mRNAs in the developing brain: evidence for local delivery and action of NGF. Exp. Neurol. 104, 191–199 (1989).

    Article  CAS  PubMed  Google Scholar 

  151. Koshimizu, H., Hazama, S., Hara, T., Ogura, A. & Kojima, M. Distinct signaling pathways of precursor BDNF and mature BDNF in cultured cerebellar granule neurons. Neurosci. Lett. 473, 229–232 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Armanini, M. P., McMahon, S. B., Sutherland, J., Shelton, D. L. & Phillips, H. S. Truncated and catalytic isoforms of trkB are co-expressed in neurons of rat and mouse CNS. Eur. J. Neurosci. 7, 1403–1409 (1995).

    Article  CAS  PubMed  Google Scholar 

  153. Ohira, K. et al. Truncated TrkB-T1 regulates the morphology of neocortical layer I astrocytes in adult rat brain slices. Eur. J. Neurosci. 25, 406–416 (2007).

    Article  PubMed  Google Scholar 

  154. Huang, E. J. & Reichardt, L. F. Trk receptors: roles in neuronal signal transduction. Annu. Rev. Biochem. 72, 609–642 (2003).

    Article  CAS  PubMed  Google Scholar 

  155. Zheng, J. et al. Clathrin-dependent endocytosis is required for TrkB-dependent Akt-mediated neuronal protection and dendritic growth. J. Biol. Chem. 283, 13280–13288 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Howe, C. L., Valletta, J. S., Rusnak, A. S. & Mobley, W. C. NGF signaling from clathrin-coated vesicles: evidence that signaling endosomes serve as a platform for the Ras–MAPK pathway. Neuron 32, 801–814 (2001).

    Article  CAS  PubMed  Google Scholar 

  157. Sharma, N. et al. Long-distance control of synapse assembly by target-derived NGF. Neuron 67, 422–434 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kafitz, K. W., Rose, C. R., Thoenen, H. & Konnerth, A. Neurotrophin-evoked rapid excitation through TrkB receptors. Nature 401, 918–921 (1999).

    Article  CAS  PubMed  Google Scholar 

  159. Blum, R., Kafitz, K. W. & Konnerth, A. Neurotrophin-evoked depolarization requires the sodium channel NaV1.9. Nature 419, 687–693 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Tuszynski, M. H. Growth factor gene delivery: animal models to clinical trials. Dev. Neurobiol. 67, 1204–1215 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Hadaczek, P. et al. Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AAV2–hAADC. Mol. Ther. 18, 1458–1461 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Forsayeth, J. R. et al. A dose-ranging study of AAV–hAADC therapy in Parkinsonian monkeys. Mol. Ther. 14, 571–577 (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Sanftner, L. M. et al. AAV2-mediated gene delivery to monkey putamen: evaluation of an infusion device and delivery parameters. Exp. Neurol. 194, 476–483 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Tenenbaum, L. et al. Recombinant AAV-mediated gene delivery to the central nervous system. J. Gene Med. 6 (Suppl. 1), 212–222 (2004).

    Article  CAS  Google Scholar 

  165. Graham, L. D. Ecdysone-controlled expression of transgenes. Expert Opin. Biol. Ther. 2, 525–535 (2002).

    Article  CAS  PubMed  Google Scholar 

  166. Blesch, A. et al. Regulated lentiviral NGF gene transfer controls rescue of medial septal cholinergic neurons. Mol. Ther. 11, 916–925 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Institutes of Health grant AG10435, the Veterans Administration, the Alzheimer's Association, the Shiley Family Foundation, and the Dr Miriam and Sheldon G. Adelson Medical Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark H. Tuszynski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Author's homepage

ClinicalTrials.gov

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nagahara, A., Tuszynski, M. Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov 10, 209–219 (2011). https://doi.org/10.1038/nrd3366

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3366

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing