Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The discovery and development of rivaroxaban, an oral, direct factor Xa inhibitor

Key Points

  • In 2008, rivaroxaban (Xarelto; Bayer HealthCare) became the first orally administered direct factor Xa inhibitor to be approved for clinical use in the prevention of venous thromboembolism (VTE) after elective hip- or knee-replacement surgery. This article reviews the rationale for its development, the chemical optimization programme that led to its synthesis, its pharmacological characterization and the completed and ongoing clinical studies that underlie its clinical promise.

  • The scientific premise on which a direct factor Xa inhibitor might help to reduce the burden associated with thromboembolic disorders across a range of medical conditions is also presented.

  • Successful early validation studies, conducted with naturally occurring inhibitors of factor Xa, led to the initiation in 1998 of a medicinal chemistry programme to develop oral selective synthetic factor Xa inhibitors. The article details the medicinal chemistry that culminated in the synthesis of rivaroxaban — a molecule that combines both potent, specific inhibition of factor Xa and good oral bioavailability.

  • Rivaroxaban's preclinical profile and subsequent Phase I studies showed that it has many of the characteristics required to address unmet clinical needs: high oral bioavailability, a fast onset/offset of action, dose-dependent pharmacokinetics and pharmacodynamics, few drug–drug or drug–food interactions and, as a result of these, no requirement for routine coagulation monitoring.

  • The extensive clinical-development programme, which will enrol over 65,000 patients, is reviewed and covers the four completed studies for VTE prevention after elective hip or knee replacement; the completed and ongoing VTE treatment studies; and the three ongoing studies for stroke prevention in patients with atrial fibrillation, prevention of recurrent events in acute coronary syndromes and VTE prevention in patients with an acute medical illness.

  • In closing, the article provides an overview of other oral anticoagulants in development and discusses their clinical potential with a view to the impact they may have in improving outcomes for patients affected by thromboembolic disorders.

Abstract

The activated serine protease factor Xa is a promising target for new anticoagulants. After studies on naturally occurring factor Xa inhibitors indicated that such agents could be effective and safe, research focused on small-molecule direct inhibitors of factor Xa that might address the major clinical need for improved oral anticoagulants. In 2008, rivaroxaban (Xarelto; Bayer HealthCare) became the first such compound to be approved for clinical use. This article presents the history of rivaroxaban's development, from the structure–activity relationship studies that led to its discovery to the preclinical and clinical studies, and also provides a brief overview of other oral anticoagulants in advanced clinical development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of anticoagulants over the past century.
Figure 2: Simplified schematic for the blood coagulation cascade.
Figure 3: Structures of various factor Xa inhibitors.
Figure 4: Optimization of oxazolidinone factor Xa inhibitors.
Figure 5: Efficacy and safety dose–response relationships.

Similar content being viewed by others

References

  1. McLean, J. The thromboplastic action of cephalin. Am. J. Physiol. 41, 250–257 (1916).

    Article  Google Scholar 

  2. Hirsh, J. et al. Parenteral anticoagulants: American College of Chest Physicians evidence-based clinical practice guidelines (8th Edition). Chest 133, 141S–159S (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Warkentin, T. E., Greinacher, A., Koster, A., Lincoff, A. M. & American College of Chest Physicians. Treatment and prevention of heparin-induced thrombocytopenia: American College of Chest Physicians evidence-based clinical practice guidelines (8th Edition). Chest 133, 340S–380S (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Warwick, D., Dahl, O. E. & Fisher, W. D. Orthopaedic thromboprophylaxis: limitations of current guidelines. J. Bone Joint Surg. Br. 90, 127–132 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Campbell, H. A. & Link, K. P. Studies on the hemorrhagic sweet clover disease. IV. The isolation and crystallization of the hemorrhagic agent. J. Biol. Chem. 138, 21–33 (1941).

    Article  CAS  Google Scholar 

  6. Ansell, J. et al. Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians evidence-based clinical practice guidelines (8th Edition). Chest 133, 160S–198S (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Schwarz, U. I. et al. Genetic determinants of response to warfarin during initial anticoagulation. N. Engl. J. Med. 358, 999–1008 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Klein, T. E. et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N. Engl. J. Med. 360, 753–764 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Hirsh, J., O'Donnell, M. & Weitz, J. I. New anticoagulants. Blood 105, 453–463 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Weitz, J. I. Emerging anticoagulants for the treatment of venous thromboembolism. Thromb. Haemost. 96, 274–284 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Dyke, C. K. et al. First-in-human experience of an antidote-controlled anticoagulant using RNA aptamer technology: a phase 1a pharmacodynamic evaluation of a drug-antidote pair for the controlled regulation of factor IXa activity. Circulation 114, 2490–2497 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Eriksson, B. I. et al. Partial factor IXa inhibition with TTP889 for prevention of venous thromboembolism: an exploratory study. J. Thromb. Haemost. 6, 457–463 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Goto, S. Factor XIa as a possible new target of antithrombotic therapy. J. Thromb. Haemost. 4, 1494–1495 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Schumacher, W. A. et al. Antithrombotic and hemostatic effects of a small molecule factor XIa inhibitor in rats. Eur. J. Pharmacol. 570, 167–174 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Ho, S. J. & Brighton, T. A. Ximelagatran: direct thrombin inhibitor. Vasc. Health Risk Manag. 2, 49–58 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Nishio, H., Ieko, M. & Nakabayashi, T. New therapeutic option for thromboembolism — dabigatran etexilate. Expert Opin. Pharmacother. 9, 2509–2517 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Turpie, A. G. G., Eriksson, B. I., Lassen, M. R. & Bauer, K. A. Fondaparinux, the first selective factor Xa inhibitor. Curr. Opin. Hematol. 10, 327–332 (2003).

    Article  PubMed  Google Scholar 

  18. Carreiro, J. & Ansell, J. Apixaban, an oral direct factor Xa inhibitor: awaiting the verdict. Expert Opin. Investig. Drugs 17, 1937–1945 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Piccini, J. P., Patel, M. R., Mahaffey, K. W., Fox, K. A. & Califf, R. M. Rivaroxaban, an oral direct factor Xa inhibitor. Expert Opin. Investig. Drugs 17, 925–937 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Leadley, R. J. Coagulation factor Xa inhibition: biological background and rationale. Curr. Top. Med. Chem. 1, 151–159 (2001). This comprehensive review describes some of the key studies that generated interest in factor Xa as a therapeutic target and highlights the significant findings that provided the rationale for the development of direct factor Xa inhibitors.

    Article  CAS  PubMed  Google Scholar 

  21. Kearon, C. et al. Dose-response study of recombinant human soluble thrombomodulin (ART-123) in the prevention of venous thromboembolism after total hip replacement. J. Thromb. Haemost. 3, 962–968 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Saito, H. et al. Efficacy and safety of recombinant human soluble thrombomodulin (ART-123) in disseminated intravascular coagulation: results of a phase III, randomized, double-blind clinical trial. J. Thromb. Haemost. 5, 31–41 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Bernard, G. R. et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N. Engl. J. Med. 344, 699–709 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Levi, M. & van der Poll, T. Recombinant human activated protein C: current insights into its mechanism of action. Crit. Care 11 (Suppl. 5), S3 (2007).

    Article  PubMed Central  PubMed  Google Scholar 

  25. Ansell, J. Factor Xa or thrombin: is factor Xa a better target? J. Thromb. Haemost. 5 (Suppl. 1), 60–64 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Gerotziafas, G. T. & Samama, M. M. Heterogeneity of synthetic factor Xa inhibitors. Curr. Pharm. Des. 11, 3855–3876 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Turpie, A. G. G. Oral, direct factor Xa inhibitors in development for the prevention and treatment of thromboembolic diseases. Arterioscler. Thromb. Vasc. Biol. 27, 1238–1247 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Koller, F. History of factor X. Thromb. Diath. Haemorrh. 4, 58–65 (1960).

    CAS  PubMed  Google Scholar 

  29. Brown, D. L. & Kouides, P. A. Diagnosis and treatment of inherited factor X deficiency. Haemophilia 14, 1176–1182 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Hougie, C., Barrow, H. M. & Graham, J. B. Stuart clotting defect. I. Segregation of a hereditary hemorrhagic state from the heterozygous heretofore called 'stable factor' (SPCA, proconvertin factor VII deficiency). J. Clin. Invest. 36, 485–493 (1957).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Telfer, T. P., Denson, K. W. & Wright, D. R. A 'new' coagulation defect. Br. J. Haematol. 2, 308–316 (1956).

    Article  CAS  PubMed  Google Scholar 

  32. Butenas, S., van' t Veer, C. & Mann, K. G. “Normal” thrombin generation. Blood 94, 2169–2178 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Nutt, E. et al. The amino acid sequence of antistasin. A potent inhibitor of factor Xa reveals a repeated internal structure. J. Biol. Chem. 263, 10162–10167 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. Tuszynski, G. P., Gasic, T. B. & Gasic, G. J. Isolation and characterization of antistasin. An inhibitor of metastasis and coagulation. J. Biol. Chem. 262, 9718–9723 (1987).

    Article  CAS  PubMed  Google Scholar 

  35. Dunwiddie, C. et al. Antistasin, a leech-derived inhibitor of factor Xa. Kinetic analysis of enzyme inhibition and identification of the reactive site. J. Biol. Chem. 264, 16694–16699 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. Waxman, L., Smith, D. E., Arcuri, K. E. & Vlasuk, G. P. Tick anticoagulant peptide (TAP) is a novel inhibitor of blood coagulation factor Xa. Science 248, 593–596 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Nicolini, F. A. et al. Selective inhibition of factor Xa during thrombolytic therapy markedly improves coronary artery patency in a canine model of coronary thrombosis. Blood Coagul. Fibrinolysis 7, 39–48 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Vlasuk, G. P. et al. Comparison of the in vivo anticoagulant properties of standard heparin and the highly selective factor Xa inhibitors antistasin and tick anticoagulant peptide (TAP) in a rabbit model of venous thrombosis. Thromb. Haemost. 65, 257–262 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Lynch, J. J. et al. Maintenance of canine coronary artery patency following thrombolysis with front loaded plus low dose maintenance conjunctive therapy. A comparison of factor Xa versus thrombin inhibition. Cardiovasc. Res. 28, 78–85 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Sitko, G. R. et al. Conjunctive enhancement of enzymatic thrombolysis and prevention of thrombotic reocclusion with the selective factor Xa inhibitor, tick anticoagulant peptide. Comparison to hirudin and heparin in a canine model of acute coronary artery thrombosis. Circulation 85, 805–815 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Lefkovits, J. et al. Selective inhibition of factor Xa is more efficient than factor VIIa-tissue factor complex blockade at facilitating coronary thrombolysis in the canine model. J. Am. Coll. Cardiol. 28, 1858–1865 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Eisenberg, P. R., Siegel, J. E., Abendschein, D. R. & Miletich, J. P. Importance of factor Xa in determining the procoagulant activity of whole-blood clots. J. Clin. Invest. 91, 1877–1883 (1993).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Prager, N. A., Abendschein, D. R., McKenzie, C. R. & Eisenberg, P. R. Role of thrombin compared with factor Xa in the procoagulant activity of whole blood clots. Circulation 92, 962–967 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. McKenzie, C. R., Abendschein, D. R. & Eisenberg, P. R. Sustained inhibition of whole-blood clot procoagulant activity by inhibition of thrombus-associated factor Xa. Arterioscler. Thromb. Vasc. Biol. 16, 1285–1291 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Kotze, H. F., Lamprecht, S., Badenhorst, P. N., Roodt, J. P. & van Wyk, V. Transient interruption of arterial thrombosis by inhibition of factor Xa results in long-term antithrombotic effects in baboons. Thromb. Haemost. 77, 1137–1142 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Gold, H. K. et al. Evidence for a rebound coagulation phenomenon after cessation of a 4-hour infusion of a specific thrombin inhibitor in patients with unstable angina pectoris. J. Am. Coll. Cardiol. 21, 1039–1047 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Theroux, P., Waters, D., Lam, J., Juneau, M. & McCans, J. Reactivation of unstable angina after the discontinuation of heparin. N. Engl. J. Med. 327, 141–145 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Hermans, C. & Claeys, D. Review of the rebound phenomenon in new anticoagulant treatments. Curr. Med. Res. Opin. 22, 471–481 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Furugohri, T. et al. Different antithrombotic properties of factor Xa inhibitor and thrombin inhibitor in rat thrombosis models. Eur. J. Pharmacol. 514, 35–42 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Becker, R. C., Alexander, J., Dyke, C. K. & Harrington, R. A. Development of DX-9065a, a novel direct factor Xa antagonist, in cardiovascular disease. Thromb. Haemost. 92, 1182–1193 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Sato, K. et al. YM-60828, a novel factor Xa inhibitor: separation of its antithrombotic effects from its prolongation of bleeding time. Eur. J. Pharmacol. 339, 141–146 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Taniuchi, Y. et al. Biochemical and pharmacological characterization of YM-60828, a newly synthesized and orally active inhibitor of human factor Xa. Thromb. Haemost. 79, 543–548 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Hara, T. et al. DX-9065a, a new synthetic, potent anticoagulant and selective inhibitor for factor Xa. Thromb. Haemost. 71, 314–319 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Fujii, Y. et al. Characteristics of gastrointestinal absorption of DX-9065a, a new synthetic anticoagulant. Drug Metab. Pharmacokinet. 22, 26–32 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Alexander, J. H. et al. First experience with direct, selective factor Xa inhibition in patients with non-ST-elevation acute coronary syndromes: results of the XaNADU-ACS Trial. J. Thromb. Haemost. 3, 439–447 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Bauer, K. A. et al. Fondaparinux, a synthetic pentasaccharide: the first in a new class of antithrombotic agents — the selective factor Xa inhibitors. Cardiovasc. Drug Rev. 20, 37–52 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Bergqvist, D. Review of fondaparinux sodium injection for the prevention of venous thromboembolism in patients undergoing surgery. Vasc. Health Risk Manag. 2, 365–370 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Eriksson, B. I., Bauer, K. A., Lassen, M. R., Turpie, A. G. G. Steering Committee of the Pentasaccharide in Hip-Fracture Surgery Study. Fondaparinux compared with enoxaparin for the prevention of venous thromboembolism after hip-fracture surgery. N. Engl. J. Med. 345, 1298–1304 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Lassen, M. R., Bauer, K. A., Eriksson, B. I. & Turpie, A. G. G. Postoperative fondaparinux versus preoperative enoxaparin for prevention of venous thromboembolism in elective hip-replacement surgery: a randomised double-blind comparison. Lancet 359, 1715–1720 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Turpie, A. G. G., Bauer, K. A., Eriksson, B. I., Lassen, M. R. PENTATHLON 2000 Study Steering Committee. Postoperative fondaparinux versus postoperative enoxaparin for prevention of venous thromboembolism after elective hip-replacement surgery: a randomised double-blind trial. Lancet 359, 1721–1726 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Bauer, K. A., Eriksson, B. I., Lassen, M. R. & Turpie, A. G. G. Fondaparinux compared with enoxaparin for the prevention of venous thromboembolism after elective major knee surgery. N. Engl. J. Med. 345, 1305–1310 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Turpie, A. G. G., Bauer, K. A., Eriksson, B. I., Lassen, M. R. Steering Committees of the Pentasaccharide Orthopedic Prophylaxis Studies. Fondaparinux vs enoxaparin for the prevention of venous thromboembolism in major orthopedic surgery: a meta-analysis of 4 randomized double-blind studies. Arch. Intern. Med. 162, 1833–1840 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Roehrig, S. et al. Discovery of the novel antithrombotic agent 5-chloro-N-([(5S)-2-oxo-3-[4-(3-oxomorpholin-4-yl)phenyl]-1,3-oxazolidin-5-yl]methyl)thiophene-2-carboxamide (BAY 59-7939): an oral, direct factor Xa inhibitor. J. Med. Chem. 48, 5900–5908 (2005). Describes the chemical development of rivaroxaban, including the important structure–activity relationship that led to the combination of high binding affinity with high oral bioavailability.

    Article  CAS  PubMed  Google Scholar 

  64. Lam, P. Y. et al. Structure-based design of novel guanidine/benzamidine mimics: potent and orally bioavailable factor Xa inhibitors as novel anticoagulants. J. Med. Chem. 46, 4405–4418 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Pinto, D. J. et al. Discovery of 1-[3-(aminomethyl)phenyl]-N-3-fluoro-2-(methylsulfonyl)-[1,1-biphenyl]-4-yl]-3-(trifluoromethyl)-1H-pyrazole-5-carboxamide (DPC423), a highly potent, selective, and orally bioavailable inhibitor of blood coagulation factor Xa. J. Med. Chem. 44, 566–578 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Adler, M. et al. Crystal structures of two potent nonamidine inhibitors bound to factor Xa. Biochem. Mosc. 41, 15514–15523 (2002).

    Article  CAS  Google Scholar 

  67. Choi-Sledeski, Y. M. et al. Discovery of an orally efficacious inhibitor of coagulation factor Xa which incorporates a neutral P1 ligand. J. Med. Chem. 46, 681–684 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Maignan, S. et al. Molecular structures of human factor Xa complexed with ketopiperazine inhibitors: preference for a neutral group in the S1 pocket. J. Med. Chem. 46, 685–690 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Mederski, W. W. et al. Chlorothiophenecarboxamides as P1 surrogates of inhibitors of blood coagulation factor Xa. Bioorg. Med. Chem. Lett. 14, 5817–5822 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Nazare, M. et al. Probing the subpockets of factor Xa reveals two binding modes for inhibitors based on a 2-carboxyindole scaffold: a study combining structure–activity relationship and X-ray crystallography. J. Med. Chem. 48, 4511–4525 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Perzborn, E. et al. In vitro and in vivo studies of the novel antithrombotic agent BAY 59-7939 — an oral, direct factor Xa inhibitor. J. Thromb. Haemost. 3, 514–521 (2005). This paper reports the in vitro properties of rivaroxaban, its antithrombotic efficacy in animal models of arterial and venous thrombosis and its effect on haemostasis — the key findings that established the rationale for its clinical development.

    Article  CAS  PubMed  Google Scholar 

  72. Depasse, F. et al. Effect of BAY 59-7939 — a novel, oral, direct factor Xa inhibitor — on clot-bound factor Xa activity in vitro. J. Thromb. Haemost. Abstr. 3 (Suppl. 1), P1104 (2005).

    Google Scholar 

  73. Gerotziafas, G. T., Elalamy, I., Depasse, F., Perzborn, E. & Samama, M. M. In vitro inhibition of thrombin generation, after tissue factor pathway activation, by the oral, direct factor Xa inhibitor rivaroxaban. J. Thromb. Haemost. 5, 886–888 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Graff, J. et al. Effects of the oral, direct factor Xa inhibitor rivaroxaban on platelet-induced thrombin generation and prothrombinase activity. J. Clin. Pharmacol. 47, 1398–1407 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Perzborn, E. & Harwardt, M. Direct thrombin inhibitors, but not factor Xa inhibitors, enhance thrombin formation in human plasma by interfering with the thrombin-thrombomodulin-protein C system. Blood (ASH Annual Meeting Abstracts) 112, 198–199 (2008).

    Google Scholar 

  76. Perzborn, E. et al. Biochemical and pharmacologic properties of BAY 59–7939, an oral, direct factor Xa inhibitor. Pathophysiol. Haemost. Thromb. 33 (Suppl. 2), PO079 (2004).

    Google Scholar 

  77. Perzborn, E. & Lange, U. Rivaroxaban — an oral, direct factor Xa inhibitor — inhibits tissue factor-mediated platelet aggregation. J. Thromb. Haemost. 5 (Suppl. 2), P-W-642 (2007).

  78. Furugohri, T. et al. DU-176b, a potent and orally active factor Xa inhibitor: in vitro and in vivo pharmacological profiles. J. Thromb. Haemost. 6, 1542–1549 (2008).

    CAS  PubMed  Google Scholar 

  79. Shantsila, E. & Lip, G. Y. Apixaban, an oral, direct inhibitor of activated factor Xa. Curr. Opin. Investig. Drugs 9, 1020–1033 (2008).

    CAS  PubMed  Google Scholar 

  80. Biemond, B. J. et al. Prevention and treatment of experimental thrombosis in rabbits with rivaroxaban (BAY 59-7939) — an oral, direct factor Xa inhibitor. Thromb. Haemost. 97, 471–477 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Kubitza, D., Becka, M., Roth, A. & Mueck, W. Dose-escalation study of the pharmacokinetics and pharmacodynamics of rivaroxaban in healthy elderly subjects. Curr. Med. Res. Opin. 24, 2757–2765 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Kubitza, D., Becka, M., Wensing, G., Voith, B. & Zuehlsdorf, M. Safety, pharmacodynamics, and pharmacokinetics of BAY 59-7939 — an oral, direct factor Xa inhibitor — after multiple dosing in healthy male subjects. Eur. J. Clin. Pharmacol. 61, 873–880 (2005). This Phase I study reported the safety, tolerability, pharmacodynamics and pharmacokinetics of rivaroxaban when administered as multiple doses to healthy male subjects. The favourable results of this study, and others, supported the progression to Phase II clinical trials.

    Article  CAS  PubMed  Google Scholar 

  83. Gruber, A., Marzec, U. M., Buetehorn, U., Hanson, S. & Perzborn, E. Potential of activated prothrombin complex concentrate and activated factor VII to reverse the anticoagulant effects of rivaroxaban in primates. Blood (ASH Annual Meeting Abstracts) 112, 1307 (2008).

    Google Scholar 

  84. Perzborn, E., Trabandt, A., Selbach, K. & Tinel, H. Prothrombin complex concentrate reverses the effects of high-dose rivaroxaban in rats. J. Thromb. Haemost. 7 (Suppl. 2), 379 (2009).

    Google Scholar 

  85. Kubitza, D., Becka, M., Voith, B., Zuehlsdorf, M. & Wensing, G. Safety, pharmacodynamics, and pharmacokinetics of single doses of BAY 59-7939, an oral, direct factor Xa inhibitor. Clin. Pharmacol. Ther. 78, 412–421 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, L., Reynolds, K. S., Zhao, P. & Huang, S. M. Drug interactions evaluation: an integrated part of risk assessment of therapeutics. Toxicol. Appl. Pharmacol. 243, 134–145 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Zhang, L., Zhang, Y. D., Strong, J. M., Reynolds, K. S. & Huang, S. M. A regulatory viewpoint on transporter-based drug interactions. Xenobiotica 38, 709–724 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Kubitza, D., Becka, M., Mueck, W. & Zuehlsdorf, M. Rivaroxaban (BAY 59-7939) — an oral, direct factor Xa inhibitor — has no clinically relevant interaction with naproxen. Br. J. Clin. Pharmacol. 63, 469–476 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Kubitza, D., Becka, M., Mueck, W. & Zuehlsdorf, M. Safety, tolerability, pharmacodynamics, and pharmacokinetics of rivaroxaban — an oral, direct factor Xa inhibitor — are not affected by aspirin. J. Clin. Pharmacol. 46, 981–990 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Eriksson, B. I. et al. Rivaroxaban versus enoxaparin for thromboprophylaxis after hip arthroplasty. N. Engl. J. Med. 358, 2765–2775 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Kakkar, A. K. et al. Extended duration rivaroxaban versus short-term enoxaparin for the prevention of venous thromboembolism after total hip arthroplasty: a double-blind, randomised controlled trial. Lancet 372, 31–39 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Lassen, M. R. et al. Rivaroxaban versus enoxaparin for thromboprophylaxis after total knee arthroplasty. N. Engl. J. Med. 358, 2776–2786 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Turpie, A. G. G. et al. Rivaroxaban versus enoxaparin for thromboprophylaxis after total knee arthroplasty (RECORD4): a randomised trial. Lancet 373, 1673–1680 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Weinz, C. et al. Pharmacokinetics of BAY 59-7939 — an oral, direct factor Xa inhibitor — in rats and dogs. Xenobiotica 35, 891–910 (2005). This preclinical study established some of the key pharmacokinetic characteristics of rivaroxaban, including a fully reversible, high level of plasma protein binding, a dual mode of excretion and moderate tissue affinity.

    Article  CAS  PubMed  Google Scholar 

  95. Lang, D., Freudenberger, C. & Weinz, C. In vitro metabolism of rivaroxaban — an oral, direct factor Xa inhibitor — in liver microsomes and hepatocytes of rat, dog and man. Drug Metab. Dispos. 37, 1046–1055 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Weinz, C., Schwarz, T., Kubitza, D., Mueck, W. & Lang, D. Metabolism and excretion of rivaroxaban, an oral, direct factor Xa inhibitor, in rats, dogs and humans. Drug Metab. Dispos. 37, 1056–1064 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Mueck, W. et al. Population pharmacokinetics and pharmacodynamics of rivaroxaban — an oral, direct factor Xa inhibitor — in patients undergoing major orthopaedic surgery. Clin. Pharmacokinet. 47, 203–216 (2008). The results showed that rivaroxaban has predictable, dose-dependent pharmacokinetics and pharmacodynamics and indicated that rivaroxaban could be administered in fixed doses without routine coagulation monitoring.

    Article  CAS  PubMed  Google Scholar 

  98. Mueck, W., Becka, M., Kubitza, D., Voith, B. & Zuehlsdorf, M. Population model of the pharmacokinetics and pharmacodynamics of rivaroxaban — an oral, direct factor Xa inhibitor — in healthy subjects. Int. J. Clin. Pharmacol. Ther. 45, 335–344 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Kubitza, D., Becka, M., Zuehlsdorf, M. & Mueck, W. Body weight has limited influence on the safety, tolerability, pharmacokinetics, or pharmacodynamics of rivaroxaban (BAY 59-7939) in healthy subjects. J. Clin. Pharmacol. 47, 218–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Kubitza, D. et al. Effects of renal impairment on the pharmacokinetics, pharmacodynamics and safety of rivaroxaban — an oral, direct factor Xa inhibitor. Br. J. Clin. Pharmacol. 70, 703–712 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Halabi, A. et al. Effect of hepatic impairment on the pharmacokinetics, pharmacodynamics and tolerability of rivaroxaban — an oral, direct factor Xa inhibitor. J. Thromb. Haemost. 5 (Suppl. 2), P-M-635 (2007).

    Google Scholar 

  102. Eriksson, B. I. et al. Dose-escalation study of rivaroxaban (BAY 59-7939) — an oral, direct factor Xa inhibitor — for the prevention of venous thromboembolism in patients undergoing total hip replacement. Thromb. Res. 120, 685–693 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Eriksson, B. I. et al. A once-daily, oral, direct factor Xa inhibitor, rivaroxaban (BAY 59-7939), for thromboprophylaxis after total hip replacement. Circulation 114, 2374–2381 (2006). The results from this study, and others, led to the selection of 10 mg rivaroxaban once daily for use in Phase III studies for the prevention of venous thromboembolism after hip or knee replacement.

    Article  CAS  PubMed  Google Scholar 

  104. Eriksson, B. I. et al. Oral, direct factor Xa inhibition with BAY 59-7939 for the prevention of venous thromboembolism after total hip replacement. J. Thromb. Haemost. 4, 121–128 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Turpie, A. G. G. et al. BAY 59-7939: an oral, direct factor Xa inhibitor for the prevention of venous thromboembolism in patients after total knee replacement. A phase II dose-ranging study. J. Thromb. Haemost. 3, 2479–2486 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Kubitza, D., Mueck, W. & Becka, M. Randomized, double-blind, crossover study to investigate the effect of rivaroxaban on QT-interval prolongation. Drug Saf. 31, 67–77 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Samama, M. M. et al. Suitability of chromogenic anti-FXa methods to measure rivaroxaban in human plasma. J. Thromb. Haemost. 7 (Suppl. 2), 693 (2009).

    Google Scholar 

  108. Karst, A., Bakowski-Enzian, B. & Perzborn, E. Monitoring of rivaroxaban: suitability of a well-established chromogenic anti-factor Xa assay. J. Thromb. Haemost. 7 (Suppl. 2), 372 (2009).

    Google Scholar 

  109. Fisher, W. D. et al. Rivaroxaban for thromboprophylaxis after orthopaedic surgery: pooled analysis of two studies. Thromb. Haemost. 97, 931–937 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Geerts, W. H. et al. Prevention of venous thromboembolism: American College of Chest Physicians evidence-based clinical practice guidelines (8th Edition). Chest 133, 381S–453S (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Lassen, M. R. et al. Apixaban or enoxaparin for thromboprophylaxis after knee replacement. N. Engl. J. Med. 361, 594–604 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. The RE-MOBILIZE Writing Committee. Oral thrombin inhibitor dabigatran etexilate vs North American enoxaparin regimen for prevention of venous thromboembolism after knee arthroplasty surgery. J. Arthroplasty 24, 1–9 (2009).

  113. Eriksson, B. I. et al. Oral rivaroxaban for the prevention of symptomatic venous thromboembolism after elective hip and knee replacement. J. Bone Joint Surg. Br. 91, 636–644 (2009). A pooled analysis of data from the pivotal Phase III clinical trials that, together with other publications, demonstrated the clinical efficacy and safety of rivaroxaban for thromboprophylaxis after total knee- or hip-replacement surgery.

    Article  CAS  PubMed  Google Scholar 

  114. Mega, J. L. et al. Rivaroxaban versus placebo in patients with acute coronary syndromes (ATLAS ACS-TIMI 46): a randomised, double-blind, phase II trial. Lancet 374, 29–38 (2009). A Phase II dose-ranging study investigating the use of rivaroxaban for the secondary prevention of ischaemic events in patients with ACS receiving aspirin with or without a thienopyridine.

    Article  CAS  PubMed  Google Scholar 

  115. Bauer, K. A., Homering, M. & Berkowitz, S. D. Effects of age, weight, gender and renal function in a pooled analysis of four phase III studies of rivaroxaban for prevention of venous thromboembolism after major orthopedic surgery. Blood (ASH Annual Meeting Abstracts) 112, 166–167 (2008).

    Google Scholar 

  116. Agnelli, G. et al. Treatment of proximal deep-vein thrombosis with the oral direct factor Xa inhibitor rivaroxaban (BAY 59-7939): the ODIXa-DVT (oral direct factor Xa inhibitor BAY 59–7939 in patients with acute symptomatic deep-vein thrombosis) study. Circulation 116, 180–187 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Buller, H. R. et al. A dose-ranging study evaluating once-daily oral administration of the factor Xa inhibitor rivaroxaban in the treatment of patients with acute symptomatic deep vein thrombosis. The EINSTEIN-DVT Dose-Ranging Study. Blood 112, 2242–2247 (2008). This Phase II study, with one other, provided the basis for the dosing strategy in the Phase III VTE treatment trials and the dose selection for the Phase III ROCKET AF trial.

    Article  CAS  PubMed  Google Scholar 

  118. Buller, H.R. Oral rivaroxaban for the acute and continued treatment of symptomatic venous thromboembolism. The Einstein-DVT and Einstein-Extension Study (Abstract 187). ASH Annual Meeting Abstracts [online], (2010).

    Google Scholar 

  119. The EINSTEIN Investigators. Oral rivaroxaban for symptomatic venous thromboembolism. New Engl. J. Med. 4 Dec 2010 (doi:10.1056/NEJMoa1007903).

  120. ROCKET AF Study Investigators. Rivaroxaban — once daily, oral, direct factor Xa inhibition compared with vitamin K antagonism for prevention of stroke and embolism trial in atrial fibrillation: rationale and design of the ROCKET AF study. Am. Heart J. 159, 340–347 (2010).

  121. Wong, P. C. et al. Apixaban, an oral, direct and highly selective factor Xa inhibitor: in vitro, antithrombotic and antihemostatic studies. J. Thromb. Haemost. 6, 820–829 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Luettgen, J. M. et al. Inhibition of measured thrombin generation in human plasma by apixaban: a predictive mathematical model based on experimentally determined rate constants. J. Thromb. Haemost. 5 (Suppl. 1), P-T-633 (2007).

    Google Scholar 

  123. Lassen, M. R. et al. Apixaban versus enoxaparin for thromboprophylaxis after knee replacement (ADVANCE-2): a randomised double-blind trial. Lancet 375, 807–815 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Lassen, M. R. et al. Randomized double-blind comparison of apixaban and enoxaparin for thromboprophylaxis after hip replacement: the ADVANCE-3 trial. Pathophysiol. Haemost. Thromb. 37, A20 (2010).

    Google Scholar 

  125. Alexander, J. H. et al. Apixaban, an oral, direct, selective factor Xa inhibitor, in combination with antiplatelet therapy after acute coronary syndrome: results of the Apixaban for Prevention of Acute Ischemic and Safety Events (APPRAISE) trial. Circulation 119, 2877–2885 (2009).

    Article  PubMed  CAS  Google Scholar 

  126. Eikelboom, J. W. et al. Rationale and design of AVERROES: apixaban versus acetylsalicylic acid to prevent stroke in atrial fibrillation patients who have failed or are unsuitable for vitamin K antagonist treatment. Am. Heart J. 159, 348–353 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Lopes, R. D. et al. Apixaban for Reduction In Stroke and Other ThromboemboLic Events in Atrial Fibrillation (ARISTOTLE) trial: design and rationale. Am. Heart J. 159, 331–339 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Connolly, S. J. & Arnesen, H. AVERROES: apixaban versus acetylsalicylic acid to prevent strokes. European Society of Cardiology website [online] (2010).

    Google Scholar 

  129. Zafar, M. U. et al. Antithrombotic effects of factor Xa inhibition with DU-176b: phase-I study of an oral, direct factor Xa inhibitor using an ex-vivo flow chamber. Thromb. Haemost. 98, 883–888 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Fuji, T., Fujita, S., Tachibana, S. & Kawai, Y. A dose-ranging study evaluating the oral factor Xa inhibitor edoxaban for the prevention of venous thromboembolism in patients undergoing total knee arthroplasty. J. Thromb. Haemost. 8, 2458–2468 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Raskob, G. et al. Oral direct factor Xa inhibition with edoxaban for thromboprophylaxis after elective total hip replacement. A randomised double-blind dose-response study. Thromb. Haemost. 104, 642–649 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Weitz, J. I. et al. Randomised, parallel-group, multicentre, multinational phase 2 study comparing edoxaban, an oral factor Xa inhibitor, with warfarin for stroke prevention in patients with atrial fibrillation. Thromb. Haemost. 104, 633–641 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Iwatsuki, Y. et al. Biochemical and pharmacological profiles of YM150, an oral direct factor Xa inhibitor. Blood (ASH Annual Meeting Abstracts) 108, 273a (2006).

  134. Eriksson, B. I. et al. Prevention of venous thromboembolism with an oral factor Xa inhibitor, YM150, after total hip arthroplasty. A dose finding study (ONYX-2). J. Thromb. Haemost. 8, 714–721 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Sabatine, M. S. et al. Otamixaban for the treatment of patients with non-ST-elevation acute coronary syndromes (SEPIA-ACS1 TIMI 42): a randomised, double-blind, active-controlled, phase 2 trial. Lancet 374, 787–795 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Cohen, M. et al. Randomized, double-blind, dose-ranging study of otamixaban, a novel, parenteral, short-acting direct factor Xa inhibitor, in percutaneous coronary intervention: the SEPIA-PCI trial. Circulation 115, 2642–2651 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Harenberg, J. Development of idraparinux and idrabiotaparinux for anticoagulant therapy. Thromb. Haemost. 102, 811–815 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Veyrat-Follet, C., Vivier, N., Trellu, M., Dubruc, C. & Sanderink, G. J. The pharmacokinetics of idraparinux, a long-acting indirect factor Xa inhibitor: population pharmacokinetic analysis from Phase III clinical trials. J. Thromb. Haemost. 7, 559–565 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Amadeus Investigators et al. Comparison of idraparinux with vitamin K antagonists for prevention of thromboembolism in patients with atrial fibrillation: a randomised, open-label, non-inferiority trial. Lancet 371, 315–321 (2008).

  140. van Gogh Investigators et al. Idraparinux versus standard therapy for venous thromboembolic disease. N. Engl. J. Med. 357, 1094–1104 (2007).

  141. Connolly, S. J. et al. Dabigatran versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 361, 1139–1151 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Eriksson, B. I. et al. Dabigatran etexilate versus enoxaparin for prevention of venous thromboembolism after total hip replacement: a randomised, double-blind, non-inferiority trial. Lancet 370, 949–956 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Eriksson, B. I. et al. Oral dabigatran etexilate vs. subcutaneous enoxaparin for the prevention of venous thromboembolism after total knee replacement: the RE-MODEL randomized trial. J. Thromb. Haemost. 5, 2178–2185 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Schulman, S. et al. Dabigatran versus warfarin in the treatment of acute venous thromboembolism. N. Engl. J. Med. 361, 2342–2352 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Squizzato, A., Dentali, F., Steidl, L. & Ageno, W. New direct thrombin inhibitors. Intern. Emerg. Med. 4, 479–484 (2009).

    Article  PubMed  Google Scholar 

  146. Straub, A. et al. Substituted oxazolidinones and their use in the field of blood coagulation. WO0147919 (A1) (2001).

    Google Scholar 

  147. Mederski, W. W. et al. Halothiophene benzimidazoles as P1 surrogates of inhibitors of blood coagulation factor Xa. Bioorg. Med. Chem. Lett. 14, 3763–3769 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Pinto, D. J. et al. Discovery of 1-(4-methoxyphenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carboxamide (Apixaban, BMS-562247), a highly potent, selective, efficacious, and orally bioavailable inhibitor of blood coagulation factor Xa. J. Med. Chem. 50, 5339–5356 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Kohrt, J. T. et al. The discovery of (2R,4R)-N-(4-chlorophenyl)-N-(2-fluoro-4-(2-oxopyridin-1(2H)-yl)phenyl)-4-methoxypyrrolidine-1,2-dicarboxamide (PD 0348292), an orally efficacious factor Xa inhibitor. Chem. Biol. Drug Des. 70, 100–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Mann, K. G., Butenas, S. & Brummel, K. The dynamics of thrombin formation. Arterioscler. Thromb. Vasc. Biol. 23, 17–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. Furie, B. & Furie, B. C. Mechanisms of thrombus formation. N. Engl. J. Med. 359, 938–949 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Mann, K. G., Jenny, R. J. & Krishnaswamy, S. Cofactor proteins in the assembly and expression of blood clotting enzyme complexes. Annu. Rev. Biochem. 57, 915–956 (1988).

    Article  CAS  PubMed  Google Scholar 

  153. Licari, L. G. & Kovacic, J. P. Thrombin physiology and pathophysiology. J. Vet. Emerg. Crit. Care (San Antonio) 19, 11–22 (2009).

    Article  Google Scholar 

  154. Mann, K. G., Brummel, K. & Butenas, S. What is all that thrombin for? J. Thromb. Haemost. 1, 1504–1514 (2003).

    Article  CAS  PubMed  Google Scholar 

  155. Kaiser, B. Factor Xa-a promising target for drug development. Cell. Mol. Life Sci. 59, 189–192 (2002).

    Article  CAS  PubMed  Google Scholar 

  156. Wienen, W., Stassen, J. M., Priepke, H., Ries, U. J. & Hauel, N. In-vitro profile and ex-vivo anticoagulant activity of the direct thrombin inhibitor dabigatran and its orally active prodrug, dabigatran etexilate. Thromb. Haemost. 98, 155–162 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Kakkar, A. K. et al. Extended thromboprophylaxis with rivaroxaban compared with short-term thromboprophylaxis with enoxaparin after total hip arthroplasty: the RECORD2 trial. Blood (ASH Annual Meeting Abstracts) 110, 307 (2007).

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge S. Salaria and S. McMillan, who provided medical writing services, with funding from Bayer HealthCare and Johnson & Johnson Pharmaceutical Research & Development. We would also like to thank Proteros Biostructures, Planegg-Martinsried, Germany, for performing the X-ray crystal structure work on rivaroxaban.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Perzborn.

Ethics declarations

Competing interests

E.P., S.R., A.S., D.K. and F.M. are employed at Bayer HealthCare. E.P., S.R., A.S. and F.M. are shareholders.

Related links

Related links

FURTHER INFORMATION

ClinicalTrials.gov

Bayer HealthCare Xarelto (rivaroxaban) Summary of Product Characteristics

GlaxoSmithKline, Arixtra (fondaparinux) prescribing information

Janssen Pharmaceutica Products, Nizoral (ketoconazole) tablets prescribing information

Abbott Laboratories, Norvir (ritonavir) prescribing information

EMA CHMP Assessment Report for Xarelto (rivaroxaban)

Bristol-Myers Squibb press release 18 Nov 2010 (APPRAISE-2 study with investigational compound apixaban in acute coronary syndrome discontinued)

Rocket AF study

Glossary

Thromboembolic disorders

A group of conditions characterized by an increased incidence of thrombi in the vasculature, such as deep-vein thrombosis, pulmonary embolism, systemic embolism or coronary and cerebral ischaemia.

Unfractionated heparin

(UFH). An anticoagulant administered intravenously or subcutaneously. It binds to antithrombin, greatly increasing its activity and resulting in the inhibition of factors Xa, IXa, XIa, XIIa and thrombin (factor IIa).

Heparin-induced thrombocytopaenia

The process by which antibodies against the complex of heparin and platelet factor 4 activate platelets, resulting in a decrease in platelet numbers of more than 50%.

Low-molecular-weight heparins

(LMWHs). A class of anticoagulants derived from unfractionated heparin by chemical or enzymatic degradation. They induce a conformational change in antithrombin that greatly increases its anticoagulant activity.

Thrombin

Thrombin (also known as factor IIa) is the terminal enzyme of the coagulation cascade and converts fibrinogen into fibrin, which forms clot fibres. Thrombin also activates several other coagulation factors, as well as protein C.

Antithrombin

An endogenous glycoprotein that binds covalently to thrombin and other coagulation factors, resulting in their inhibition. Antithrombin functions as a natural anticoagulant, and its inhibitory action is accelerated by heparin.

Warfarin

A vitamin K antagonist that is currently the most commonly used oral anticoagulant.

Vitamin K antagonist

A class of compounds that inhibit the vitamin K-dependent carboxylation of specific coagulation factors, resulting in decreased levels of the affected coagulation factors, leading to anticoagulation.

Therapeutic window

The interval between the lowest dose of a drug that is sufficient for clinical effectiveness and a higher dose at which adverse events or toxicity become unacceptable.

International normalized ratio

(INR). Because prothrombin time-test results vary according to the activity of the thromboplastin used, the INR conversion is used to normalize results for any thromboplastin preparation. It is valid only with vitamin K antagonists.

Thromboprophylaxis

A measure taken to prevent the development of a thrombus. It can be pharmaceutical or mechanical.

Tissue factor

A cell-membrane-bound receptor protein that is exposed to the circulating blood during vessel injury. Pre-existing factor VIIa in the blood binds to tissue factor, initiating the coagulation cascade.

Direct thrombin inhibitors

A class of anticoagulants that bind directly to thrombin and block the interaction with its substrate, fibrinogen, thereby inhibiting the generation of fibrin and clot formation.

Thrombomodulin

A membrane-bound thrombin receptor that, when bound to thrombin, functions as a cofactor in the thrombin-induced activation of protein C.

Protein C

The inactive precursor of activated protein C (APC). APC, with its cofactor protein S, inactivates factor Va and factor VIIIa, thus providing an important anticoagulant feedback function.

Factor Xa inhibitor

A class of anticoagulants that inhibit factor Xa in the coagulation cascade, either by binding directly, or indirectly through antithrombin. Inhibition of factor Xa reduces the production of thrombin.

Venous thromboembolism

(VTE). A condition in which a blood clot (thrombus) that has formed in the venous system breaks free (becoming an embolus) and migrates through the circulation to lodge in and block another blood vessel.

Deep-vein thrombosis

(DVT). A blood clot in a deep vein, usually in the leg. Distal DVT occurs in the calf, whereas proximal DVT occurs above the knee.

Pulmonary embolism

A blood clot or thromboembolus in a pulmonary blood vessel. Such emboli generally originate from a deep-vein thrombosis and can cause permanent lung damage, chronic pulmonary hypertension and death.

Haemostasis

The complex process that leads to the formation of a blood clot, causing bleeding to stop.

Fibrinogen

A soluble plasma protein that, in the final phase of the coagulation process, is converted to fibrin by thrombin. Fibrin then polymerizes and forms the fibrous network base of a clot.

Oral bioavailability

The total proportion of pharmacologically active drug that enters the systemic circulation after oral administration. It is affected by both absorption and local metabolic inactivation.

Prothrombin time

A laboratory test that measures clotting time in the presence of tissue factor (thromboplastin). It is used to assess the activity of the extrinsic coagulation pathway.

Activated partial thromboplastin time

A laboratory test that measures the clotting time of plasma after contact activation. It assesses the function of the intrinsic coagulation pathway.

CYP450 isoforms

Many therapeutic drugs are metabolized by cytochrome P450 (CYP450) enzymes, a 'superfamily' of related but distinct enzymes that differ in their substrate specificity.

Creatinine clearance

The rate at which the kidney clears the blood of creatinine (a waste product from muscles that is excreted at a fairly constant rate). Creatinine clearance is used as an approximation of the glomerular filtration rate.

Chromogenic assay

An enzymatic assay in which a colour develops during the course of the reaction, which can then be measured spectrophotometrically. Colour development is reduced in the presence of an inhibitor.

Venography

Radiography of the veins after intravenous injection of a radioactive isotope or contrast dye. This can be used to confirm the presence of deep-vein thromboses.

Index event

The acute event that leads to a patient's initial presentation. The term can also refer to the initial event resulting in a patient's inclusion in a follow-up study, such as a survey of recurrent strokes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perzborn, E., Roehrig, S., Straub, A. et al. The discovery and development of rivaroxaban, an oral, direct factor Xa inhibitor. Nat Rev Drug Discov 10, 61–75 (2011). https://doi.org/10.1038/nrd3185

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3185

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research