Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Human stem cells and drug screening: opportunities and challenges

Abstract

High-throughput screening technologies are widely used in the early stages of drug discovery to rapidly evaluate the properties of thousands of compounds. However, they generally rely on testing compound libraries on highly proliferative immortalized or cancerous cell lines, which do not necessarily provide an accurate indication of the effects of compounds in normal human cells or the specific cell type under study. Recent advances in stem cell technology have the potential to allow production of a virtually limitless supply of normal human cells that can be differentiated into any specific cell type. Moreover, using induced pluripotent stem cell technology, they can also be generated from patients with specific disease traits, enabling more relevant modelling and drug screens. This article discusses the opportunities and challenges for the use of stem cells in drug screening with a focus on induced pluripotent stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation and lineage restriction of induced pluripotent stem cells derived from somatic cells can be adapted for high-throughput screening.
Figure 2: Drug treatment increases nuclear gems in induced pluripotent stem cells taken from a patient with spinal muscular atrophy.
Figure 3: Pluripotent stem cells could become an important factor in the drug discovery process.

Similar content being viewed by others

References

  1. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Morrison, S. J. & Kimble, J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441, 1068–1074 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Murry, C. E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661–680 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Pouton, C. W. & Haynes, J. M. Pharmaceutical applications of embryonic stem cells. Adv. Drug Deliv. Rev. 57, 1918–1934 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Lefort, N. et al. Human embryonic stem cells reveal recurrent genomic instability at 20q11.21. Nature Biotech. 26, 1364–1366 (2008).

    Article  CAS  Google Scholar 

  6. Wu, H. et al. Integrative genomic and functional analyses reveal neuronal subtype differentiation bias in human embryonic stem cell lines. Proc. Natl Acad. Sci. USA 104, 13821–13826 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kita-Matsuo, H. et al. Lentiviral vectors and protocols for creation of stable hESC lines for fluorescent tracking and drug resistance selection of cardiomyocytes. PLoS ONE 4, e5046 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pruszak, J., Sonntag, K. C., Aung, M. H., Sanchez-Pernaute, R. & Isacson, O. Markers and methods for cell sorting of human embryonic stem cell-derived neural cell populations. Stem Cells 25, 2257–2268 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Park, I. H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Maherali, N. & Hochedlinger, K. Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell 3, 595–605 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Kaji, K. et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458, 771–775 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Soldner, F. et al. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136, 964–977 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Woltjen, K. et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458, 766–770 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T. & Yamanaka, S. Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949–953 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G. & Hochedlinger, K. Induced pluripotent stem cells generated without viral integration. Science 322, 945–949 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu, J. et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797–801 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fusaki, N., Ban, H., Nishiyama, A., Saeki, K. & Hasegawa, M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 85, 348–362 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim, D. et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4, 472–476 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Muller, L. U., Daley, G. Q. & Williams, D. A. Upping the ante: recent advances in direct reprogramming. Mol. Ther. 17, 947–953 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou, H. et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4, 381–384 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Lyssiotis, C. A. et al. Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc. Natl Acad. Sci. USA 106, 8912–8917 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chin, M. H. et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5, 111–123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cyranoski, D. Japan fast-tracks stem-cell patent. Nature 455, 269 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. DiBernardo, A. B. & Cudkowicz, M. E. Translating preclinical insights into effective human trials in ALS. Biochim. Biophys. Acta 1762, 1139–1149 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Scott, S. et al. Design, power, and interpretation of studies in the standard murine model of ALS. Amyotroph. Lateral. Scler. 9, 4–15 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Klivenyi, P. et al. Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nature Med. 5, 347–350 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Kruman, I. I., Pedersen, W. A., Springer, J. E. & Mattson, M. P. ALS-linked Cu/Zn-SOD mutation increases vulnerability of motor neurons to excitotoxicity by a mechanism involving increased oxidative stress and perturbed calcium homeostasis. Exp. Neurol. 160, 28–39 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Desnuelle, C., Dib, M., Garrel, C. & Favier, A. A double-blind, placebo-controlled randomized clinical trial of α-tocopherol (vitamin E) in the treatment of amyotrophic lateral sclerosis. ALS riluzole-tocopherol study group. Amyotroph. Lateral. Scler. Other Motor Neuron Disord. 2, 9–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Groeneveld, G. J. et al. A randomized sequential trial of creatine in amyotrophic lateral sclerosis. Ann. Neurol. 53, 437–445 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Shefner, J. M. et al. A clinical trial of creatine in ALS. Neurology 63, 1656–1661 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Kettenhofen, R. & Bohlen, H. Preclinical assessment of cardiac toxicity. Drug Discov. Today 13, 702–707 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. He, J. Q., Ma, Y., Lee, Y., Thomson, J. A. & Kamp, T. J. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ. Res. 93, 32–39 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Mummery, C. et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107, 2733–2740 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Satin, J. et al. Mechanism of spontaneous excitability in human embryonic stem cell derived cardiomyocytes. J. Physiol. 559, 479–496 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Beqqali, A., van, E. W., Mummery, C. & Passier, R. Human stem cells as a model for cardiac differentiation and disease. Cell Mol. Life Sci. 66, 800–813 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Cezar, G. G. et al. Identification of small molecules from human embryonic stem cells using metabolomics. Stem Cells Dev. 16, 869–882 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Desbordes, S. C. et al. High-throughput screening assay for the identification of compounds regulating self-renewal and differentiation in human embryonic stem cells. Cell Stem Cell 2, 602–612 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Borowiak, M. et al. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell 4, 348–358 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu, S. et al. A small molecule primes embryonic stem cells for differentiation. Cell Stem Cell 4, 416–426 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Bahn, S. et al. Neuronal target genes of the neuron-restrictive silencer factor in neurospheres derived from fetuses with Down's syndrome: a gene expression study. Lancet 359, 310–315 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Cairney, C. J. et al. A systems biology approach to Down syndrome: identification of Notch/Wnt dysregulation in a model of stem cells aging. Biochim. Biophys. Acta 1792, 353–363 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Eiges, R. et al. Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cell 1, 568–577 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Perrier, A. L. et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl Acad. Sci. USA 101, 12543–12548 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Biskup, S. et al. Genes associated with Parkinson syndrome. J. Neurol. 255 (Suppl. 5), 8–17 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Schneider, B. L. et al. Over-expression of α-synuclein in human neural progenitors leads to specific changes in fate and differentiation. Hum. Mol. Genet. 16, 651–666 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Dimos, J. T. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218–1221 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Ebert, A. D. et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457, 277–280 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Park, I. H. et al. Disease-specific induced pluripotent stem cells. Cell 134, 877–886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, G. et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461, 402–406 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Coovert, D. D. et al. The survival motor neuron protein in spinal muscular atrophy. Hum. Mol. Genet. 6, 1205–1214 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Lefebvre, S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80, 155–165 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Lorson, C. L., Hahnen, E., Androphy, E. J. & Wirth, B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc. Natl Acad. Sci. USA 96, 6307–6311 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lefebvre, S. et al. Correlation between severity and SMN protein level in spinal muscular atrophy. Nature Genet. 16, 265–269 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Hanna, J. et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318, 1920–1923 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Raya, A. et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460, 53–59 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clive N. Svendsen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

amyotrophic lateral sclerosis

Down's syndrome

familial dysautonomia

fragile X syndrome

Parkinson's disease

spinal muscular atrophy

United States Patent and Trademark Office 

20090011503

FURTHER INFORMATION

Allison D. Ebert's homepage

Wisconsin Alumni Research Foundation Technology — Stem Cells

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebert, A., Svendsen, C. Human stem cells and drug screening: opportunities and challenges. Nat Rev Drug Discov 9, 367–372 (2010). https://doi.org/10.1038/nrd3000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3000

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research