Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting the phosphoinositide 3-kinase pathway in cancer

Key Points

  • The phosphoinositide 3-kinase (PI3K) pathway is a crucial signal transduction system linking the activation of receptor tyrosine kinases (RTKs), G protein-coupled receptors (GPCRs) and oncogenes such as RAS to multiple essential cellular functions.

  • The PI3K pathway is tightly controlled by a class of PI3Ks that generate the lipid second messenger phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3), and the tumor suppressor PTEN (phosphatase and tensin homologue), a lipid phosphatase that dephosphorylates PtdIns(3,4,5)P3, thereby counteracting the actions of PI3Ks.

  • The PI3K pathway is one of the most frequently activated signalling pathways in human cancer. Oncogenic activation of this pathway commonly occurs through activating mutations in the p110α isoform of PI3K or through loss of the PTEN tumour suppressor.

  • Inhibitors that target key components of this pathway, including PI3K, AKT and mammalian target of rapamycin (mTOR), are being actively developed. Some of them have reached clinical trials in patients with various solid and haematological malignancies. Most PI3K inhibitors developed to date are pan-PI3K inhibitors.

  • It may be desirable to generate isoform-specific PI3K inhibitors as PI3Ks have essential roles in a wide range of normal physiological functions, including glucose homeostasis and immune responses. For example, by targeting p110α or p110β isoforms in solid tumours, potential drugs might avoid toxicity to the immune system, which is largely dependent on p110δ and p110γ for function.

  • The presence of multiple nodes with feedback loops and crosstalk between pathways may affect therapeutic outcomes. Emerging strategies, such as simultaneously targeting two kinases in the pathway or the combination of PI3K pathway inhibitors with drugs that target other pathways, may achieve optimal clinical benefits.

Abstract

The phosphoinositide 3-kinase (PI3K) pathway is a key signal transduction system that links oncogenes and multiple receptor classes to many essential cellular functions, and is perhaps the most commonly activated signalling pathway in human cancer. This pathway therefore presents both an opportunity and a challenge for cancer therapy. Even as inhibitors that target PI3K isoforms and other major nodes in the pathway, including AKT and mammalian target of rapamycin (mTOR), reach clinical trials, major issues remain. Here, we highlight recent progress that has been made in our understanding of the PI3K pathway and discuss the potential of and challenges for the development of therapeutic agents that target this pathway in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The class I PI3K signalling pathway.
Figure 2: The PI3K family and phosphatidylinositol-3,4,5-trisphosphate generation.
Figure 3: Targeting the PI3K pathway in cancer.
Figure 4: Selected chemical structures of inhibitors of the PI3K pathway.
Figure 5: Function and therapeutic targeting of p110 isoforms.

Similar content being viewed by others

References

  1. Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nature Rev. Cancer 2, 489–501 (2002).

    CAS  Google Scholar 

  2. Bader, A. G., Kang, S., Zhao, L. & Vogt, P. K. Oncogenic PI3K deregulates transcription and translation. Nature Rev. Cancer 5, 921–929 (2005).

    CAS  Google Scholar 

  3. Engelman, J. A., Luo, J. & Cantley, L. C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nature Rev. Genet. 7, 606–619 (2006). A recent comprehensive review on PI3K.

    CAS  PubMed  Google Scholar 

  4. Cully, M., You, H., Levine, A. J. & Mak, T. W. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nature Rev. Cancer 6, 184–192 (2006).

    CAS  Google Scholar 

  5. Cantley, L. C. & Neel, B. G. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl Acad. Sci. USA 96, 4240–4245 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hennessy, B. T., Smith, D. L., Ram, P. T., Lu, Y. & Mills, G. B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nature Rev. Drug Discov. 4, 988–1004 (2005).

    CAS  Google Scholar 

  7. Fruman, D. A., Meyers, R. E. & Cantley, L. C. Phosphoinositide kinases. Annu. Rev. Biochem. 67, 481–507 (1998).

    CAS  PubMed  Google Scholar 

  8. Katso, R. et al. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 17, 615–675 (2001).

    CAS  PubMed  Google Scholar 

  9. Voigt, P., Dorner, M. B. & Schaefer, M. Characterization of p87PIKAP, a novel regulatory subunit of phosphoinositide 3-kinase gamma that is highly expressed in heart and interacts with PDE3B. J. Biol. Chem. 281, 9977–9986 (2006).

    CAS  PubMed  Google Scholar 

  10. Suire, S. et al. p84, a new Gβγ-activated regulatory subunit of the type IB phosphoinositide 3-kinase p110γ. Curr. Biol. 15, 566–570 (2005).

    CAS  PubMed  Google Scholar 

  11. Chang, J. D. et al. Deletion of the phosphoinositide 3-kinase p110γ gene attenuates murine atherosclerosis. Proc. Natl Acad. Sci. USA 104, 8077–8082 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Patrucco, E. et al. PI3Kγ modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell 118, 375–387 (2004).

    CAS  PubMed  Google Scholar 

  13. Sasaki, T. et al. Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration. Science 287, 1040–1046 (2000).

    CAS  PubMed  Google Scholar 

  14. Backer, J. M. The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem. J. 410, 1–17 (2008).

    CAS  PubMed  Google Scholar 

  15. Scheid, M. P. & Woodgett, J. R. PKB/AKT: functional insights from genetic models. Nature Rev. Mol. Cell Biol. 2, 760–768 (2001).

    CAS  Google Scholar 

  16. Alessi, D. R. et al. 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr. Biol. 7, 776–789 (1997).

    CAS  PubMed  Google Scholar 

  17. Stephens, L. et al. Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science 279, 710–714 (1998).

    CAS  PubMed  Google Scholar 

  18. Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101 (2005).

    CAS  PubMed  Google Scholar 

  19. Manning, B. D. & Cantley, L. C. AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wullschleger, S., Loewith, R. & Hall, M. N. TOR signaling in growth and metabolism. Cell 124, 471–484 (2006).

    CAS  PubMed  Google Scholar 

  21. Sabatini, D. M. mTOR and cancer: insights into a complex relationship. Nature Rev. Cancer 6, 729–734 (2006).

    CAS  Google Scholar 

  22. Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K. L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biol. 4, 648–657 (2002).

    CAS  PubMed  Google Scholar 

  23. Manning, B. D., Tee, A. R., Logsdon, M. N., Blenis, J. & Cantley, L. C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell 10, 151–162 (2002).

    CAS  PubMed  Google Scholar 

  24. Vander Haar, E., Lee, S. I., Bandhakavi, S., Griffin, T. J. & Kim, D. H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nature Cell Biol. 9, 316–323 (2007).

    CAS  PubMed  Google Scholar 

  25. Crino, P. B., Nathanson, K. L. & Henske, E. P. The tuberous sclerosis complex. N. Engl. J. Med. 355, 1345–1356 (2006).

    CAS  PubMed  Google Scholar 

  26. Hay, N. & Sonenberg, N. Upstream and downstream of mTOR. Genes Dev. 18, 1926–1945 (2004).

    CAS  PubMed  Google Scholar 

  27. Zhao, J. J. & Roberts, T. M. PI3 kinases in cancer: from oncogene artifact to leading cancer target. Sci. STKE 2006, pe52 (2006).

    PubMed  Google Scholar 

  28. Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007).

    CAS  PubMed  Google Scholar 

  29. Thomas, R. K. et al. High-throughput oncogene mutation profiling in human cancer. Nature Genet. 39, 347–351 (2007).

    CAS  PubMed  Google Scholar 

  30. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  31. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Samuels, Y. et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 304, 554 (2004). This study showed that PIK3CA is frequently mutated in human cancer.

    CAS  PubMed  Google Scholar 

  33. Ding, L. et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069–1075 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sansal, I. & Sellers, W. R. The biology and clinical relevance of the PTEN tumor suppressor pathway. J. Clin. Oncol. 22, 2954–2963 (2004).

    CAS  PubMed  Google Scholar 

  35. Steck, P. A. et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nature Genet. 15, 356–362 (1997).

    CAS  PubMed  Google Scholar 

  36. Salmena, L., Carracedo, A. & Pandolfi, P. P. Tenets of PTEN tumor suppression. Cell 133, 403–414 (2008).

    CAS  PubMed  Google Scholar 

  37. Parsons, R. Human cancer, PTEN and the PI-3 kinase pathway. Semin. Cell Dev. Biol. 15, 171–176 (2004).

    CAS  PubMed  Google Scholar 

  38. Knobbe, C. B., Lapin, V., Suzuki, A. & Mak, T. W. The roles of PTEN in development, physiology and tumorigenesis in mouse models: a tissue-by-tissue survey. Oncogene 27, 5398–5415 (2008).

    CAS  PubMed  Google Scholar 

  39. Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947 (1997).

    CAS  PubMed  Google Scholar 

  40. Di Cristofano, A., De Acetis, M., Koff, A., Cordon-Cardo, C. & Pandolfi, P. P. Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nature Genet. 27, 222–224 (2001).

    CAS  PubMed  Google Scholar 

  41. Di Cristofano, A., Pesce, B., Cordon-Cardo, C. & Pandolfi, P. P. Pten is essential for embryonic development and tumour suppression. Nature Genet. 19, 348–355 (1998).

    CAS  PubMed  Google Scholar 

  42. Wang, S. et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4, 209–221 (2003).

    CAS  PubMed  Google Scholar 

  43. Stambolic, V. et al. High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten+/− mice. Cancer Res. 60, 3605–3611 (2000).

    CAS  PubMed  Google Scholar 

  44. Stemke-Hale, K. et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 68, 6084–6091 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao, J. J. et al. The oncogenic properties of mutant p110α and p110β phosphatidylinositol 3-kinases in human mammary epithelial cells. Proc. Natl Acad. Sci. USA 102, 18443–18448 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Isakoff, S. J. et al. Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res. 65, 10992–11000 (2005).

    CAS  PubMed  Google Scholar 

  47. Samuels, Y. et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7, 561–573 (2005).

    CAS  PubMed  Google Scholar 

  48. Bader, A. G., Kang, S. & Vogt, P. K. Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc. Natl Acad. Sci. USA 103, 1475–1479 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee, J. Y., Engelman, J. A. & Cantley, L. C. Biochemistry. PI3K charges ahead. Science 317, 206–207 (2007).

    CAS  PubMed  Google Scholar 

  50. Huang, C. H., Mandelker, D., Gabelli, S. B. & Amzel, L. M. Insights into the oncogenic effects of PIK3CA mutations from the structure of p110α/p85α. Cell Cycle 7, 1151–1156 (2008).

    CAS  PubMed  Google Scholar 

  51. Miled, N. et al. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science 317, 239–242 (2007).

    CAS  PubMed  Google Scholar 

  52. Huang, C. H. et al. The structure of a human p110α/p85α complex elucidates the effects of oncogenic PI3Kα mutations. Science 318, 1744–1748 (2007). References 51 and 52 report crystal structural analyses of p110α and p85 iSH2 domains to help elucidate the effects of the cancer-associated mutations in p110α.

    CAS  PubMed  Google Scholar 

  53. Mizoguchi, M., Nutt, C. L., Mohapatra, G. & Louis, D. N. Genetic alterations of phosphoinositide 3-kinase subunit genes in human glioblastomas. Brain Pathol. 14, 372–377 (2004).

    CAS  PubMed  Google Scholar 

  54. Philp, A. J. et al. The phosphatidylinositol 3-kinase p85α gene is an oncogene in human ovarian and colon tumors. Cancer Res. 61, 7426–7429 (2001).

    CAS  PubMed  Google Scholar 

  55. Beeton, C. A., Chance, E. M., Foukas, L. C. & Shepherd, P. R. Comparison of the kinetic properties of the lipid- and protein-kinase activities of the p110α and p110β catalytic subunits of class-Ia phosphoinositide 3-kinases. Biochem. J. 350, 353–359 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Benistant, C., Chapuis, H. & Roche, S. A specific function for phosphatidylinositol 3-kinase α (p85α-p110α) in cell survival and for phosphatidylinositol 3-kinase β (p85α-p110b) in de novo DNA synthesis of human colon carcinoma cells. Oncogene 19, 5083–5090 (2000).

    CAS  PubMed  Google Scholar 

  57. Brugge, J., Hung., M. C. & Mills, G. B. A new mutational AKTivation in the PI3K pathway. Cancer Cell 12, 104–107 (2007).

    CAS  PubMed  Google Scholar 

  58. Carpten, J. D. et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448, 439–444 (2007). This paper describes the identification of an activating AKT1 mutation in human cancer.

    CAS  PubMed  Google Scholar 

  59. Davies, M. A. et al. A novel AKT3 mutation in melanoma tumours and cell lines. Br. J. Cancer 99, 1265–1268 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Vanhaesebroeck, B. & Alessi, D. R. The PI3K-PDK1 connection: more than just a road to PKB. Biochem. J. 346, 561–576 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hunter, C. et al. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res. 66, 3987–3991 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Knight, Z. A. & Shokat, K. M. Chemically targeting the PI3K family. Biochem. Soc. Trans. 35, 245–249 (2007).

    CAS  PubMed  Google Scholar 

  63. Marone, R., Cmiljanovic, V., Giese, B. & Wymann, M. P. Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim. Biophys. Acta 1784, 159–185 (2008).

    CAS  PubMed  Google Scholar 

  64. Knight, Z. A. et al. A pharmacological map of the PI3-K family defines a role for p110α in insulin signaling. Cell 125, 733–747 (2006). A comparative analysis of the roles of PI3K isoforms using small-molecule inhibitors.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Fan, Q. W. et al. A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 9, 341–349 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Maira, S. M. et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol. Cancer Ther. 7, 1851–1863 (2008).

    CAS  PubMed  Google Scholar 

  67. Serra, V. et al. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res. 68, 8022–8030 (2008).

    CAS  PubMed  Google Scholar 

  68. Garcia-Echeverria, C. & Sellers, W. R. Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene 27, 5511–5526 (2008).

    CAS  PubMed  Google Scholar 

  69. Garlich, J. R. et al. A vascular targeted pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity. Cancer Res. 68, 206–215 (2008).

    CAS  PubMed  Google Scholar 

  70. Ihle, N. T. et al. The phosphatidylinositol-3-kinase inhibitor PX-866 overcomes resistance to the epidermal growth factor receptor inhibitor gefitinib in A-549 human non-small cell lung cancer xenografts. Mol. Cancer Ther. 4, 1349–1357 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hilgard, P. et al. D-21266, a new heterocyclic alkylphospholipid with antitumour activity. Eur. J. Cancer 33, 442–446 (1997).

    CAS  PubMed  Google Scholar 

  72. Meuillet, E. J. et al. In vivo molecular pharmacology and antitumor activity of the targeted Akt inhibitor PX-316. Oncol. Res. 14, 513–527 (2004).

    CAS  PubMed  Google Scholar 

  73. Gills, J. J. & Dennis, P. A. The development of phosphatidylinositol ether lipid analogues as inhibitors of the serine/threonine kinase, Akt. Expert Opin. Investig. Drugs 13, 787–797 (2004).

    CAS  PubMed  Google Scholar 

  74. Gills, J. J. et al. Spectrum of activity and molecular correlates of response to phosphatidylinositol ether lipid analogues, novel lipid-based inhibitors of Akt. Mol. Cancer Ther. 5, 713–722 (2006).

    CAS  PubMed  Google Scholar 

  75. Rhodes, N. et al. Characterization of an Akt kinase inhibitor with potent pharmacodynamic and antitumor activity. Cancer Res. 68, 2366–2374 (2008).

    CAS  PubMed  Google Scholar 

  76. Lindsley, C. W., Barnett, S. F., Yaroschak, M., Bilodeau, M. T. & Layton, M. E. Recent progress in the development of ATP-competitive and allosteric Akt kinase inhibitors. Curr. Top. Med. Chem. 7, 1349–1363 (2007).

    CAS  PubMed  Google Scholar 

  77. Yang, H. et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 68, 425–433 (2008).

    CAS  PubMed  Google Scholar 

  78. Vezina, C., Kudelski, A. & Sehgal, S. N. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. (Tokyo) 28, 721–726 (1975).

    CAS  Google Scholar 

  79. Yatscoff, R. W., LeGatt, D. F. & Kneteman, N. M. Therapeutic monitoring of rapamycin: a new immunosuppressive drug. Ther. Drug Monit. 15, 478–482 (1993).

    CAS  PubMed  Google Scholar 

  80. Faivre, S., Kroemer, G. & Raymond, E. Current development of mTOR inhibitors as anticancer agents. Nature Rev. Drug Discov. 5, 671–688 (2006).

    Article  CAS  Google Scholar 

  81. Guertin, D. A. & Sabatini, D. M. Defining the role of mTOR in cancer. Cancer Cell 12, 9–22 (2007).

    CAS  PubMed  Google Scholar 

  82. Hay, N. The Akt-mTOR tango and its relevance to cancer. Cancer Cell 8, 179–183 (2005).

    CAS  PubMed  Google Scholar 

  83. Atkins, M. B. et al. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J. Clin. Oncol. 22, 909–918 (2004).

    CAS  PubMed  Google Scholar 

  84. Guertin, D. A. et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 15, 148–159 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Feldman, M. E. et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 7, e38 (2009).

    PubMed  Google Scholar 

  86. Thoreen, C. C. et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284, 8023–8032 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Fujita, N., Sato, S., Ishida, A. & Tsuruo, T. Involvement of Hsp90 in signaling and stability of 3-phosphoinositide-dependent kinase-1. J. Biol. Chem. 277, 10346–10353 (2002).

    CAS  PubMed  Google Scholar 

  88. Solit, D. B., Basso, A. D., Olshen, A. B., Scher, H. I. & Rosen, N. Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol. Cancer Res. 63, 2139–2144 (2003).

    CAS  PubMed  Google Scholar 

  89. Solit, D. B. & Rosen, N. Hsp90: a novel target for cancer therapy. Curr. Top. Med. Chem. 6, 1205–1214 (2006).

    CAS  PubMed  Google Scholar 

  90. Workman, P., Burrows, F., Neckers, L. & Rosen, N. Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann. NY Acad. Sci. 1113, 202–216 (2007).

    CAS  PubMed  Google Scholar 

  91. Bi, L., Okabe, I., Bernard, D. J. & Nussbaum, R. L. Early embryonic lethality in mice deficient in the p110β catalytic subunit of PI 3-kinase. Mamm. Genome 13, 169–172 (2002).

    CAS  PubMed  Google Scholar 

  92. Bi, L., Okabe, I., Bernard, D. J., Wynshaw-Boris, A. & Nussbaum, R. L. Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110α subunit of phosphoinositide 3-kinase. J. Biol. Chem. 274, 10963–10968 (1999).

    CAS  PubMed  Google Scholar 

  93. Jia, S. et al. Essential roles of PI3K-p110β in cell growth, metabolism and tumorigenesis. Nature (2008). This study showed that p110β, not p110α, contributed to PTEN-deficiency-induced prostate cancer in mouse genetic models.

  94. Zhao, J. J. et al. The p110α isoform of PI3K is essential for proper growth factor signaling and oncogenic transformation. Proc. Natl Acad. Sci. USA 103, 16296–16300 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ciraolo, E. et al. Phosphoinositide 3-kinase p110β activity: key role in metabolism and mammary gland cancer but not development. Sci. Signal 1, ra3 (2008). A study on the role of p110β in metabolism and Her2-induced breast cancer using a knock-in mouse model.

    PubMed  PubMed Central  Google Scholar 

  96. Guillermet-Guibert, J. et al. The p110β isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110γ. Proc. Natl Acad. Sci. USA 105, 8292–8297 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Graupera, M. et al. Angiogenesis selectively requires the p110α isoform of PI3K to control endothelial cell migration. Nature 453, 662–666 (2008). This work demonstrated a specific role of p110α in endothelial cell migration.

    CAS  PubMed  Google Scholar 

  98. Foukas, L. C. et al. Critical role for the p110α phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 441, 366–370 (2006). This study showed the role of p110α in insulin signaling and metabolism using an inactive-kinase knock-in mouse model.

    CAS  PubMed  Google Scholar 

  99. Utermark, T., Schaffhausen, B. S., Roberts, T. M. & Zhao, J. J. The p110α isoform of phosphatidylinositol 3-kinase is essential for polyomavirus middle T antigen-mediated transformation. J. Virol. 81, 7069–7076 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Jackson, S. P. et al. PI3-kinase p110β: a new target for antithrombotic therapy. Nature Med. 11, 507–514 (2005).

    CAS  PubMed  Google Scholar 

  101. Yap, T. A. et al. Targeting the PI3K–AKT–mTOR pathway: progress, pitfalls, and promises. Curr. Opin. Pharmacol. 8, 393–412 (2008).

    CAS  PubMed  Google Scholar 

  102. Torbett, N. E. et al. A chemical screen in diverse breast cancer cell lines reveals genetic enhancers and suppressors of sensitivity to PI3K isoform-selective inhibition. Biochem. J. 415, 97–110 (2008).

    CAS  PubMed  Google Scholar 

  103. Wee, S. et al. PTEN-deficient cancers depend on PIK3CB. Proc. Natl Acad. Sci. USA 105, 13057–13062 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Oda, K. et al. PIK3CA cooperates with other phosphatidylinositol 3-kinase pathway mutations to effect oncogenic transformation. Cancer Res. 68, 8127–8136 (2008).

    CAS  PubMed  Google Scholar 

  105. Aguirre, V., Uchida, T., Yenush, L., Davis, R. & White, M. F. The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J. Biol. Chem. 275, 9047–9054 (2000).

    CAS  PubMed  Google Scholar 

  106. Harrington, L. S., Findlay, G. M. & Lamb, R. F. Restraining PI3K: mTOR signalling goes back to the membrane. Trends Biochem. Sci. 30, 35–42 (2005).

    CAS  PubMed  Google Scholar 

  107. Lee, Y. H., Giraud, J., Davis, R. J. & White, M. F. c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J. Biol. Chem. 278, 2896–2902 (2003).

    CAS  PubMed  Google Scholar 

  108. Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–336 (2002).

    CAS  PubMed  Google Scholar 

  109. Um, S. H. et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431, 200–205 (2004).

    CAS  PubMed  Google Scholar 

  110. OReilly, K. E. et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 66, 1500–1508 (2006).

    CAS  Google Scholar 

  111. Jun, T., Gjoerup, O. & Roberts, T. M. Tangled webs: evidence of cross-talk between c-Raf-1 and Akt. Sci. STKE 1999, PE1 (1999).

    CAS  PubMed  Google Scholar 

  112. Carracedo, A. et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J. Clin. Invest. 118, 3065–3074 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Williams, R. et al. The skin and hair as surrogate tissues for measuring the target effect of inhibitors of phosphoinositide-3-kinase signaling. Cancer Chemother. Pharmacol. 58, 444–450 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Cho, H. et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ). Science 292, 1728–1731 (2001).

    CAS  PubMed  Google Scholar 

  115. Brachmann, S. M., Ueki, K., Engelman, J. A., Kahn, R. C. & Cantley, L. C. Phosphoinositide 3-kinase catalytic subunit deletion and regulatory subunit deletion have opposite effects on insulin sensitivity in mice. Mol. Cell Biol. 25, 1596–1607 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Schnell, C. R. et al. Effects of the dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 on the tumor vasculature: implications for clinical imaging. Cancer Res. 68, 6598–6607 (2008).

    CAS  PubMed  Google Scholar 

  117. Bomanji, J. B., Costa, D. C. & Ell, P. J. Clinical role of positron emission tomography in oncology. Lancet Oncol. 2, 157–164 (2001).

    CAS  PubMed  Google Scholar 

  118. Eichhorn, P. J. et al. Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res. 68, 9221–9230 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Berns, K. et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12, 395–402 (2007).

    CAS  PubMed  Google Scholar 

  120. Zhang, J., Yang, P. L. & Gray, N. S. Targeting cancer with small molecule kinase inhibitors. Nature Rev. Cancer 9, 28–39 (2009).

    Google Scholar 

  121. Zunder, E. R., Knight, Z. A., Houseman, B. T., Apsel, B. & Shokat, K. M. Discovery of drug-resistant and drug-sensitizing mutations in the oncogenic PI3K isoform p110α. Cancer Cell 14, 180–192 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Engelman, J. A. et al. ErbB-3 mediates phosphoinositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancer cell lines. Proc. Natl Acad. Sci. USA 102, 3788–3793 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).

    CAS  PubMed  Google Scholar 

  124. Sergina, N. V. et al. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 445, 437–441 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Apsel, B. et al. Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nature Chem. Biol. 4, 691–699 (2008).

    CAS  Google Scholar 

  126. Gupta, S. et al. Binding of ras to phosphoinositide 3-kinase p110a is required for ras-driven tumorigenesis in mice. Cell 129, 957–968 (2007).

    CAS  PubMed  Google Scholar 

  127. Engelman, J. A. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nature Med. 14, 1351–1356 (2008). This study showned that a combined treatment with PI3K and MEK inhibitors is necessary to block oncogenic Kras -induced lung cancer in a murine model.

    CAS  PubMed  Google Scholar 

  128. Yu, K., Toral-Barza, L., Shi, C., Zhang, W. G. & Zask, A. Response and determinants of cancer cell susceptibility to PI3K inhibitors: combined targeting of PI3K and Mek1 as an effective anticancer strategy. Cancer Biol. Ther. 7, 307–315 (2008).

    PubMed  Google Scholar 

  129. Yuan, T. L. et al. Class 1A PI3K regulates vessel integrity during development and tumorigenesis. Proc. Natl Acad. Sci. USA 105, 9739–9744 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Guba, M. et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nature Med. 8, 128–135 (2002).

    CAS  PubMed  Google Scholar 

  131. Stallone, G. et al. Sirolimus for Kaposis sarcoma in renal-transplant recipients. N. Engl. J. Med. 352, 1317–1323 (2005).

    CAS  PubMed  Google Scholar 

  132. Thomas, G. V. et al. Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nature Med. 12, 122–127 (2006).

    CAS  PubMed  Google Scholar 

  133. Hudson, C. C. et al. Regulation of hypoxia-inducible factor 1α expression and function by the mammalian target of rapamycin. Mol. Cell Biol. 22, 7004–7014 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Bernardi, R. et al. PML inhibits HIF-1α translation and neoangiogenesis through repression of mTOR. Nature 442, 779–785 (2006).

    CAS  PubMed  Google Scholar 

  135. Phung, T. L. et al. Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell 10, 159–170 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Hamada, K. et al. The PTEN/PI3K pathway governs normal vascular development and tumor angiogenesis. Genes Dev. 19, 2054–2065 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Bayascas, J. R., Leslie, N. R., Parsons, R., Fleming, S. & Alessi, D. R. Hypomorphic mutation of PDK1 suppresses tumorigenesis in PTEN+/− mice. Curr. Biol. 15, 1839–1846 (2005).

    CAS  PubMed  Google Scholar 

  138. Chen, M. L. et al. The deficiency of Akt1 is sufficient to suppress tumor development in Pten+/− mice. Genes Dev. 20, 1569–1574 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Massion, P. P. et al. Genomic copy number analysis of non-small cell lung cancer using array comparative genomic hybridization: implications of the phosphatidylinositol 3-kinase pathway. Cancer Res. 62, 3636–3640 (2002).

    CAS  PubMed  Google Scholar 

  140. Massion, P. P. et al. Early involvement of the phosphatidylinositol 3-kinase/Akt pathway in lung cancer progression. Am. J. Respir. Crit. Care Med. 170, 1088–1094 (2004).

    PubMed  Google Scholar 

  141. Okudela, K. et al. PIK3CA mutation and amplification in human lung cancer. Pathol. Int. 57, 664–671 (2007).

    CAS  PubMed  Google Scholar 

  142. Kawano, O. et al. PIK3CA gene amplification in Japanese non-small cell lung cancer. Lung Cancer 58, 159–160 (2007).

    PubMed  Google Scholar 

  143. Ma, Y. Y. et al. PIK3CA as an oncogene in cervical cancer. Oncogene 19, 2739–2744 (2000).

    CAS  PubMed  Google Scholar 

  144. Wu, G. et al. Somatic mutation and gain of copy number of PIK3CA in human breast cancer. Breast Cancer Res. 7, R609–R616 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Woenckhaus, J. et al. Genomic gain of PIK3CA and increased expression of p110α are associated with progression of dysplasia into invasive squamous cell carcinoma. J. Pathol. 198, 335–342 (2002).

    CAS  PubMed  Google Scholar 

  146. Pedrero, J. M. et al. Frequent genetic and biochemical alterations of the PI 3-K/AKT/PTEN pathway in head and neck squamous cell carcinoma. Int. J. Cancer 114, 242–248 (2005).

    CAS  PubMed  Google Scholar 

  147. Fenic, I., Steger, K., Gruber, C., Arens, C. & Woenckhaus, J. Analysis of PIK3CA and Akt/protein kinase B in head and neck squamous cell carcinoma. Oncol. Rep. 18, 253–259 (2007).

    CAS  PubMed  Google Scholar 

  148. Byun, D. S. et al. Frequent monoallelic deletion of PTEN and its reciprocal associatioin with PIK3CA amplification in gastric carcinoma. Int. J. Cancer 104, 318–327 (2003).

    CAS  PubMed  Google Scholar 

  149. Wu, G. et al. Uncommon mutation, but common amplifications, of the PIK3CA gene in thyroid tumors. J. Clin. Endocrinol. Metab. 90, 4688–4693 (2005).

    CAS  PubMed  Google Scholar 

  150. Miller, C. T. et al. Gene amplification in esophageal adenocarcinomas and Barretts with high-grade dysplasia. Clin. Cancer Res. 9, 4819–4825 (2003).

    CAS  PubMed  Google Scholar 

  151. Miyake, T. et al. PIK3CA gene mutations and amplifications in uterine cancers, identified by methods that avoid confounding by PIK3CA pseudogene sequences. Cancer Lett. 261, 120–126 (2008).

    CAS  PubMed  Google Scholar 

  152. Nakayama, K. et al. Amplicon profiles in ovarian serous carcinomas. Int. J. Cancer 120, 2613–2617 (2007).

    CAS  PubMed  Google Scholar 

  153. Nakayama, K. et al. Sequence mutations and amplification of PIK3CA and AKT2 genes in purified ovarian serous neoplasms. Cancer Biol. Ther. 5, 779–785 (2006).

    CAS  PubMed  Google Scholar 

  154. Kita, D., Yonekawa, Y., Weller, M. & Ohgaki, H. PIK3CA alterations in primary (de novo) and secondary glioblastomas. Acta Neuropathol. 113, 295–302 (2007).

    CAS  PubMed  Google Scholar 

  155. Bleeker, F. E. et al. AKT1E17K in human solid tumours. Oncogene 27, 5648–5650 (2008).

    CAS  PubMed  Google Scholar 

  156. Kim, M. S., Jeong, E. G., Yoo, N. J. & Lee, S. H. Mutational analysis of oncogenic AKT E17K mutation in common solid cancers and acute leukaemias. Br. J. Cancer 98, 1533–1535 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Malanga, D. et al. Activating E17K mutation in the gene encoding the protein kinase AKT1 in a subset of squamous cell carcinoma of the lung. Cell Cycle 7, 665–669 (2008).

    CAS  PubMed  Google Scholar 

  158. Staal, S. P. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc. Natl Acad. Sci. USA 84, 5034–5037 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Bellacosa, A. et al. Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int. J. Cancer 64, 280–285 (1995).

    CAS  PubMed  Google Scholar 

  160. Cheng, J. Q. et al. AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc. Natl Acad. Sci. USA 89, 9267–9271 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Ruggeri, B. A., Huang, L., Wood, M., Cheng, J. Q. & Testa, J. R. Amplification and overexpression of the AKT2 oncogene in a subset of human pancreatic ductal adenocarcinomas. Mol. Carcinog. 21, 81–86 (1998).

    CAS  PubMed  Google Scholar 

  162. Oki, E. et al. Impact of loss of heterozygosity of encoding phosphate and tensin homolog on the prognosis of gastric cancer. J. Gastroenterol. Hepatol. 21, 814–818 (2006).

    CAS  PubMed  Google Scholar 

  163. Li, Y. L., Tian, Z., Wu, D. Y., Fu, B. Y. & Xin, Y. Loss of heterozygosity on 10q23.3 and mutation of tumor suppressor gene PTEN in gastric cancer and precancerous lesions. World J. Gastroenterol. 11, 285–288 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Feilotter, H. E. et al. Analysis of the 10q23 chromosomal region and the PTEN gene in human sporadic breast carcinoma. Br. J. Cancer 79, 718–723 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Freihoff, D. et al. Exclusion of a major role for the PTEN tumour-suppressor gene in breast carcinomas. Br. J. Cancer 79, 754–758 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Garcia, J. M. et al. Allelic loss of the PTEN region (10q23) in breast carcinomas of poor pathophenotype. Breast Cancer Res. Treat. 57, 237–243 (1999).

    CAS  PubMed  Google Scholar 

  167. Tokunaga, E. et al. Coexistence of the loss of heterozygosity at the PTEN locus and HER2 overexpression enhances the Akt activity thus leading to a negative progesterone receptor expression in breast carcinoma. Breast Cancer Res. Treat. 101, 249–257 (2007).

    CAS  PubMed  Google Scholar 

  168. Pollock, P. M. et al. PTEN inactivation is rare in melanoma tumours but occurs frequently in melanoma cell lines. Melanoma Res. 12, 565–575 (2002).

    CAS  PubMed  Google Scholar 

  169. Celebi, J. T., Shendrik, I., Silvers, D. N. & Peacocke, M. Identification of PTEN mutations in metastatic melanoma specimens. J. Med. Genet. 37, 653–657 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Birck, A., Ahrenkiel, V., Zeuthen, J., Hou-Jensen, K. & Guldberg, P. Mutation and allelic loss of the PTEN/MMAC1 gene in primary and metastatic melanoma biopsies. J. Invest. Dermatol. 114, 277–280 (2000).

    CAS  PubMed  Google Scholar 

  171. Reifenberger, J. et al. Allelic losses on chromosome arm 10q and mutation of the PTEN (MMAC1) tumour suppressor gene in primary and metastatic malignant melanomas. Virchows Arch. 436, 487–493 (2000).

    CAS  PubMed  Google Scholar 

  172. Cairns, P. et al. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res. 57, 4997–5000 (1997).

    CAS  PubMed  Google Scholar 

  173. Feilotter, H. E., Nagai, M. A., Boag, A. H., Eng, C. & Mulligan, L. M. Analysis of PTEN and the 10q23 region in primary prostate carcinomas. Oncogene 16, 1743–1748 (1998).

    CAS  PubMed  Google Scholar 

  174. Pesche, S. et al. PTEN/MMAC1/TEP1 involvement in primary prostate cancers. Oncogene 16, 2879–2883 (1998).

    CAS  PubMed  Google Scholar 

  175. Gray, I. C. et al. Mutation and expression analysis of the putative prostate tumour-suppressor gene PTEN. Br. J. Cancer 78, 1296–1300 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Wang, S. I., Parsons, R. & Ittmann, M. Homozygous deletion of the PTEN tumor suppressor gene in a subset of prostate adenocarcinomas. Clin. Cancer Res. 4, 811–815 (1998).

    CAS  PubMed  Google Scholar 

  177. Bostrom, J. et al. Mutation of the PTEN (MMAC1) tumor suppressor gene in a subset of glioblastomas but not in meningiomas with loss of chromosome arm 10q. Cancer Res. 58, 29–33 (1998).

    CAS  PubMed  Google Scholar 

  178. Wang, S. I. et al. Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res. 57, 4183–4186 (1997).

    CAS  PubMed  Google Scholar 

  179. Smith, J. S. et al. PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J. Natl Cancer Inst. 93, 1246–1256 (2001).

    CAS  PubMed  Google Scholar 

  180. Kim, N. et al. The p110δ catalytic isoform of PI3K is a key player in NK-cell development and cytokine secretion. Blood 110, 3202–3208 (2007).

    CAS  PubMed  Google Scholar 

  181. Clayton, E. et al. A crucial role for the p110δ subunit of phosphatidylinositol 3-kinase in B cell development and activation. J. Exp. Med. 196, 753–763 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Jou, S. T. et al. Essential, nonredundant role for the phosphoinositide 3-kinase p110δ in signaling by the B-cell receptor complex. Mol. Cell Biol. 22, 8580–8591 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Puri, K. D. et al. Mechanisms and implications of phosphoinositide 3-kinase delta in promoting neutrophil trafficking into inflamed tissue. Blood 103, 3448–3456 (2004).

    CAS  PubMed  Google Scholar 

  184. Okkenhaug, K. et al. Impaired B and T cell antigen receptor signaling in p110δ PI 3-kinase mutant mice. Science 297, 1031–1034 (2002).

    CAS  PubMed  Google Scholar 

  185. Ali, K. et al. Essential role for the p110δ phosphoinositide 3-kinase in the allergic response. Nature 431, 1007–1011 (2004).

    CAS  PubMed  Google Scholar 

  186. Guo, H., Samarakoon, A., Vanhaesebroeck, B. & Malarkannan, S. The p110δ of PI3K plays a critical role in NK cell terminal maturation and cytokine/chemokine generation. J. Exp. Med. 205, 2419–2435 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Hirsch, E. et al. Central role for G protein-coupled phosphoinositide 3-kinase γ in inflammation. Science 287, 1049–1053 (2000).

    CAS  PubMed  Google Scholar 

  188. MacDonald, P. E. et al. Impaired glucose-stimulated insulin secretion, enhanced intraperitoneal insulin tolerance, and increased β-cell mass in mice lacking the p110γ isoform of phosphoinositide 3-kinase. Endocrinology 145, 4078–4083 (2004).

    CAS  PubMed  Google Scholar 

  189. Crackower, M. A. et al. Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways. Cell 110, 737–749 (2002).

    CAS  PubMed  Google Scholar 

  190. Li, Z. et al. Roles of PLC-β2 and -β3 and PI3Kγ in chemoattractant-mediated signal transduction. Science 287, 1046–1049 (2000).

    CAS  PubMed  Google Scholar 

  191. Laffargue, M. et al. Phosphoinositide 3-kinase γ is an essential amplifier of mast cell function. Immunity 16, 441–451 (2002).

    CAS  PubMed  Google Scholar 

  192. Rodriguez-Borlado, L. et al. Phosphatidylinositol 3-kinase regulates the CD4/CD8 T cell differentiation ratio. J. Immunol. 170, 4475–4482 (2003).

    CAS  PubMed  Google Scholar 

  193. Webb, L. M., Vigorito, E., Wymann, M. P., Hirsch, E. & Turner, M. Cutting edge: T cell development requires the combined activities of the p110γ and p110δ catalytic isoforms of phosphatidylinositol 3-kinase. J. Immunol. 175, 2783–2787 (2005).

    CAS  PubMed  Google Scholar 

  194. Swat, W. et al. Essential role of PI3Kδ and PI3Kγ in thymocyte survival. Blood 107, 2415–2422 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Tassi, I. et al. p110γ and p110δ phosphoinositide 3-kinase signaling pathways synergize to control development and functions of murine NK cells. Immunity 27, 214–227 (2007).

    CAS  PubMed  Google Scholar 

  196. Terauchi, Y. et al. Increased insulin sensitivity and hypoglycaemia in mice lacking the p85α subunit of phosphoinositide 3-kinase. Nature Genet. 21, 230–235 (1999).

    CAS  PubMed  Google Scholar 

  197. Suzuki, H. et al. Xid-like immunodeficiency in mice with disruption of the p85α subunit of phosphoinositide 3-kinase. Science 283, 390–392 (1999).

    CAS  PubMed  Google Scholar 

  198. Chen, D. et al. p50α/p55α phosphoinositide 3-kinase knockout mice exhibit enhanced insulin sensitivity. Mol. Cell Biol. 24, 320–329 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Fruman, D. A. et al. Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85α. Science 283, 393–397 (1999).

    CAS  PubMed  Google Scholar 

  200. Fruman, D. A. et al. Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85α. Nature Genet. 26, 379–382 (2000).

    CAS  PubMed  Google Scholar 

  201. Ueki, K. et al. Increased insulin sensitivity in mice lacking p85β subunit of phosphoinositide 3-kinase. Proc. Natl Acad. Sci. USA 99, 419–424 (2002).

    CAS  PubMed  Google Scholar 

  202. Taniguchi, C. M. et al. Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKCλ/ζ. Cell. Metab. 3, 343–353 (2006).

    CAS  PubMed  Google Scholar 

  203. Luo, J. et al. Loss of class IA PI3K signaling in muscle leads to impaired muscle growth, insulin response, and hyperlipidemia. Cell Metab. 3, 355–366 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Gray and Q. Liu for providing compound structures and helpful discussions. We thank the reviewers for their helpful suggestions. We apologize to colleagues whose primary papers were not cited owing to space constraints. This work was supported in part by the National Institutes of Health (CA030002, CA089021 and CA050661 to T.M.R. and CA134502-01 to J.J.Z.), the Department of Defense for Cancer Research (BC051565 to J.J.Z.), the V Foundation (J.J.Z.) and the Claudia Barr Program (J.J.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean J. Zhao.

Ethics declarations

Competing interests

T.M.R. and J.J.Z. hold consulting positions at Novartis.

Related links

Related links

DATABASES

OMIM

Bannayan–Riley–Ruvalcabas syndrome

Cowden's syndrome

FURTHER INFORMATION

Jean J. Zhao's homepage

Glossary

Germline mutation

A heritable change in the DNA that occurred in a germ cell or the zygote at the single-cell stage. When transmitted to the next generation, a germline mutation is incorporated in every cell of the body.

Somatic mutation

Also referred to as an 'acquired mutation', this is an alteration in DNA that occurs in a somatic cell, in contrast to a mutation in a germ cell.

Allosteric inhibitor

A molecule that inhibits an enzyme by binding to a site other than the active site, causing a conformational change in the active site of the enzyme and thereby inhibiting its catalytic function.

Thrombosis

The formation or presence of a blood clot in a blood vessel.

Biomarker

A characteristic that can be objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention.

Tumour angiogenesis

The formation of new blood vessels that grow into the tumour, supplying nutrients and oxygen to assist tumour growth.

Cancer chemoprevention

The use of chemical compounds to intervene in the early precancerous stages of carcinogenesis, thereby preventing tumour formation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P., Cheng, H., Roberts, T. et al. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8, 627–644 (2009). https://doi.org/10.1038/nrd2926

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2926

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing