Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antiplatelet therapies for the treatment of cardiovascular disease

Key Points

  • Antiplatelet therapy has been successful in reducing mortality and morbidity in acute myocardial infarction, which is the most common cause of death in the developed world.

  • Current antiplatelet therapies target key pathways of platelet activation, including thromboxane A2 synthesis (aspirin), ADP-mediated signalling (clopidogrel) and integrin αIIbβ3 (also known as GPIIb–IIIa) signalling.

  • Limitations of current therapies include weak inhibition of platelet function (for example, by aspirin), blockade of only one pathway of ADP-mediated signalling (for example, by clopidogrel), slow onset of action (for example, of clopidogrel), interpatient response variability with poor inhibition of platelet response in some patients (for example, to clopidogrel), inability to translate the success of intravenous integrin αIIbβ3 antagonist therapy into oral therapy, and the inability to completely separate a reduction in thrombotic events from an increase in bleeding events.

  • Recent advances in understanding the molecular basis of the role of platelets in cardiovascular thrombosis has enabled the development of new agents with the potential to further reduce mortality and morbidity, with the goal of better separating reduced thrombotic events from increased bleeding events.

  • Examples of these new agents include: ADP receptor antagonists with a more rapid onset of action, a more potent antiplatelet effect, and less patient hyporesponsiveness; integrin αIIbβ3 antagonists directed against new epitope targets; and agents directed against new platelet surface targets such as proteinase-activated receptor 1, glycoprotein VI, integrin α2β1, 5-hydroxytryptamine receptor 2A, and prostaglandin E2 receptor EP3 subtype.

Abstract

Antiplatelet therapy has been successful in reducing mortality and morbidity in acute myocardial infarction. Recent advances in understanding the molecular basis of the role of platelets in cardiovascular thrombosis have enabled the development of new agents with the potential to further reduce mortality and morbidity. This article reviews the role of platelets in haemostasis and cardiovascular thrombosis, and discusses the benefits and limitations of current and investigational antiplatelet agents in the treatment of cardiovascular disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Platelet function and molecular targets of antiplatelet agents.

Similar content being viewed by others

References

  1. Antithrombotic Trialists' Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 324, 71–86 (2002).

    PubMed Central  Google Scholar 

  2. Michelson, A. D. (ed.) Platelets 2nd edn (Elsevier/Academic Press, San Diego, 2007).

    Google Scholar 

  3. Nurden, A. T., Nurden, P., Sanchez, M., Andia, I. & Anitua, E. Platelets and wound healing. Front. Biosci. 13, 3532–3548 (2008).

    PubMed  Google Scholar 

  4. Furman, M. I. et al. Release of soluble CD40L from platelets is regulated by glycoprotein IIb/IIIa and actin polymerization. J. Am. Coll. Cardiol. 43, 2319–2325 (2004).

    CAS  PubMed  Google Scholar 

  5. Trier, D. A. et al. Platelet antistaphylococcal responses occur through P2X1 and P2Y12 receptor-induced activation and kinocidin release. Infect. Immun. 76, 5706–5713 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Italiano, J. E. Jr et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 111, 1227–1233 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nierodzik, M. L., Karpatkin, S. in Platelets 2nd edn (ed. Michelson, A. D.) 769–778 (Elsevier/Academic Press, San Diego, 2007).

    Google Scholar 

  8. White, J. G. in Platelets 2nd edn (ed. Michelson, A. D.) 45–73 (Elsevier/Academic Press, San Diego, 2007).

    Google Scholar 

  9. Italiano, J. E. & Hartwig, J. H. in Platelets 2nd edn (ed. Michelson, A. D.) 23–44 (Elsevier/Academic Press, San Diego, 2007).

    Google Scholar 

  10. Levin, J. in Platelets 2nd edn (ed. Michelson, A. D.) 3–22 (Elsevier/Academic Press, San Diego, 2007).

    Google Scholar 

  11. Clemetson, K. J. & Clemetson, J. M. in Platelets 2nd edn (ed. Michelson, A. D.) 117–143 (Elsevier/Academic Press, San Diego, 2007).

    Google Scholar 

  12. Hartwig, J. H. in Platelets 2nd edn (ed. Michelson, A. D.) 75–97 (Elsevier/Academic Press, San Diego, 2007).

    Google Scholar 

  13. Rex, S. & Freedman, J. E. in Platelets 2nd edn (ed. Michelson, A. D.) 251–279 (Elsevier/Academic Press, San Diego, 2007).

    Google Scholar 

  14. Brass, L. F., Stalker, T. J., Zhu, L. & Woulfe, D. S. in Platelets 2nd edn (ed. Michelson, A. D.) 319–346 (Elsevier/Academic Press, San Diego, 2007).

    Google Scholar 

  15. Roth, G. J., Stanford, N. & Majerus, P. W. Acetylation of prostaglandin synthase by aspirin. Proc. Natl Acad. Sci. USA 72, 3073–3076 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Loll, P. J., Picot, D. & Garavito, R. M. The structural basis of aspirin activity inferred from the crystal structure of inactivated prostaglandin H2 synthase. Nature Struct. Biol. 2, 637–643 (1995).

    CAS  PubMed  Google Scholar 

  17. Patrono, C., Baigent, C., Hirsh, J. & Roth, G. Antiplatelet drugs. American College of Chest Physicians evidence-based clinical practice guidelines (8th edition). Chest 133, S199–S233 (2008). The most recent evidence-based guidelines for the use of current FDA-approved antiplatelet therapy.

    Google Scholar 

  18. Frelinger, A. L. et al. Lack of association between cyclooxygenase-1-dependent platelet function assays and adverse clinical outcomes in 700 consecutive aspirin-treated patients presenting for cardiac catheterization. J. Am. Coll. Cardiol. 51, A370 (2008).

    Google Scholar 

  19. Michelson, A. D., Frelinger, A. L. & Furman, M. I. Resistance to antiplatelet drugs. Eur. Heart J. 8, G53–G58 (2006).

    CAS  Google Scholar 

  20. Snoep, J. D., Hovens, M. M., Eikenboom, J. C., van der Bom, J. G. & Huisman, M. V. Association of laboratory-defined aspirin resistance with a higher risk of recurrent cardiovascular events: a systematic review and meta-analysis. Arch. Intern. Med. 167, 1593–1599 (2007).

    PubMed  Google Scholar 

  21. Krasopoulos, G., Brister, S. J., Beattie, W. S. & Buchanan, M. R. Aspirin “resistance” and risk of cardiovascular morbidity: systematic review and meta-analysis. BMJ 336, 195–203 (2008).

    PubMed  PubMed Central  Google Scholar 

  22. Frelinger, A. L. et al. Aspirin 'resistance': role of pre-existent platelet reactivity and correlation between tests. J. Thromb.Haemost. 6, 2035–2044 (2008).

    CAS  PubMed  Google Scholar 

  23. Cattaneo, M. in Platelets 2nd edn (ed. Michelson, A. D.) 201–220 (Elsevier/Academic Press, San Diego, 2007).

    Google Scholar 

  24. Cattaneo, M. in Platelets 2nd edn (ed. Michelson, A. D.) 1127–1144 (Elsevier/Academic Press, San Diego, 2007).

    Google Scholar 

  25. Michelson, A. D. P2Y12 antagonism: promises and challenges. Arterioscler. Thromb. Vasc. Biol. 28, S33–S38 (2008).

    CAS  PubMed  Google Scholar 

  26. Bertrand, M. E., Rupprecht, H. J., Urban, P. & Gershlick, A. H. Double-blind study of the safety of clopidogrel with and without a loading dose in combination with aspirin compared with ticlopidine in combination with aspirin after coronary stenting: the clopidogrel aspirin stent international cooperative study (CLASSICS). Circulation 102, 624–629 (2000).

    CAS  PubMed  Google Scholar 

  27. Yusuf, S. et al. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N. Engl. J. Med. 345, 494–502 (2001).

    CAS  PubMed  Google Scholar 

  28. Mehta, S. R. et al. Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: the PCI-CURE study. Lancet 358, 527–533 (2001).

    CAS  PubMed  Google Scholar 

  29. Steinhubl, S. R. et al. Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial. JAMA 288, 2411–2420 (2002).

    CAS  PubMed  Google Scholar 

  30. Chen, Z. M. et al. Addition of clopidogrel to aspirin in 45,852 patients with acute myocardial infarction: randomised placebo-controlled trial. Lancet 366, 1607–1621 (2005).

    CAS  PubMed  Google Scholar 

  31. Sabatine, M. S. et al. Addition of clopidogrel to aspirin and fibrinolytic therapy for myocardial infarction with ST-segment elevation. N. Engl. J. Med. 352, 1179–1189 (2005).

    CAS  PubMed  Google Scholar 

  32. Bhatt, D. L. et al. Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events. N. Engl. J. Med. 354, 1706–1717 (2006).

    CAS  PubMed  Google Scholar 

  33. Wang, T. H. et al. An analysis of mortality rates with dual-antiplatelet therapy in the primary prevention population of the CHARISMA trial. Eur. Heart J. 28, 2200–2207 (2007).

    PubMed  Google Scholar 

  34. Snoep, J. D. et al. Clopidogrel nonresponsiveness in patients undergoing percutaneous coronary intervention with stenting: a systematic review and meta-analysis. Am. Heart J. 154, 221–231 (2007).

    CAS  PubMed  Google Scholar 

  35. Matetzky, S. et al. Clopidogrel resistance is associated with increased risk of recurrent atherothrombotic events in patients with acute myocardial infarction. Circulation 109, 3171–3175 (2004).

    CAS  PubMed  Google Scholar 

  36. Gurbel, P. A. et al. Clopidogrel effect on platelet reactivity in patients with stent thrombosis. Results of the CREST study. J. Am. Coll. Cardiol. 46, 1827–1832 (2005).

    CAS  PubMed  Google Scholar 

  37. Cuisset, T. et al. High post-treatment platelet reactivity identified low-responders to dual antiplatelet therapy at increased risk of recurrent cardiovascular events after stenting for acute coronary syndrome. J. Thromb. Haemost. 4, 542–549 (2006).

    CAS  PubMed  Google Scholar 

  38. Hochholzer, W. et al. Impact of the degree of peri-interventional platelet inhibition after loading with clopidogrel on early clinical outcome of elective coronary stent placement. J. Am. Coll. Cardiol. 48, 1742–1750 (2006).

    CAS  PubMed  Google Scholar 

  39. Bliden, K. P. et al. Increased risk in patients with high platelet aggregation receiving chronic clopidogrel therapy undergoing percutaneous coronary intervention: is the current antiplatelet therapy adequate? J. Am. Coll. Cardiol. 49, 657–666 (2007).

    CAS  PubMed  Google Scholar 

  40. Buonamici, P. et al. Impact of platelet reactivity after clopidogrel administration on drug-eluting stent thrombosis. J. Am. Coll. Cardiol. 49, 2312–2317 (2007).

    CAS  PubMed  Google Scholar 

  41. Sibbing, D. et al. Platelet reactivity after clopidogrel treatment assessed with point-of-care analysis and early drug-eluting stent thrombosis. J. Am. Coll. Cardiol. 53, 849–856 (2009). Whole-blood platelet aggregation, measured by an automated impedance method, was used to show that low response to clopidogrel is significantly associated with an increased risk of drug-eluting stent thrombosis in patients with coronary artery disease.

    CAS  PubMed  Google Scholar 

  42. Marcucci, R. et al. Cardiovascular death and nonfatal myocardial infarction in acute coronary syndrome patients receiving coronary stenting are predicted by residual platelet reactivity to ADP detected by a point-of-care assay: a 12-month follow-up. Circulation 119, 237–242 (2009). Residual platelet reactivity to ADP after clopidogrel therapy, measured by the point-of-care VerifyNow P2Y12 Assay, is able to detect ACS patients at risk of 12-month cardiovascular death and non-fatal myocardial infarction.

    PubMed  Google Scholar 

  43. Bonello, L. et al. Vasodilator-stimulated phosphoprotein phosphorylation analysis prior to percutaneous coronary intervention for exclusion of postprocedural major adverse cardiovascular events. J. Thromb. Haemost. 5, 1630–1636 (2007).

    CAS  PubMed  Google Scholar 

  44. Bonello, L. et al. Adjusted clopidogrel loading doses according to vasodilator-stimulated phosphoprotein phosphorylation index decrease rate of major adverse cardiovascular events in patients with clopidogrel resistance. A multicenter randomized prospective study. J. Am. Coll. Cardiol. 51, 1404–1411 (2008). Although limited, this was the first study to suggest that adjusting the clopidogrel loading dose according to platelet monitoring using the VASP index is safe and may significantly improve the clinical outcome after PCI in patients with clopidogrel hyporesponsiveness despite a first 600-mg loading dose.

    CAS  PubMed  Google Scholar 

  45. Angiolillo, D. J. et al. Variability in individual responsiveness to clopidogrel: clinical implications, management, and future perspectives. J. Am. Coll. Cardiol. 49, 1505–1516 (2007).

    CAS  PubMed  Google Scholar 

  46. Roy, P. et al. Impact of “nuisance” bleeding on clopidogrel compliance in patients undergoing intracoronary drug-eluting stent implantation. Am. J. Cardiol. 102, 1614–1617 (2008).

    PubMed  Google Scholar 

  47. Sorensen, R. et al. Initiation and persistence with clopidogrel treatment after acute myocardial infarction: a nationwide study. Brit. J. Clin. Pharmacol. 66, 875–884 (2008).

    Google Scholar 

  48. Gilard, M. et al. Influence of omeprazole on the antiplatelet action of clopidogrel associated with aspirin: the randomized, double-blind OCLA (Omeprazole CLopidogrel Aspirin) study. J. Am. Coll. Cardiol. 51, 256–260 (2008).

    CAS  PubMed  Google Scholar 

  49. Ho, P. M. et al. Risk of adverse outcomes associated with concomitant use of clopidogrel and proton pump inhibitors following acute coronary syndrome. JAMA 301, 937–944 (2009).

    CAS  PubMed  Google Scholar 

  50. Siller-Matula, J. M. et al. Effects of pantoprazole and esomeprazole on platelet inhibition by clopidogrel. Am. Heart J. 157, 148.e1–148.e5 (2009).

    Google Scholar 

  51. Sibbing, D. et al. Impact of proton pump inhibitors on the antiplatelet effects of clopidogrel. Thromb. Haemost. 101, 714–719 (2009).

    CAS  PubMed  Google Scholar 

  52. O'Donoghue, M. L. et al. Pharmacodynamic and clinical efficacy of clopidogrel and of prasugrel with or without a proton-pump inhibitor: an analysis of two randomised trials. Lancet 374, 989–997 (2009).

    CAS  PubMed  Google Scholar 

  53. Bliden, K. P. et al. The association of cigarette smoking with enhanced platelet inhibition by clopidogrel. J. Am. Coll. Cardiol. 52, 531–533 (2008). As determined by platelet aggregometry and flow cytometry, clopidogrel therapy in current cigarette smokers was associated with increased inhibition of platelet function compared with non-smokers.

    CAS  PubMed  Google Scholar 

  54. Desai, N. R., Mega, J. L., Jiang, S., Cannon, C. P. & Sabatine, M. S. Interaction between cigarette smoking and clinical benefit of clopidogrel. J. Am. Coll. Cardiol. 53, 1273–1278 (2009). This study provided evidence that cigarette smoking positively modifies the beneficial effect of clopidogrel on angiographic and clinical outcomes.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mega, J. L. et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N. Engl. J. Med. 360, 354–362 (2009).

    CAS  PubMed  Google Scholar 

  56. Simon, T. et al. Genetic determinants of response to clopidogrel and cardiovascular events. N. Engl. J. Med. 360, 363–375 (2009).

    CAS  PubMed  Google Scholar 

  57. Collet, J. P. et al. Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study. Lancet 373, 309–317 (2009). References 55–57 showed that a common reduced-function CYP2C19 allele results in significantly lower levels of the active metabolite of clopidogrel with resultant diminished platelet inhibition and a higher rate of major adverse cardiovascular events.

    CAS  PubMed  Google Scholar 

  58. Michelson, A. D. et al. Evidence that pre-existent variability in platelet response to ADP accounts for 'clopidogrel resistance'. J. Thromb. Haemost. 5, 75–81 (2007).

    CAS  PubMed  Google Scholar 

  59. Angiolillo, D. J. et al. Identification of low responders to a 300-mg clopidogrel loading dose in patients undergoing coronary stenting. Thromb. Res. 115, 101–108 (2005).

    CAS  PubMed  Google Scholar 

  60. Angiolillo, D. J. et al. High clopidogrel loading dose during coronary stenting: effects on drug response and interindividual variability. Eur. Heart J. 25, 1903–1910 (2004).

    CAS  PubMed  Google Scholar 

  61. Samara, W. M., Bliden, K. P., Tantry, U. S. & Gurbel, P. A. The difference between clopidogrel responsiveness and posttreatment platelet reactivity. Thromb. Res. 115, 89–94 (2005).

    CAS  PubMed  Google Scholar 

  62. Gurbel, P. A., Bliden, K. P., Hiatt, B. L. & O'Connor, C. M. Clopidogrel for coronary stenting: response variability, drug resistance, and the effect of pretreatment platelet reactivity. Circulation 107, 2908–2913 (2003).

    PubMed  Google Scholar 

  63. Angiolillo, D. J. et al. Platelet function profiles in patients with type 2 diabetes and coronary artery disease on combined aspirin and clopidogrel treatment. Diabetes 54, 2430–2435 (2005).

    CAS  PubMed  Google Scholar 

  64. Holmes, D. R. Jr et al. Thrombosis and drug-eluting stents: an objective appraisal. J. Am. Coll. Cardiol. 50, 109–118 (2007).

    CAS  PubMed  Google Scholar 

  65. Jakubowski, J. A., Winters, K. J., Naganuma, H. & Wallentin, L. Prasugrel: a novel thienopyridine antiplatelet agent. A review of preclinical and clinical studies and the mechanistic basis for its distinct antiplatelet profile. Cardiovas Drug Rev. 25, 357–374 (2007).

    CAS  Google Scholar 

  66. Sugidachi, A. et al. The greater in vivo antiplatelet effects of prasugrel as compared to clopidogrel reflect more efficient generation of its active metabolite with similar antiplatelet activity to that of clopidogrel's active metabolite. J. Thromb. Haemost. 5, 1545–1551 (2007). This study provides a mechanistic explanation for why prasugrel is a more potent P2Y 12 antagonist than clopidogrel.

    CAS  PubMed  Google Scholar 

  67. Brandt, J. T. et al. A comparison of prasugrel and clopidogrel loading doses on platelet function: magnitude of platelet inhibition is related to active metabolite formation. Am. Heart J. 153, 66 (2007).

    CAS  PubMed  Google Scholar 

  68. Jernberg, T. et al. Prasugrel achieves greater inhibition of platelet aggregation and a lower rate of non-responders compared with clopidogrel in aspirin-treated patients with stable coronary artery disease. Eur. Heart J. 27, 1166–1173 (2006).

    CAS  PubMed  Google Scholar 

  69. Payne, C. D. et al. Increased active metabolite formation explains the greater platelet inhibition with prasugrel compared to high-dose clopidogrel. J. Cardiovasc. Pharmacol. 50, 555–562 (2007).

    CAS  PubMed  Google Scholar 

  70. Wiviott, S. D. et al. Prasugrel compared with high loading- and maintenance-dose clopidogrel in patients with planned percutaneous coronary intervention: the Prasugrel in Comparison to Clopidogrel for Inhibition of Platelet Activation and Aggregation-Thrombolysis in Myocardial Infarction 44 trial. Circulation 116, 2923–2932 (2007).

    CAS  PubMed  Google Scholar 

  71. Michelson, A. D. et al. Pharmacodynamic assessment of platelet inhibition by prasugrel versus clopidogrel in the TRITON-TIMI 38 trial. Eur. Heart, J. 30, 1753–1763 (2009).

    CAS  Google Scholar 

  72. Wiviott, S. D. et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 357, 2001–2015 (2007). The definitive Phase III clinical trial of prasugrel versus clopidogrel.

    CAS  PubMed  Google Scholar 

  73. Montalescot, G. et al. Prasugrel compared with clopidogrel in patients undergoing percutaneous coronary intervention for ST-elevation myocardial infarction (TRITON-TIMI 38): double-blind, randomised controlled trial. Lancet 373, 723–731 (2009). In this prespecified TRITON-TIMI 38 study of 3,534 STEMI patients undergoing PCI, prasugrel was more effective than clopidogrel for prevention of ischaemic events, without an apparent excess in bleeding.

    CAS  PubMed  Google Scholar 

  74. Wiviott, S. D. et al. Greater clinical benefit of more intensive oral antiplatelet therapy with prasugrel in patients with diabetes mellitus in the trial to assess improvement in therapeutic outcomes by optimizing platelet inhibition with prasugrel-Thrombolysis in Myocardial Infarction 38. Circulation 118, 1626–1636 (2008).

    CAS  PubMed  Google Scholar 

  75. van Giezen, J. J. & Humphries, R. G. Preclinical and clinical studies with selective reversible direct P2Y12 antagonists. Semin. Thromb. Hemost. 31, 195–204 (2005).

    CAS  PubMed  Google Scholar 

  76. Husted, S. et al. Pharmacodynamics, pharmacokinetics, and safety of the oral reversible P2Y12 antagonist AZD6140 with aspirin in patients with atherosclerosis: a double-blind comparison to clopidogrel with aspirin. Eur. Heart J. 27, 1038–1047 (2006).

    CAS  PubMed  Google Scholar 

  77. Cannon, C. P. et al. Safety, tolerability, and initial efficacy of AZD6140, the first reversible oral adenosine diphosphate receptor antagonist, compared with clopidogrel, in patients with non-ST-segment elevation acute coronary syndrome: primary results of the DISPERSE-2 trial. J. Am. Coll. Cardiol. 50, 1844–1851 (2007); erratum 50, 2196 (2007).

    CAS  PubMed  Google Scholar 

  78. Storey, R. F. et al. Inhibition of platelet aggregation by AZD6140, a reversible oral P2Y12 receptor antagonist, compared with clopidogrel in patients with acute coronary syndromes. J. Am. Coll. Cardiol. 50, 1852–1856 (2007).

    CAS  PubMed  Google Scholar 

  79. Wallentin, L. et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 361, 1045–1057 (2009). The definitive Phase III clinical trial of ticagrelor versus clopidogrel.

    CAS  PubMed  Google Scholar 

  80. Storey, R. F., Oldroyd, K. G. & Wilcox, R. G. Open multicentre study of the P2T receptor antagonist AR-C69931MX assessing safety, tolerability and activity in patients with acute coronary syndromes. Thromb. Haemost. 85, 401–407 (2001).

    CAS  PubMed  Google Scholar 

  81. Greenbaum, A. B. et al. Initial experience with an intravenous P2Y12 platelet receptor antagonist in patients undergoing percutaneous coronary intervention: results from a 2-part, phase II, multicenter, randomized, placebo- and active-controlled trial. Am. Heart J. 151, 689 (2006).

    CAS  PubMed  Google Scholar 

  82. Gretler, D. D. et al. “First in human” experience with PRT060128, a new direct-acting, reversible, P2Y12 inhibitor for IV and oral use. J. Am. Coll. Cardiol. 49 (suppl. 2), 326A (2007).

    Google Scholar 

  83. Chang, H., et al. Modified diadenosine tetraphosphonate derivatives synergistically inhibit platelet activation via both P2Y1 and P2Y12 . J. Am. Coll. Cardiol. 51, A281 (2008).

    Google Scholar 

  84. Agah, R., Plow, E. F. & Topol, E. J. in Platelets 2nd edn (ed. Michelson, A. D.) 1145–1163 (Elsevier/Academic Press, San Diego, 2007).

    Google Scholar 

  85. Nurden, A. T. & Caen, J. P. An abnormal platelet glycoprotein pattern in three cases of Glanzmann's thrombasthenia. Br. J. Haematol. 28, 253–260 (1974).

    CAS  PubMed  Google Scholar 

  86. Coller, B. S. Platelet GPIIb/IIIa antagonists: the first anti-integrin receptor therapeutics. J. Clin. Invest. 99, 1467–1471 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ammar, T., Scudder, L. E. & Coller, B. S. In vitro effects of the platelet glycoprotein IIb/IIIa receptor antagonist c7E3 Fab on the activated clotting time. Circulation 95, 614–617 (1997).

    CAS  PubMed  Google Scholar 

  88. Reverter, J. C. et al. Inhibition of platelet-mediated, tissue factor-induced thrombin generation by the mouse/human chimeric 7E3 antibody. Potential implications for the effect of c7E3 Fab treatment on acute thrombosis and “clinical restenosis”. J. Clin. Invest. 98, 863–874 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Furman, M. I. et al. GPIIb-IIIa antagonist-induced reduction in platelet surface factor V/Va binding and phosphatidylserine expression in whole blood. Thromb. Haemost. 84, 492–498 (2000).

    CAS  PubMed  Google Scholar 

  90. Byzova, T. V. & Plow, E. F. Networking in the hemostatic system. Integrin alphaIIb beta3 binds prothrombin and influences its activation. J. Biol. Chem. 272, 27183–27188 (1997).

    CAS  PubMed  Google Scholar 

  91. Mukherjee, D. & Roffi, M. Glycoprotein IIb/IIIa receptor inhibitors in 2008: do they still have a role? J. Interv. Cardiol. 21, 118–121 (2008).

    PubMed  Google Scholar 

  92. Chew, D. P., Bhatt, D. L., Sapp, S. & Topol, E. J. Increased mortality with oral platelet glycoprotein IIb/IIIa antagonists: a meta-analysis of phase III multicenter randomized trials. Circulation 103, 201–206 (2001).

    CAS  PubMed  Google Scholar 

  93. Du, X. P. et al. Ligands “activate” integrin alpha IIb beta 3 (platelet GPIIb-IIIa). Cell 65, 409–416 (1991).

    CAS  PubMed  Google Scholar 

  94. Blue, R., Murcia, M., Karan, C., Jirouskova, M. & Coller, B. S. Application of high-throughput screening to identify a novel a-specific small-molecule inhibitor of aIIbb3-mediated platelet interaction with fibrinogen. Blood 111, 1248–1256 (2008). A novel approach to the development of an antagonist of integrin αIIbβ3 with a diminished capacity to induce the possibly disadvantageous conformational changes in this target.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Escher, R. et al. Antiaggregatory and proangiogenic effects of a novel recombinant human dual specificity anti-integrin antibody. J. Thromb. Haemost. 7, 460–469 (2009).

    CAS  PubMed  Google Scholar 

  96. Stoll, P. et al. Targeting ligand-induced binding sites on GPIIb/IIIa via single-chain antibody allows effective anticoagulation without bleeding time prolongation. Arterioscler. Thromb. Vasc. Biol. 27, 1206–1212 (2007).

    CAS  PubMed  Google Scholar 

  97. Eisert, W. G. in Platelets 2nd edn (ed. Michelson, A. D.) 1165–1179 (Elsevier/Academic Press, San Diego, 2007).

    Google Scholar 

  98. Diener, H. C. et al. European Stroke Prevention Study. 2. Dipyridamole and acetylsalicylic acid in the secondary prevention of stroke. J. Neurol. Sci. 143, 1–13 (1996).

    CAS  PubMed  Google Scholar 

  99. ESPRIT Study Group et al. Aspirin plus dipyridamole versus aspirin alone after cerebral ischaemia of arterial origin (ESPRIT): randomised controlled trial. Lancet 367, 1665–1673 (2006).

  100. Sacco, R. L. et al. Aspirin and extended-release dipyridamole versus clopidogrel for recurrent stroke. N. Engl. J. Med. 359, 1238–1251 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ikeda, Y., Sudo, T. & Kimura, Y. in Platelets 2nd edn (ed. Michelson, A. D.) 1181–1191 (Elsevier/Academic Press, San Diego, 2007).

    Google Scholar 

  102. Biondi-Zoccai, G. G. et al. Systematic review and meta-analysis of randomized clinical trials appraising the impact of cilostazol after percutaneous coronary intervention. Am. Heart J. 155, 1081–1089 (2008).

    CAS  PubMed  Google Scholar 

  103. Lee, S. W. et al. Comparison of triple versus dual antiplatelet therapy after drug-eluting stent implantation (from the DECLARE-Long trial). Am. J. Cardiol. 100, 1103–1108 (2007).

    CAS  PubMed  Google Scholar 

  104. Angiolillo, D. J. et al. A randomized study assessing the impact of cilostazol on platelet function profiles in patients with diabetes mellitus and coronary artery disease on dual antiplatelet therapy: results of the OPTIMUS-2 study. Eur. Heart J. 29, 2202–2211 (2008).

    CAS  PubMed  Google Scholar 

  105. Bahou, W. F. in Platelets 2nd edn (ed. Michelson, A. D.) 179–200 (Elsevier/Academic Press, San Diego, 2007).

    Google Scholar 

  106. Becker, R. C. et al. Safety and tolerability of SCH 530348 in patients undergoing non-urgent percutaneous coronary intervention: a randomised, double-blind, placebo-controlled phase II study. Lancet 373, 919–928 (2009). A Phase II trial demonstrating that a PAR1 antagonist inhibited PAR1 thrombin receptor activating peptide (TRAP)-induced platelet aggregation in a dose-dependent manner, was generally well tolerated and did not cause an increase in major bleeding, even when administered with aspirin and clopidogrel.

    CAS  PubMed  Google Scholar 

  107. Matsuoka, T. et al. Inhibitory effect of E5555, an orally active thrombin receptor antagonist, on intimal hyperplasia following balloon injury. J. Am. Coll. Cardiol. 43, 68A (2004).

    Google Scholar 

  108. Hsu, C. C., Wu, W. B. & Huang, T. F. A snake venom metalloproteinase, kistomin, cleaves platelet glycoprotein VI and impairs platelet functions. J. Thromb. Haemost. 6, 1578–1585 (2008).

    CAS  PubMed  Google Scholar 

  109. Takayama, H. et al. A novel antiplatelet antibody therapy that induces cAMP-dependent endocytosis of the GPVI/Fc receptor gamma-chain complex. J. Clin. Invest. 118, 1785–1795 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Miller, M. W. et al. Small-molecule inhibitors of integrin a2b1 that prevent pathological thrombus formation via an allosteric mechanism. Proc. Natl Acad. Sci. USA 106, 719–724 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Przyklenk, K. et al. Targeted inhibition of the serotonin 5-HT2A receptor improves coronary patency in an in vivo model of recurrent thrombosis. Circulation 116, II_206 (2007).

    Google Scholar 

  112. Wallace, J. L. et al. In vivo antithrombotic effects of a nitric oxide-releasing aspirin derivative, NCX-4016. Thromb. Res. 93, 43–50 (1999).

    CAS  PubMed  Google Scholar 

  113. Lorusso, R. et al. Functional effects of nitric oxide-releasing aspirin on vein conduits of diabetic patients undergoing CABG. Int. J. Cardiol. 118, 164–169 (2007).

    PubMed  Google Scholar 

  114. Fontayne, A. et al. The humanized anti-glycoprotein Ib monoclonal antibody h6B4-Fab is a potent and safe antithrombotic in a high shear arterial thrombosis model in baboons. Thromb. Haemost. 100, 670–677 (2008).

    CAS  PubMed  Google Scholar 

  115. Falati, S. et al. Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J. Exp Med. 197, 1585–1598 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kumar, A. et al. Recombinant soluble form of PSGL-1 accelerates thrombolysis and prevents reocclusion in a porcine model. Circulation 99, 1363–1369 (1999).

    CAS  PubMed  Google Scholar 

  117. Bedard, P. W. et al. Characterization of the novel P-selectin inhibitor PSI-697 [2-(4-chlorobenzyl)-3-hydroxy-7,8, 9,10-tetrahydrobenzo[h] quinoline-4-carboxylic acid] in vitro and in rodent models of vascular inflammation and thrombosis. J. Pharmacol. Exp. Ther. 324, 497–506 (2008).

    CAS  PubMed  Google Scholar 

  118. Meier, T. R. et al. Prophylactic P-selectin inhibition with PSI-421 promotes resolution of venous thrombosis without anticoagulation. Thromb. Haemost. 99, 343–351 (2008).

    CAS  PubMed  Google Scholar 

  119. Gresele, P. et al. of proaggregatory and antiaggregatory prostaglandins in hemostasis. Studies with combined thromboxane synthase inhibition and thromboxane receptor antagonism. J. Clin. Invest. 80, 1435–1445 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Fiddler, G. I. & Lumley, P. Preliminary clinical studies with thromboxane synthase inhibitors and thromboxane receptor blockers. A review. Circulation 81 (Suppl. 1), 78 (1990).

    Google Scholar 

  121. Osende, J. I., Shimbo, D., Fuster, V., Dubar, M. & Badimon, J. J. Antithrombotic effects of S18886, a novel orally active thromboxane A2 receptor antagonist. J. Thromb. Haemost. 2, 492–498 (2004).

    CAS  PubMed  Google Scholar 

  122. Belhassen, L., Pelle, G., Dubois-Rande, J. L. & Adnot, S. Improved endothelial function by the thromboxane A2 receptor antagonist S18886 in patients with coronary artery disease treated with aspirin. J. Am. Coll. Cardiol. 41, 1198–1204 (2003).

    CAS  PubMed  Google Scholar 

  123. Gaussem, P. et al. The specific thromboxane receptor antagonist S18886: pharmacokinetic and pharmacodynamic studies. J. Thromb. Haemost. 3, 1437–1445 (2005).

    CAS  PubMed  Google Scholar 

  124. Yoshida, M. et al. Distinct effects of z-335, a new thromboxane A2 receptor antagonist, on rabbit platelets and aortic smooth muscle. Pharmacology 79, 50–56 (2007).

    CAS  PubMed  Google Scholar 

  125. Qiao, N. et al. The thromboxane receptor antagonist PBT-3, a hepoxilin stable analog, selectively antagonizes the TPα isoform in transfected COS-7 cells. J. Pharmacol. Exp. Ther. 307, 1142–1147 (2003).

    CAS  PubMed  Google Scholar 

  126. Tsao, P. S. & Lefer, A. M. Cardioprotective actions of the specific thromboxane receptor antagonist (+)-S145Na following coronary occlusion and reperfusion in the rat. Res. Commun. Chem. Pathol. Pharmacol. 70, 205–211 (1990).

    CAS  PubMed  Google Scholar 

  127. Ito, Y. et al. Effects of selective cyclooxygenase inhibitors on ischemia/reperfusion-induced hepatic microcirculatory dysfunction in mice. Eur. Sur. Res. 35, 408–416 (2003).

    CAS  Google Scholar 

  128. Maassen, V. A. et al. Augmented contraction of the human isolated coronary artery by sumatriptan: a possible role for endogenous thromboxane. Br. J. Pharmacol. 119, 855–862 (1996).

    Google Scholar 

  129. Brothers, T. E., Robison, J. G., Elliott, B. M., Boggs, J. M. & Halushka, P. V. Thromboxane A2 receptor density increases during chronic exposure to thromboxane A2 receptor antagonists after porcine carotid bypass. Cardiovasc. Surg. 5, 92–98 (1997).

    CAS  PubMed  Google Scholar 

  130. Neri Serneri, G. G., Coccheri, S., Marubini, E. & Violi, F. Drug Evaluation in Atherosclerotic Vascular Disease in Diabetics (DAVID) Study Group. Picotamide, a combined inhibitor of thromboxane A2 synthase and receptor, reduces 2-year mortalityin diabetics with peripheral arterial disease: the DAVID study. Eur. Heart J. 25, 1845–1852 (2004).

    CAS  PubMed  Google Scholar 

  131. Dogne, J. M. et al. Pharmacological evaluation of the novel thromboxane modulator BM-567 (I/II). Effects of BM-567 on platelet function. Prostaglandins Leukot. Essent. Fatty Acids 68, 49–54 (2003).

    CAS  PubMed  Google Scholar 

  132. Kolh, P. et al. Evaluation of BM-573, a novel TXA2 synthase inhibitor and receptor antagonist, in a porcine model of myocardial ischemia-reperfusion. Prostaglandins Other Lipid Mediat. 79, 53–73 (2006).

    CAS  PubMed  Google Scholar 

  133. Minuz, P. et al. Antiaggregating and vasodilatory effects of a new nitroderivative of acetylsalicylic acid. Thromb. Res. 80, 367–376 (1995).

    CAS  PubMed  Google Scholar 

  134. Singh, J. et al. Antagonists of the EP3 receptor for prostaglandin E2 are novel antiplatelet agents that do not prolong bleeding. ACS Chem. Biol. 4, 115–126 (2009).

    CAS  PubMed  Google Scholar 

  135. Yap, C. L. et al. Essential role for phosphoinositide 3-kinase in shear-dependent signaling between platelet glycoprotein Ib/V/IX and integrin αIIbβ3. Blood 99, 151–158 (2002).

    CAS  PubMed  Google Scholar 

  136. Sturgeon, S. A., Jones, C., Angus, J. A. & Wright, C. E. Advantages of a selective beta-isoform phosphoinositide 3-kinase antagonist, an anti-thrombotic agent devoid of other cardiovascular actions in the rat. Eur. J. Pharmacol. 587, 209–215 (2008).

    CAS  PubMed  Google Scholar 

  137. Flaumenhaft, R. & Dilks, J. R. Discovery-based strategies for studying platelet function. Mini Rev. Med. Chem. 8, 350–357 (2008).

    CAS  PubMed  Google Scholar 

  138. Lewandrowski, U. et al. Platelet membrane proteomics: a novel repository for functional research. Blood 114, e10–e19 (2009).

    CAS  PubMed  Google Scholar 

  139. Michelson, A. D. Methods for the measurement of platelet function. Am. J. Cardiol. 103 (suppl. 3), 20A–6A (2009).

    CAS  PubMed  Google Scholar 

  140. Steinhubl, S. R. in Platelets 2nd edn (ed. Michelson, A. D.) 509–518 (Elsevier/Academic Press, San Diego, 2007).

    Google Scholar 

  141. Michelson, A. D. et al. Platelet GP IIIa Pl(A) polymorphisms display different sensitivities to agonists. Circulation 101, 1013–1018 (2000).

    CAS  PubMed  Google Scholar 

  142. Brandt, J. T. et al. Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel. J. Thromb. Haemost. 5, 2429–2436 (2007).

    CAS  PubMed  Google Scholar 

  143. Mega, J. L. et al. Cytochrome P450 genetic polymorphisms and the response to prasugrel: relationship to pharmacokinetic, pharmacodynamic, and clinical outcomes. Circulation 119, 2553–2560 (2009).

    CAS  PubMed  Google Scholar 

  144. Bonello, L. et al. Tailored clopidogrel loading dose according to platelet reactivity monitoring to prevent acute and subacute stent thrombosis. Am. J. Cardiol. 103, 5–10 (2009). In this small study, tailoring the loading dose of clopidogrel according to platelet reactivity monitoring with the VASP assay decreased the rate of early stent thrombosis after PCI without increasing bleeding.

    CAS  PubMed  Google Scholar 

  145. Cuisset, T. et al. Glycoprotein IIb/IIIa inhibitors improve outcome after coronary stenting in clopidogrel nonresponders. J. Am. Coll. Cardiol. Cardiovasc. Inter. 1, 649–653 (2008).

    Google Scholar 

  146. Valgimigli, M. et al. Intensifying platelet inhibition with tirofiban in poor responders to aspirin, clopidogrel, or both agents undergoing elective coronary intervention. Results from the double-blind, prospective, randomized tailoring treatment with tirofiban in patients showing resistance to aspirin and/or resistance to clopidogrel study. Circulation 119, 3215–3222 (2009).

    CAS  PubMed  Google Scholar 

  147. Andrews, R. K., Berndt, M. C. & Lopez, J. A. in Platelets 2nd edn (ed. Michelson, A. D.) 145–163 (Elsevier/Academic Press, San Diego, 2007).

    Google Scholar 

  148. Plow, E. F., Pesho, M. M. & Ma, Y. Q. in Platelets 2nd edn (ed. Michelson, A. D.) 165–178 (Elsevier/Academic Press, San Diego, 2007).

    Google Scholar 

  149. McEver, R. P. in Platelets 2nd edn (ed. Michelson, A. D.) 231–249 (Elsevier/Academic Press, San Diego, 2007).

    Google Scholar 

  150. Hoffman, M. & Monroe, D. M. Coagulation 2006: a modern view of hemostasis. Hematol. Oncol. Clin. N. Am. 21, 1–11 (2007).

    Google Scholar 

  151. Furie, B. & Furie, B. C. Mechanisms of thrombus formation. N. Engl. J. Med. 359, 938–949 (2008).

    CAS  PubMed  Google Scholar 

  152. Lordkipanidze, M. et al. A comparison of six major platelet function tests to determine the prevalence of aspirin resistance in patients with stable coronary artery disease. Eur. Heart J. 28, 1702–1708 (2007).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

A.D.M. has been the principal investigator or co-investigator on research grants to the University of Massachusetts Medical School, Children's Hospital Boston, or both from Arena Pharmaceuticals, GLSynthesis, Lilly/Daiichi Sankyo and Sanofi–Aventis/Bristol–Myers Squibb. He has been a member of the Data Safety Monitoring Board of Clopidogrel to Lower Arterial Thrombotic Risk in Neonates and Infants Trial (CLARINET) (a clinical trial sponsored by Sanofi–Aventis/Bristol–Myers Squibb) and a consultant to Arena Pharmaceuticals and Lilly/Daiichi Sankyo.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Alan D. Michelson's homepage

BRIDGE

CHAMPION-PCI

CHAMPION-PLATFORM

A double-blind study of E5555 in Japanese patients with acute coronary syndrome

DANTE trial

GRAVITAS

Medicines Company news release

Safety and tolerability of E5555 and its effects on markers of intravascular inflammation in subjects with coronary artery disease

Safety and tolerability of E5555 and its effects on markers of intravascular inflammation in subjects with acute coronary syndrome

A study to determine the pharmacokinetics of elinogrel in healthy volunteers and patients with mild, moderate and severe renal impairment

3T/2R

TRACER

TRA 2P-TIMI 50

TRILOGY ACS

Glossary

Acute myocardial infarction

Popularly known as a heart attack, this is the death of heart tissue from lack of oxygen, which is usually caused by a clot (thrombosis) in an artery that supplies blood to the heart.

Thrombosis

The development of a blood clot in the circulatory system. Depending on the location of the clot, the resultant loss of circulation can lead to a heart attack (coronary thrombosis) or a stroke (cerebral thrombosis).

Haemostasis

The normal process of stopping bleeding.

Platelet aggregation

The process by which platelets adhere to one another, mediated by integrin αIIbβ3.

Cyclic flow reductions

Changes in blood flow over time that are dependent on the formation and dissolution of platelet aggregates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michelson, A. Antiplatelet therapies for the treatment of cardiovascular disease. Nat Rev Drug Discov 9, 154–169 (2010). https://doi.org/10.1038/nrd2957

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2957

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research