Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Alzheimer's disease: strategies for disease modification

Key Points

  • Alzheimer's disease (AD) is the largest unmet medical need in neurology. Current drugs improve symptoms, but do not have profound disease-modifying effects.

  • Formal demonstration of efficacy in disease modification requires trials of extended duration with a large number of participants.

  • Criteria for the diagnosis of early AD and the inclusion of patients with early AD in clinical trials will be crucial to improve treatment outcomes.

  • Treatment approaches aimed at the production and clearance of the amyloid-β peptide (Aβ) — a cardinal feature of AD that is thought to be important in disease pathogenesis — are the most advanced, with four drugs currently in Phase III.

  • Among the anti-Aβ therapeutics small-molecule drug development is focused on β-secretase and γ-secretase inhibitors. Clinical trials of both inhibitor classes are underway.

  • Active and passive immunization are being pursued in several ongoing clinical studies to clear Aβ monomers and/or deposits.

  • Approaches to block the progression of tau pathology are at an earlier stage of development than anti-Aβ efforts. It is hoped that tau therapeutics will provide benefit throughout the course of the disease, but generally accepted tractable targets have yet to emerge.

  • AD pathology has an inflammatory component, but there is currently no consensus about whether and how it should be targeted therapeutically.

  • In addition, a number of clinical treatment approaches are based on the idea that a metabolic defect that is not directly reflected in the hallmarks of AD pathology may have a major role in the disease process.

Abstract

Alzheimer's disease is the largest unmet medical need in neurology. Current drugs improve symptoms, but do not have profound disease-modifying effects. However, in recent years, several approaches aimed at inhibiting disease progression have advanced to clinical trials. Among these, strategies targeting the production and clearance of the amyloid-β peptide — a cardinal feature of Alzheimer's disease that is thought to be important in disease pathogenesis — are the most advanced. Approaches aimed at modulating the abnormal aggregation of tau filaments (another key feature of the disease), and those targeting metabolic dysfunction, are also being evaluated in the clinic. This article discusses recent progress with each of these strategies, with a focus on anti-amyloid strategies, highlighting the lessons learned and the challenges that remain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The amyloid cascade and major therapeutic approaches.
Figure 2: Models of antibody-mediated amyloid clearance.
Figure 3: Tau pathology and major therapeutic approaches.

Similar content being viewed by others

References

  1. Davis, K. L. & Samuels, S. C. in Pharmacological Management of Neurological and Psychiatric Disorders (eds Enna, S. J. & Coyle, J. T.) 267–316 (McGraw-Hill, New York, 1998).

    Google Scholar 

  2. Alzheimer, A. Über eine eigenartige Erkrankung der Hirnrinde. Centralblatt fur Nervenheilkunde Psychiatrie 30, 177–179 (1907) (in German). Alzheimer's first description of the disease — a classic.

    Google Scholar 

  3. McGeer, P. L. & McGeer, E. NSAIDs and Alzheimer's disease: epidemiological, animal model and clinical studies. Neurobiol. Aging 28, 639–647 (2007).

    CAS  PubMed  Google Scholar 

  4. Cruts, M. & Van Broeckhoven, C. Molecular genetics of Alzheimer's disease. Ann. Med. 30, 560–565 (1998).

    CAS  PubMed  Google Scholar 

  5. Rovelet-Lecrux, A. et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nature Genet. 38, 24–26 (2006).

    CAS  PubMed  Google Scholar 

  6. Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 921–923 (1993).

    CAS  PubMed  Google Scholar 

  7. Mayeux, R. in Handbook of Clinical Neurology (eds Duyckaerts, C. & Litvan, I.) 195–205 (2008).

    Google Scholar 

  8. Hsiao, K. et al. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274, 99–102 (1996).

    CAS  PubMed  Google Scholar 

  9. SantaCruz, K. et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science 309, 476–481 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Selkoe, D. J. & Schenk, D. Alzheimer's disease: molecular understanding predicts amyloid-based therapeutics. Annu. Rev. Pharmacol. Toxicol. 43, 545–584 (2003).

    CAS  PubMed  Google Scholar 

  11. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002). An influential review of the amyloid hypothesis.

    CAS  PubMed  Google Scholar 

  12. Walsh, D. M. & Selkoe, D. J. Aβ oligomers — a decade of discovery. J. Neurochem. 101, 1172–1184 (2007).

    CAS  PubMed  Google Scholar 

  13. Haass, C. et al. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359, 322–325 (1992).

    CAS  PubMed  Google Scholar 

  14. Dovey, H. F. et al. Functional γ-secretase inhibitors reduce β-amyloid peptide levels in brain. J. Neurochem. 76, 173–181 (2001).

    CAS  PubMed  Google Scholar 

  15. DeStrooper, B. Aph-1, Pen-2, and Nicastrin with Presenilin generate an active γ-secretase complex. Neuron 38, 9–12 (2003).

    CAS  Google Scholar 

  16. Parks, A. L. & Curtis, D. Presenilin diversifies its portfolio. Trends Genet. 23, 140–150 (2007).

    CAS  PubMed  Google Scholar 

  17. De Strooper, B. et al. A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522 (1999). First description of the Notch-γ secretase connection.

    CAS  PubMed  Google Scholar 

  18. Wong, G. T. et al. Chronic treatment with the γ-secretase inhibitor LY-411,575 inhibits β-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J. Biol. Chem. 279, 12876–12882 (2004).

    CAS  PubMed  Google Scholar 

  19. Milano, J. et al. Modulation of Notch processing by γ-secretase inhibitors causes intestinal goblet cellmetaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol. Sci. 82, 341–358 (2004).

    CAS  PubMed  Google Scholar 

  20. Fleisher, A. S. et al. Phase 2 safety trial targeting amyloid β production with a γ-secretase inhibitor in Alzheimer disease. Arch. Neurol. 65, 1031–1038 (2008).

    PubMed  PubMed Central  Google Scholar 

  21. Bateman, R. J. et al. A γ-secretase inhibitor decreases amyloid-β production in the central nervous system. Ann. Neurol. 66, 48–54 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Martone, R. et al. GSI-953 (begacestat): a novel, selective thiophene sulfonamide inhibitor of APP γ-secretase for the treatment of Alzheimer's disease. J. Pharmacol. Exp. Ther. 331, 598–608 (2009).

    CAS  PubMed  Google Scholar 

  23. Imbimbo, B. P. Alzheimer's disease: γ-secretase inhibitors. Drug Discov. Today 5, 169–175 (2008).

    Google Scholar 

  24. Jarrett, J. T., Berger, E. P. & Lansbury, P. T. Jr. The carboxy terminus of the β amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry 32, 4693–4697 (1993).

    CAS  PubMed  Google Scholar 

  25. Weggen, S. et al. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature 414, 212–216 (2001).

    CAS  PubMed  Google Scholar 

  26. Leuchtenberger, S., Beher, D. & Weggen, S. Selective modulation of Aβ42 production in Alzheimer's disease: non-steroidal anti-inflammatory drugs and beyond. Curr. Pharm. Des. 12, 1–19 (2006).

    Google Scholar 

  27. Kukar, T. L. et al. Substrate-targeting γ-secretase modulators. Nature 453, 925–929 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. McGeer, P. L., Schulzer, M. & McGeer, E. G. Arthritis and antiinflammatory agents as possible protective factors for Alzheimer's disease: a review of 17 epidemiological studies. Neurology 47, 425–432 (1996).

    CAS  PubMed  Google Scholar 

  29. Green, R.C., Schneider, L. S, Hendrix, S.B., Zavitz, K.H. & Swabb, E. Safety and efficacy of tarenflurbil in subjects with mild Alzheimer's disease: results from an 18-month multi-center phase 3 trial. Alzheimers Dement. 4 (Suppl. 2), T165.

  30. Galasko, D. R. et al. Safety, tolerability, pharmacokinetics, and Aβ levels after short-term administration of R-flurbiprofen in healthy elderly individuals. Alzheimer Dis. Assoc. Disord. 21, 292–299 (2007).

    CAS  PubMed  Google Scholar 

  31. Citron, M. β-Secretase inhibition for the treatment of Alzheimer's disease — promise and challenge. Trends Pharmacol. Sci. 25, 59–112 (2004).

    Google Scholar 

  32. Velliquette, R. A., O'Connor, T. & Vassar, R. Energy inhibition elevates β-secretase levels and activity and is potentially amyloidogenic in APP transgenic mice: possible early events in Alzheimer's disease pathogenesis. J. Neurosci. 25, 10874–10883 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Willem, M. et al. Control of peripheral nerve myelination by the β-secretase BACE1. Sciencexpress 1–7 (2006).

  34. Hu, X. et al. BACE1 modulates myelination in the central and peripheral nervous system. Nature Neurosci. 9, 1520–1525 (2006).

    CAS  PubMed  Google Scholar 

  35. Sankaranarayanan, S. et al. In vivo β-secretase 1 inhibition leads to brain Aβ lowering and increased α-secretase processing of amyloid precursor protein without effect on neuregulin-1. J. Pharmacol. Exp. Ther. 324, 957–969 (2008).

    CAS  PubMed  Google Scholar 

  36. Hu, X. et al. Genetic deletion of BACE1 in mice affects remyelination of sciatic nerves. FASEB J. 22, 2970–2980 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Harrison, S. M. et al. BACE1 (β-secretase) transgenic and knockout mice: identification of neurochemical deficits and behavioral changes. Mol. Cell. Neurosci. 24, 646–655 (2003).

    CAS  PubMed  Google Scholar 

  38. Laird, F. M. et al. BACE1, a major determinant of selective vulnerability of the brain to amyloid-β amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J. Neurosci. 25, 11693–11709 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gerlai, R. Gene-targeting studies of mammalian behavior: is it the mutation or the background genotype? Trends Neurosci. 19, 177–181 (1996).

    CAS  PubMed  Google Scholar 

  40. CoMentis. Press release 28 Jul 2008: CoMentis and Astellas to present Alzheimer's disease research at International Conference on Alzheimer's Disease (ICAD). CoMentis website [online], (2008).

  41. Leung, D., Abbenante, G. & Fairlie, D. P. Protease inhibitors: current status and future prospects. J. Med. Chem. 43, 305–341 (2000).

    CAS  PubMed  Google Scholar 

  42. Durham, T. B. & Shepherd, T. A. Progress toward the discovery and development of efficacious BACE inhibitors. Curr. Opin. Drug Discov. Develop. 9, 776–791 (2006). A review summarizing the medicinal chemistry challenges of β-secretase inhibitor development.

    CAS  Google Scholar 

  43. Nitsch, R. M., Slack, B. E., Wurtman, R. J. & Growdon, J. H. Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258, 304–307 (1992).

    CAS  PubMed  Google Scholar 

  44. Hock, C. et al. Treatment with the selective muscarinic M1 agonist talsaclidine decreases cerebrospinal fluid levels of Aβ42 in patients with Alzheimer's disease. Amyloid 10, 1–6 (2003).

    CAS  PubMed  Google Scholar 

  45. Gervais, F. et al. Targeting soluble Aβ peptide with tramiprosate for the treatment of brain amyloidosis. Neurobiol. Aging 28, 537–547 (2007).

    CAS  PubMed  Google Scholar 

  46. Aisen, P. S. et al. Clinical data on Alzhemed after 12 months in patients with mild to moderate Alzheimer's disease. Neurobiol. Aging 25, S20.

  47. McLaurin, J. et al. Cyclohexanehexol inhibitors of Aβ aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nature Med. 12, 801–808 (2006).

    CAS  PubMed  Google Scholar 

  48. Frederickson, C. J., Koh, J. Y. & Bush, A. I. The neurobiology of zinc in health and disease. Nature 6, 449–462 (2005).

    CAS  Google Scholar 

  49. Cherny, R. A. et al. Treatment with a copper–zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer's disease transgenic mice. Neuron 30, 665–676 (2001).

    CAS  PubMed  Google Scholar 

  50. Lannfelt, L. et al. Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer's disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 7, 779–786 (2008).

    CAS  PubMed  Google Scholar 

  51. Eckman, E. A. & Eckman, C. B. Aβ-degrading enzymes: modulators of Alzheimer's disease pathogenesis and targets for therapeutic intervention. Biochem. Soc. Trans. 23, 1101–1105 (2005).

    Google Scholar 

  52. Jacobsen, S. et al. Catabolic clearance of Aβ following treatment with Pai-1 inhibitors. Neurodegen. Dis. 4 (Suppl. 1), 22 (2007).

    Google Scholar 

  53. Deane, R., Wu, Z. & Zlokovic, B. V. RAGE (yin) versus LRP (yang) balance regulates Alzheimer amyloid β-peptide clearance through transport across the blood–brain barrier. Stroke 35 (11 Suppl.1), 2628–2631 (2004).

    CAS  PubMed  Google Scholar 

  54. Dodel, R. et al. Human antibodies against amyloid β peptide: a potential treatment for Alzheimer's disease. Ann. Neurol. 52, 253–256 (2002).

    CAS  PubMed  Google Scholar 

  55. Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999). First high-profile publication to discuss Aβ immunization as a therapeutic approach.

    CAS  PubMed  Google Scholar 

  56. Morgan, D. et al. Aβ peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature 408, 982–985 (2000).

    CAS  PubMed  Google Scholar 

  57. Janus, C. et al. Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature 408, 979–982 (2000).

    CAS  PubMed  Google Scholar 

  58. Hrncic, R. et al. Antibody-mediated resolution of light chain-associated amyloid deposits. Am. J. Pathol. 157, 1239–1246 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bard, F. et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nature Med. 6, 916–919 (2000).

    CAS  PubMed  Google Scholar 

  60. Frenkel, D., Katz, O. & Solomon, B. Immunization against Alzheimer's β-amyloid plaques via EFRH phage administration. Proc. Natl Acad. Sci. USA 97, 11455–11459 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. DeMattos, R. B. et al. Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer's disease. Proc. Natl Acad. Sci. USA 98, 8850–8855 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Dodart, J. C. et al. Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer's disease model. Nature Neurosci. 5, 452–457 (2002).

    CAS  PubMed  Google Scholar 

  63. Racke, M. M. et al. Exacerbation of cerebral amyloid angiopathy-associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid β. J. Neurosci. 25, 629–636 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Thakker, D. R. et al. Intracerebroventricular amyloid-β antibodies reduce cerebral amyloid angiopathy and associated micro-hemorrhages in aged Tg2576 mice. Proc. Natl Acad. Sci. USA 106, 4501–4506 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Siemers, E. R. et al. P4-346: Safety, tolerability and biomarker effects of an Aβ monoclonal antibody administered to patients with Alzheimer's disease. Alzheimers Dement. 4 (Suppl. 1), T774 (2008).

    Google Scholar 

  66. Tsakanikas, D., Shah, K., Flores, C., Assuras, S. & Relkin, N. R. P4-351: Effects of uninterrupted intravenous immunoglobulin treatment of Alzheimer's disease for nine months. Alzheimers Dement. 4 (Suppl. 1), T776 (2008).

    Google Scholar 

  67. Salloway, S. et al. A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer's disease. Neurology 73, 2061–2070 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Brody, D. L. & Holtzman, D. M. Active and passive immunotherapy for neurodegenerative disorders. Ann. Rev. Neurosci. 31, 175–193 (2008).

    CAS  PubMed  Google Scholar 

  69. Holmes, C. et al. Long-term effects of Aβ42 immunisation in Alzheimer's disease: follow up of a randomised, placebo-controlled phase I trial. Lancet 372, 216–223 (2008).

    CAS  PubMed  Google Scholar 

  70. Small, S. A. & Duff, K. Linking Aβ and tau in late-onset Alzheimer's disease: a dual pathway hypothesis. Neuron 60, 534–542 (2009).

    Google Scholar 

  71. Vellas, B. et al. Long-term follow-up of patients immunized with AN1792: reduced functional decline in antibody responders. Curr. Alzheimer Res. 6, 144–151 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lambert, J. C. et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nature Genet. 41, 1094–1099 (2009).

    CAS  PubMed  Google Scholar 

  73. Wyss-Coray, T. Inflammation in Alzheimer's disease: driving force, bystander or beneficial response. Nature Med. 12, 1005–1015 (2006). An excellent review of the complicated role of inflammation in AD.

    CAS  PubMed  Google Scholar 

  74. Heneka, M. T. & Landreth, G. E. PPARs in the brain. Biochem. Biophys. Acta 1771, 1031–1045 (2007).

    CAS  PubMed  Google Scholar 

  75. Harrington, C. et al. Effects of rosiglitazone-extended release as adjunctive therapy to acetylcholinesterase inhibitors over 48 weeks on cognition in Apoe4-stratified subjects with mild-to-moderate Alzheimer's disease. Alzheimers Dementia 5, (Suppl. 1), e17–e18 (2009).

    Google Scholar 

  76. Liang, X. et al. Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer's disease. J. Neurosci. 25, 10180–10187 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Thal, D. et al. Alzheimer-related tau-pathology in the perforant path target zone and in the hippocampal stratum oriens and radiatum correlates with onset and degree of dementia. Exp. Neurol. 163, 98–110 (2000).

    CAS  PubMed  Google Scholar 

  78. Hutton, M. et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702–705 (1998).

    CAS  PubMed  Google Scholar 

  79. Goedert, M., Klug, A. & Crowther, R. Tau protein, the paired helical filament and Alzheimer's disease. J. Alzheimers Dis. 9, 195–207 (2006). An excellent review of tau biology.

    CAS  PubMed  Google Scholar 

  80. Schneider, A. & Mandelkow, E. Tau-based treatment strategies in neurodegenerative diseases. Neurotherapeutics 5, 443–457 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lee, V. & Trojanowski, J. Progress from Alzheimer's tangles to pathological tau points towards more effective therapies now. J. Alzheimers Dis. 9, 257–262 (2006).

    CAS  PubMed  Google Scholar 

  82. Bulic, B. et al. Development of tau aggregation inhibitors for Alzheimer's disease. Angew. Chem. Int. Ed. 48, 1740–1752 (2009).

    CAS  Google Scholar 

  83. Wischik, C., Bentham, P., Wischik, D. & Seng, K. O3-04-07: Tau aggregation inhibitor (TAI) therapy with rember arrests disease progression in mild and moderate Alzheimer's disease over 50 weeks. Alzheimers Dement. 4 (Suppl. 1), T167 (2008).

    Google Scholar 

  84. Mahley, R. W. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240, 622–630 (1988).

    CAS  PubMed  Google Scholar 

  85. Bertram, L. & Tanzi, R. E. Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses. Nature Rev. Neurosci. 9, 768–778 (2008).

    CAS  Google Scholar 

  86. Bu, G. Apolipoprotein E and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy. Nature Rev. Neurosci. 10, 333–344 (2009).

    CAS  Google Scholar 

  87. Mahley, R. W., Weisgraber, K. H. & Huang, Y. Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer's disease. Proc. Natl Acad. Sci. USA 103, 5644–5651 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Fagan, A. M. et al. Human and murine ApoE markedly alters Aβ metabolism before and after plaque formation in a mouse model of Alzheimer's disease. Neurobiol. Dis. 9, 305–318 (2002). An important animal model study describing in vivo effects of APOE isoforms on Aβ metabolism.

    CAS  PubMed  Google Scholar 

  89. Cao, G., Bales, K. R., DeMattos, R. B. & Paul, S. M. Liver X receptor-mediated gene regulation and cholesterol homeostasis in brain: relevance to Alzheimer's disease therapeutics. Curr. Alzheimer Res. 4, 179–184 (2007).

    CAS  PubMed  Google Scholar 

  90. Vanhanen, M. et al. Association of metabolic syndrome with Alzheimer disease. Neurology 67, 843–847 (2006).

    CAS  PubMed  Google Scholar 

  91. Wolozin, B. Cholesterol and the biology of Alzheimer's disease. Neuron 41, 7–10 (2004).

    CAS  PubMed  Google Scholar 

  92. Fassbender, K. et al. Simvastatin strongly reduces levels of Alzheimer's disease β-amyloid peptides Aβ42 and Aβ40 in vitro and in vivo. Proc. Natl Acad. Sci. USA 98, 5856–5861 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Puglielli, L. et al. Acyl-coenzyme A: cholesterol acyltransferase modulates the generation of the amyloid β-peptide. Nature Cell Biol. 3, 905–912 (2001).

    CAS  PubMed  Google Scholar 

  94. Kandiah, N. & Feldman, H. H. Therapeutic potential of statins in Alzheimer's disease. J. Neurol. Sci. 283, 230–234 (2009).

    CAS  PubMed  Google Scholar 

  95. Mazziotta, J. C., Frackowiak, R. S. & Phelps, M. E. The use of positron emission tomography in the clinical assesment of dementia. Semin. Nucl. Med. 22, 233–246 (1992).

    CAS  PubMed  Google Scholar 

  96. Reiman, E. M. et al. Preclinical evidence of Alzheimer's disease in persons homozygous for the ɛ4 allele for apolipoprotein E. N. Engl. J. Med. 334, 752–758 (1996).

    CAS  PubMed  Google Scholar 

  97. Reiman, E. M. et al. Declining brain activity in cognitively normal apolipoprotein E ɛ4 heterozygotes: a foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer's disease. Proc. Natl. Acad. Sci. USA 98, 3334–3339 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Craft, S. Insulin resistance syndrome and Alzheimer disease: pathophysiologic mechanisms and therapeutic implications. Alzheimer Dis. Assoc. Disord. 20, 298–301 (2006).

    CAS  PubMed  Google Scholar 

  99. Doody, R. S. et al. Effect of dimebon on cognition, activities of daily living, behaviour and global function in patients with mild-to-moderate Alzheimer's disease: a randomised, double-blind, placebo-controlled study. Lancet 372, 207–215 (2008).

    CAS  PubMed  Google Scholar 

  100. Bachurin, S. et al. Antihistamine agent dimebon as a novel neuroprotector and cognition enhancer. Ann. NY Acad. Sci. 939, 425–435 (2001).

    CAS  PubMed  Google Scholar 

  101. Medivation. Press release 3 Mar 2010: Pfizer and Medivation announce results from two Phase 3 studies in Dimebon (latrepirdine*) Alzheimer's disease clinical development program. Medivation website [online], (2010).

  102. Jack, C. R. et al. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease. Brain 132, 1355–1365 (2009). A widely discussed study discussing the temporal sequence of biomarker changes in AD — important for drug development.

    PubMed  PubMed Central  Google Scholar 

  103. Dubois, B. et al. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 6, 734–746 (2007). An important paper suggesting diagnostic criteria for early AD — crucial for efforts to treat AD earlier.

    PubMed  Google Scholar 

  104. Winblad, B. & Wimo, A. Pharmacoeconomics in Alzheimer's disease. Neurodegenerative Dis. 4, 5 (2007).

    Google Scholar 

  105. Alzheimer's Association. 2009 Alzheimer's disease facts and figures. Alzheimers Dement. 5, 234–270 (2009).

  106. Aisen, P. S. Development of a disease-modifying treatment for Alzheimer's disease: Alzhemed. Alzheimers Dement. 2, 153–154 (2006).

    PubMed  Google Scholar 

  107. Mohs, R. C., Kawas, C. & Carrillo, M. C. Optimal design of clinical trials for drugs designed to slow the course of Alzheimer's disease. Alzheimers Dement. 2, 131–139 (2006).

    CAS  PubMed  Google Scholar 

  108. Bateman, R. J. Aβ turnover in human subjects. Alzheimers Dement. 4 (Suppl. 1), T123–T124 (2008).

    Google Scholar 

Download references

Acknowledgements

I would like to thank R. Mohs and E. Siemers for helpful discussions. Special thanks to J. B. Lindborg for tracking everything in this rapidly moving field.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Martin Citron is an employee and shareholder of Eli Lilly and Company.

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

FURTHER INFORMATION

Alzheimer's Association

Rights and permissions

Reprints and permissions

About this article

Cite this article

Citron, M. Alzheimer's disease: strategies for disease modification. Nat Rev Drug Discov 9, 387–398 (2010). https://doi.org/10.1038/nrd2896

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2896

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research