Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lowering industry firewalls: pre-competitive informatics initiatives in drug discovery


Pharmaceutical research and development is facing substantial challenges that have prompted the industry to shift funding from early- to late-stage projects. Among the effects is a major change in the attitude of many companies to their internal bioinformatics resources: the focus has moved from the vigorous pursuit of intellectual property towards exploration of pre-competitive cross-industry collaborations and engagement with the public domain. High-quality, open and accessible data are the foundation of pre-competitive research, and strong public–private partnerships have considerable potential to enhance public data resources, which would benefit everyone engaged in drug discovery. In this article, we discuss the background to these changes and propose new areas of collaboration in computational biology and chemistry between the public domain and the pharmaceutical industry.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Building infrastructure and tools for drug discovery by public–private partnership.


  1. Garnier, J. P. Rebuilding the R&D engine in big pharma. Harv. Bus. Rev. 86, 68–70, 72–76, 128 (2008).

    PubMed  Google Scholar 

  2. Kola, I. The state of innovation in drug development. Clin. Pharmacol. Ther. 83, 227–230 (2008).

    Article  CAS  Google Scholar 

  3. Ledford, H. When there's no room to grow. Nature 454, 144–145 (2008).

    Article  CAS  Google Scholar 

  4. Woodcock, J. & Woosley, R. The FDA critical path initiative and its influence on new drug development. Annu. Rev. Med. 59, 1–12 (2008).

    Article  CAS  Google Scholar 

  5. Schieppati, A., Henter, J. I., Daina, E. & Aperia, A. Why rare diseases are an important medical and social issue. Lancet 371, 2039–2041 (2008).

    Article  Google Scholar 

  6. Croft, S. L. Public–private partnership: from there to here. Trans. R. Soc. Trop. Med. Hyg. 99, S9–S14 (2005).

    Article  Google Scholar 

  7. Butler, D. Drug patent plan gets mixed reviews. Nature 457, 1064 (2009).

    CAS  PubMed  Google Scholar 

  8. Tralau-Stewart, C. J., Wyatt, C. A., Kleyn, D. E. & Ayad, A. Drug discovery: new models for industry–academic partnerships. Drug Discov.Today 14, 95–101 (2009).

    Article  Google Scholar 

  9. Black, N. The Cooksey review of UK health research funding. BMJ 333, 1231–1232 (2006).

    Article  Google Scholar 

  10. Wheeler, D. L. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 35, D5–D12 (2007).

    Article  CAS  Google Scholar 

  11. Wishart, D. S. et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 36, D901–D906 (2008).

    Article  CAS  Google Scholar 

  12. Degtyarenko, K. et al. ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res. 36, D344–D350 (2008).

    Article  CAS  Google Scholar 

  13. Seiler, K. P. et al. ChemBank: a small-molecule screening and cheminformatics resource database. Nucleic Acids Res. 36, D351-D359 (2008).

    Article  Google Scholar 

  14. Holden, A. L. The SNP consortium: summary of a private consortium effort to develop an applied map of the human genome. Biotechniques Suppl., 22–24, 26 (2002).

    Article  Google Scholar 

  15. Rhodes, J., Boyer, S., Kreulen, J., Chen, Y. & Ordonez, P. Mining patents using molecular similarity search. Pac. Symp. Biocomput. 12, 304–315 (2007).

    Google Scholar 

  16. Lengauer, T., Lemmen, C., Rarey, M. & Zimmermann, M. Novel technologies for virtual screening. Drug Discov. Today 9, 27–34 (2004).

    Article  CAS  Google Scholar 

  17. Manly, C. J., Louise-May, S. & Hammer, J. D. The impact of informatics and computational chemistry on synthesis and screening. Drug Discov. Today 6, 1101–1110 (2001).

    Article  CAS  Google Scholar 

  18. Loging, W., Harland, L. & Williams-Jones, B. High-throughput electronic biology: mining information for drug discovery. Nature Rev. Drug Discov. 6, 220–230 (2007).

    Article  CAS  Google Scholar 

  19. Hwang, W. C., Zhang, A. & Ramanathan, M. Identification of information flow-modulating drug targets: a novel bridging paradigm for drug discovery. Clin. Pharmacol. Ther. 84, 563–572 (2008).

    Article  CAS  Google Scholar 

  20. Schrattenholz, A. & Soskic, V. What does systems biology mean for drug development? Curr. Med. Chem. 15, 1520–1528 (2008).

    Article  CAS  Google Scholar 

  21. Murphy, S. N. et al. A web portal that enables collaborative use of advanced medical image processing and informatics tools through the Biomedical Informatics Research Network (BIRN). AMIA. Annu. Symp. Proc. 2006, 579–583 (2006).

    PubMed Central  Google Scholar 

  22. Houlton, S. Wellcome boost for open-access chemistry. Nature Rev. Drug Discov. 7, 789–790 (2008).

    Article  CAS  Google Scholar 

  23. Hopkins, A. L. & Groom, C. R. The druggable genome. Nature Rev. Drug Discov. 1, 727–730 (2002).

    Article  CAS  Google Scholar 

  24. Bradley, D. Dealing with a data dilemma. Nature Rev. Drug Discov. 7, 632–633 (2008).

    Article  Google Scholar 

  25. Mattes, W. B. Public consortium efforts in toxicogenomics. Methods Mol. Biol. 460, 221–238 (2008).

    Article  Google Scholar 

  26. Nelson, M. R. et al. The Population Reference Sample, POPRES: a resource for population, disease, and pharmacological genetics research. Am. J. Hum. Genet. 83, 347–358 (2008).

    Article  CAS  Google Scholar 

  27. Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

    Article  CAS  Google Scholar 

  28. Collins, F. S., Rossant, J. & Wurst, W. A mouse for all reasons. Cell 128, 9–13 (2007).

    Article  CAS  Google Scholar 

  29. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  30. Hayden, E. C. International genome project launched. Nature 451, 378–379 (2008).

    Article  Google Scholar 

  31. Kamel, N., Compton, C., Middelveld, R., Higenbottam, T. & Dahlen, S. E. The Innovative Medicines Initiative (IMI): a new opportunity for scientific collaboration between academia and industry at the European level. Eur. Respir. J. 31, 924–926 (2008).

    Article  CAS  Google Scholar 

  32. Goodsaid, F., Frueh, F. & Mattes, W. B. The Predictive Safety Testing Consortium: a synthesis of the goals, challenges and accomplishments of the Critical Path. Drug Discov. Today Technol. 4, 47–50 (2008).

    Article  Google Scholar 

  33. Wren, J. D. URL decay in MEDLINE — a 4-year follow-up study. Bioinformatics 24, 1381–1385 (2008).

    Article  CAS  Google Scholar 

  34. Thireou, T., Spyrou, G. & Atlamazoglou, V. A survey of the availability of primary bioinformatics web resources. Genomics Proteomics Bioinformatics 5, 70–76 (2007).

    Article  CAS  Google Scholar 

  35. Neumann, E. A life science semantic web: are we there yet? Sci. STKE 2005, e22 (2005).

    Google Scholar 

  36. Wilkinson, M. D. et al. Interoperability with Moby 1.0 — it's better than sharing your toothbrush! Brief. Bioinform. 9, 220–231 (2008).

    Article  Google Scholar 

  37. Galperin, M. Y. & Cochrane, G. R. Nucleic Acids Research annual Database Issue and the NAR online Molecular Biology Database Collection in 2009. Nucleic Acids Res. 37, D1–D4 (2009).

    Article  CAS  Google Scholar 

  38. Cornet, R. & de Keizer, N. Forty years of SNOMED: a literature review. BMC Med. Inform. Decis. Mak. 8, S2 (2008).

    Article  Google Scholar 

  39. Liu, T., Lin, Y., Wen, X., Jorissen, R. N. & Gilson, M. K. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 35, D198–D201 (2007).

    Article  CAS  Google Scholar 

  40. Mons, B. et al. Calling on a million minds for community annotation in WikiProteins. Genome Biol. 9, R89 (2008).

    Article  Google Scholar 

  41. Carayannis, E. G. & Alexander, J. Strategy, structure, and performance issues of precompetitive R&D consortia: insights and lessons learned from SEMATECH. IEEE Trans. Eng. Manage. 51, 226–232 (2004).

    Article  Google Scholar 

  42. Emilsson, V. et al. Genetics of gene expression and its effect on disease. Nature 452, 423–428 (2008).

    Article  CAS  Google Scholar 

  43. Bentley, D. R. Whole-genome re-sequencing. Curr. Opin. Genet. Dev. 16, 545–552 (2006).

    Article  CAS  Google Scholar 

Download references


We thank members of the computational biology and computational chemistry and informatics groups within our companies. We also acknowledge partners at the EBI Industry forum for discussions that have contributed to our review of this area. We are grateful to Arricka Brouwer and the reviewers for suggestions as to how to improve the manuscript.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Michael R. Barnes, Ian Dix or Bryn I. Williams-Jones.

Ethics declarations

Competing interests

M.R.B., S.M.F. and M.D.H. are employees of GlaxoSmithKline. L.H., C.B. and B.W.J. are employees of Pfizer. S.T. and I.D. are employees of AstraZeneca.

Related links

Related links


Biomedical Informatics Research Network

dbGaP datatbase

Diabetes Genetics Initiative


Druggable Genome database

EBI industry programme

Elixir consortium

Ensembl API

Entrez Programming Utilities

Galaxy toolkit

Gene Expression Omnibus

Gene Ontology

Human Proteomics Organization Proteomics Standards Initiative

Innovative Medicines Initiative


Life Science Grid

Microarray and Gene Expression Data Society

Molecular Library Screening Center Network



Predictive Safety Testing Consortium



Semantic Web Health Care and Life Science Interest Group

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barnes, M., Harland, L., Foord, S. et al. Lowering industry firewalls: pre-competitive informatics initiatives in drug discovery. Nat Rev Drug Discov 8, 701–708 (2009).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing