Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting the CNS to treat type 2 diabetes

Key Points

  • Most drug discovery efforts aimed at type 2 diabetes target insulin action in peripheral tissues (muscle, fat and liver).

  • Recently, data have emerged that suggest the central nervous system (CNS) senses and integrates information from a host of neural, hormonal and nutrient signals. These signals are generated in response to the ingestion of food and regulate glucose output by the liver and glucose uptake by peripheral tissues.

  • CNS administration of insulin, leptin, glucagon-like peptide 1, glucose and long-chain fatty acids have all been shown to regulate liver glucose production, glucose uptake by skeletal muscle and/or insulin secretion.

  • AMP-activated protein kinase and mammalian target of rapamycin are important hypothalamic fuel sensors that regulate energy and possibly glucose homeostasis.

  • Before the CNS can be pharmacologically targeted for the treatment of diabetes, several obstacles must be overcome, including: differential peripheral and central actions on glucose and/or energy homeostasis; the blood–brain barrier limiting CNS exposure to circulating substances; and the fact that the key regions of the CNS that regulate homeostasis are deep in the midbrain and not easily studied in human subjects.

  • There are various strategies that have the potential to overcome these obstacles, including pharmacological developments that take advantage of the physical properties of the blood–brain barrier to allow specific delivery of drugs to the CNS, and targeting components of the fuel-sensing pathways downstream of hormones and nutrients that are specific to the CNS.

  • Given the overlap between the circuits that regulate energy and glucose homeostasis, it is reasonable to propose that part of the link between obesity and diabetes involves dysregulation of these common CNS circuits. Targeting these circuits presents new avenues for the development of more effective therapies that could produce both weight loss and improvements in glucose regulation.

Abstract

Research on the role of peripheral organs in the regulation of glucose homeostasis has led to the development of various monotherapies that aim to improve glucose uptake and insulin action in these organs for the treatment of type 2 diabetes. It is now clear that the central nervous system (CNS) also plays an important part in orchestrating appropriate glucose metabolism, with accumulating evidence linking dysregulated CNS circuits to the failure of normal glucoregulatory mechanisms. There is evidence that there is substantial overlap between the CNS circuits that regulate energy balance and those that regulate glucose levels, suggesting that their dysregulation could link obesity and diabetes. These findings present new targets for therapies that may be capable of both inducing weight loss and improving glucose regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endocrine and neuroendocrine regulation of postprandial glucose homeostasis.
Figure 2: Central nervous system (CNS) regulation of glucose homeostasis.
Figure 3: Neuronal fuel sensing and regulation of energy and glucose homeostasis.
Figure 4: Potential integration of hypothalamic insulin and leptin signalling on mTOR and AMPK and how this might regulate glucose homeostasis.

Similar content being viewed by others

References

  1. Unger, R. H. The milieu interieur and the islets of Langerhans. Diabetologia 20, 1–11 (1981).

    CAS  PubMed  Google Scholar 

  2. Bernard, C. Leçons de physiologie expérimentale appliqués à la médecine (Eds Baillère et Fils, Paris, 1854). Claude Bernard's thesis in 1854 introduced the idea that glucose levels were regulated by CNS actions at the liver (the source of glucose) and at the skeletal muscle (a consumer of glucose).

  3. Sandoval, D. A. & Davis, S. N. Metabolic consequences of exercise-associated autonomic failure. Exerc. Sport Sci. Rev. 34, 72–76 (2006).

    PubMed  Google Scholar 

  4. Biggers, D. W. et al. Role of brain in counterregulation of insulin-induced hypoglycemia in dogs. Diabetes 38, 7–16 (1989).

    CAS  PubMed  Google Scholar 

  5. Lam, T. K., Gutierrez-Juarez, R., Pocai, A. & Rossetti, L. Regulation of blood glucose by hypothalamic pyruvate metabolism. Science 309, 943–947 (2005). This article showed that the CNS, specifically the mediobasal hypothalamus, responds to increased glucose availability to regulate hepatic glucose production.

    CAS  PubMed  Google Scholar 

  6. Lam, T. K. et al. Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nature Med. 11, 320–327 (2005).

    CAS  PubMed  Google Scholar 

  7. Lam, T. K., Schwartz, G. J. & Rossetti, L. Hypothalamic sensing of fatty acids. Nature Neurosci. 8, 579–584 (2005).

    CAS  PubMed  Google Scholar 

  8. Pocai, A. et al. Hypothalamic KATP channels control hepatic glucose production. Nature 434, 1026–1031 (2005).

    CAS  PubMed  Google Scholar 

  9. Pocai, A. et al. Central leptin acutely reverses diet-induced hepatic insulin resistance. Diabetes 54, 3182–3189 (2005).

    CAS  PubMed  Google Scholar 

  10. Obici, S., Feng, Z., Arduini, A., Conti, R. & Rossetti, L. Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production. Nature Med. 9, 756–761 (2003).

    CAS  PubMed  Google Scholar 

  11. Obici, S., Zhang, B. B., Karkanias, G. & Rossetti, L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nature Med. 8, 1376–1382 (2002).

    CAS  PubMed  Google Scholar 

  12. Obici, S., Feng, Z., Karkanias, G., Baskin, D. G. & Rossetti, L. Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nature Neurosci. 5, 566–572 (2002). This article showed that the insulin receptors located in the arcuate nucleus of the hypothalamus were important for regulation of hepatic glucose production.

    CAS  PubMed  Google Scholar 

  13. Obici, S. et al. Central administration of oleic acid inhibits glucose production and food intake. Diabetes 51, 271–275 (2002). In this work, the authors found that LCFAs serve as a signal to the CNS that leads to reduction of both hepatic glucose production and food intake.

    CAS  PubMed  Google Scholar 

  14. Obici, S. et al. Central melanocortin receptors regulate insulin action. J. Clin. Invest. 108, 1079–1085 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sandoval, D. A., Bagnol, D., Woods, S. C., D'Alessio, D. A. & Seeley, R. J. Arcuate glucagon-like peptide 1 receptors regulate glucose homeostasis but not food intake. Diabetes 57, 2046–2054 (2008). This article established that the incretin GLP1 acts on the CNS, specifically in the arcuate nucleus of the hypothalamus (as well as the periphery), to improve glucose homeostasis at the three major glucoregulatory organs (liver, skeletal muscle and pancreas).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pocai, A. et al. Restoration of hypothalamic lipid sensing normalizes energy and glucose homeostasis in overfed rats. J. Clin. Invest. 116, 1081–1091 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ono, H. et al. Activation of hypothalamic S6 kinase mediates diet-induced hepatic insulin resistance in rats. J. Clin. Invest. 118, 2959–2968 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Morrison, C. D., Morton, G. J., Niswender, K. D., Gelling, R. W. & Schwartz, M. W. Leptin inhibits hypothalamic Npy and Agrp gene expression via a mechanism that requires phosphatidylinositol 3-OH-kinase signaling. Am. J. Physiol. Endocrinol. Metab. 289, E1051–E1057 (2005).

    CAS  PubMed  Google Scholar 

  19. Coppari, R. et al. The hypothalamic arcuate nucleus: a key site for mediating leptin's effects on glucose homeostasis and locomotor activity. Cell Metab. 1, 63–72 (2005).

    CAS  PubMed  Google Scholar 

  20. Cherrington, A. D. Banting Lecture 1997. Control of glucose uptake and release by the liver in vivo. Diabetes 48, 1198–1214 (1999).

    CAS  PubMed  Google Scholar 

  21. McIntyre, N., Holsworth, D. C. & Turner, D. S. New interpretation of oral glucose tolerance. Lancet 2, 20–21 (1964).

    CAS  PubMed  Google Scholar 

  22. Kreymann, B., Ghatei, M. A., Williams, G. & Bloom, S. R. Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet 2, 1300–1303 (1987).

    CAS  PubMed  Google Scholar 

  23. Goke, R., Fehmann, H. & Goke, B. Glucagon-like peptide-1 (7–36) amide is a new incretin/enterogastrone candidate. J. Clin. Invest. 135, 135–144 (1991).

    Google Scholar 

  24. Drucker, D. J. Glucagon and the glucagon-like peptides. Pancreas 5, 484–488 (1990).

    CAS  PubMed  Google Scholar 

  25. Cohen, A. & Horton, E. S. Progress in the treatment of type 2 diabetes: new pharmacologic approaches to improve glycemic control. Curr. Med. Res. Opin. 23, 905–917 (2007).

    CAS  PubMed  Google Scholar 

  26. Williams-Herman, D. et al. Efficacy and safety of initial combination therapy with sitagliptin and metformin in patients with type 2 diabetes: a 54-week study. Curr. Med. Res. Opin. 25, 569–583 (2009).

    CAS  PubMed  Google Scholar 

  27. Williams, B. et al. Gastric emptying, glucose responses, and insulin secretion after a liquid test meal: effects of exogenous glucagon-like peptide 1 (GLP-1)-(7–36) amide in type 2 diabetic patients. J. Clin. Endocrinol. Metab. 81, 327–332 (1996).

    Google Scholar 

  28. Schirra, J. et al. Endogenous glucagon-like peptide 1 controls endocrine pancreatic secretion and antro-pyloro-duodenal motility in humans. Gut 55, 243–251 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. von Mering, J. & Minkowski, O. Diabetes mellitus nach pankreas extirpation Arch. Exp. Pathol. Pharmacol. 26, 371 (1889).

    Google Scholar 

  30. Banting, F. G. & Best, C. H. Pancreatic extracts. 1922. J. Lab. Clin. Med. 115, 254–272 (1990).

    CAS  PubMed  Google Scholar 

  31. Unger, R. H. The Banting Memorial Lecture 1975. Diabetes and the alpha cell. Diabetes 25, 136–151 (1976).

    CAS  PubMed  Google Scholar 

  32. Bernard, C. Recherches sur une nouvelle fonction du foie. Thèse presentée a la Faculté des Sciences de Paris. (L. Martinet, Paris, 1853)

  33. Fukushima, M., Tokunaga, K., Lupien, J., Kemnitz, J. W. & Bray, G. A. Dynamic and static phases of obesity following lesions in PVN and VMH. Am. J. Physiol. 253, R523–R529 (1987).

    CAS  PubMed  Google Scholar 

  34. Berthoud, H.-R. & Jeanrenaud, B. Acute hyperinsulinemia and its reversal by vagotomy after lesions of the ventromedial hypothalamus in anesthetized rats. Endocrinology 105, 146–151 (1979).

    CAS  PubMed  Google Scholar 

  35. Inoue, S., Bray, G. A. & Mullen, Y. S. Transplantation of pancreatic β-cells prevents development of hypothalamic obesity in rats. Am. J. Physiol. 235, E266–E271 (1978).

    CAS  PubMed  Google Scholar 

  36. Wallis, M. G., Appleby, G. J., Youd, J. M., Clark, M. G. & Penschow, J. D. Reduced glycogen phosphorylase activity in denervated hindlimb muscles of rat is related to muscle atrophy and fibre type. Life Sci. 64, 221–228 (1999).

    CAS  PubMed  Google Scholar 

  37. Bertelli, D. F. et al. Reversal of denervation-induced insulin resistance by SHIP2 protein synthesis blockade. Am. J. Physiol. Endocrinol. Metab. 284, 679–687 (2003).

    Google Scholar 

  38. Shimazu, T. & Amakawa, A. Regulation of glycogen metabolism in liver by the autonomic nervous system. II. Neural control of glycogen biosynthesis. Biochim. Biophys. Acta 165, 335–348 (1968).

    CAS  PubMed  Google Scholar 

  39. Seeley, R. J. & Woods, S. C. Monitoring of stored and available fuel by the CNS: implications for obesity. Nature Rev. Neurosci. 4, 901–909 (2003).

    CAS  Google Scholar 

  40. Schwartz, M. W., Woods, S. C., Porte, D. J., Seeley, R. J. & Baskin, D. G. Central nervous system control of food intake. Nature 404, 661–671 (2000).

    CAS  PubMed  Google Scholar 

  41. Haque, M. S. et al. Role of the sympathetic nervous system and insulin in enhancing glucose uptake in peripheral tissues after intrahypothalamic injection of leptin in rats. Diabetes 48, 1706–1712 (1999).

    CAS  PubMed  Google Scholar 

  42. Minokoshi, Y., Okano, Y. & Shimazu, T. Regulatory mechanism of the ventromedial hypothalamus in enhancing glucose uptake in skeletal muscle. Brain Res. 649, 343–347 (1994).

    CAS  PubMed  Google Scholar 

  43. Schwartz, M. W. et al. Kinetics and specificity of insulin uptake from plasma into cerebrospinal fluid. Am. J. Physiol. 259, 378–383 (1990).

    Google Scholar 

  44. Edgerton, D. S. et al. Insulin's direct effects on the liver dominate the control of hepatic glucose production. J. Clin. Invest. 116, 521–527 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Konner, A. C. et al. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 5, 438–449 (2007).

    PubMed  Google Scholar 

  46. Benoit, S. C. et al. The catabolic action of insulin in the brain is mediated by melanocortins. J. Neurosci. 22, 9048–9052 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Garcia-Echeverria, C. & Sellers, W. R. Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene 27, 5511–5526 (2008).

    CAS  PubMed  Google Scholar 

  48. Taniguchi, C. M. et al. The p85α regulatory subunit of phosphoinositide 3-kinase potentiates c-Jun N-terminal kinase-mediated insulin resistance. Mol. Cell. Biol. 27, 2830–2840 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Niswender, K. D. et al. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes 52, 227–231 (2003).

    CAS  PubMed  Google Scholar 

  50. Minokoshi, Y. et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428, 569–574 (2004). This article established that AMPK is important in fuel sensing in the hypothalamus and is regulated by changes in leptin.

    CAS  PubMed  Google Scholar 

  51. Banks, W. A. et al. Leptin enters the brain by a saturable system independent of insulin. Peptides 17, 305–311 (1996).

    CAS  PubMed  Google Scholar 

  52. Liu, L. et al. Intracerebroventricular leptin regulates hepatic but not peripheral glucose fluxes. J. Biol. Chem. 273, 31160–31167 (1998).

    CAS  PubMed  Google Scholar 

  53. Gutierrez-Juarez, R., Obici, S. & Rossetti, L. Melanocortin-independent effects of leptin on hepatic glucose fluxes. J. Biol. Chem. 279, 49704–49715 (2004).

    CAS  PubMed  Google Scholar 

  54. Morton, G. J. et al. Leptin regulates insulin sensitivity via phosphatidylinositol-3-OH kinase signaling in mediobasal hypothalamic neurons. Cell Metab. 2, 411–420 (2005).

    CAS  PubMed  Google Scholar 

  55. Buettner, C. et al. Critical role of STAT3 in leptin's metabolic actions. Cell Metab. 4, 49–60 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bates, S. H. et al. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature 421, 856–859 (2003).

    CAS  PubMed  Google Scholar 

  57. Plum, L. et al. Enhanced PIP3 signaling in POMC neurons causes KATP channel activation and leads to diet-sensitive obesity. J. Clin. Invest. 116, 1886–1901 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cota, D. et al. Hypothalamic mTOR signaling regulates food intake. Science 312, 927–930 (2006). This article established that hypothalamic mTOR also acts as a fuel sensor in the hypothalamus and is regulated by changes in leucine and leptin.

    CAS  PubMed  Google Scholar 

  59. Dennis, P. B. et al. Mammalian TOR: a homeostatic ATP sensor. Science 294, 1102–1105 (2001).

    CAS  PubMed  Google Scholar 

  60. Andersson, U. et al. AMP-activated protein kinase plays a role in the control of food intake. J. Biol. Chem. 279, 12005–12008 (2004).

    CAS  PubMed  Google Scholar 

  61. Considine, R. V. et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295 (1996).

    CAS  PubMed  Google Scholar 

  62. Tulipano, G., Vergoni, A. V., Soldi, D., Muller, E. E. & Cocchi, D. Characterization of the resistance to the anorectic and endocrine effects of leptin in obesity-prone and obesity-resistant rats fed a high-fat diet. J. Endocrinol. 183, 289–298 (2004).

    CAS  PubMed  Google Scholar 

  63. Ozcan, L. et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 9, 35–51 (2009).

    CAS  PubMed  Google Scholar 

  64. Zhang, X. et al. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell 135, 61–73 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Merchenthaler, I., Lane, M. & Shughrue, P. Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J. Comp. Neurol. 403, 261–280 (1999).

    CAS  PubMed  Google Scholar 

  66. Perrin, C., Knauf, C. & Burcelin, R. Intracerebroventricular infusion of glucose, insulin, and the adenosine monophosphate-activated kinase activator, 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, controls muscle glycogen synthesis. Endocrinology 145, 4025–4033 (2004).

    CAS  PubMed  Google Scholar 

  67. Villanueva-Penacarrillo, M. L. et al. Glucagon-like peptide-1 binding to rat hepatic membranes. J. Endocrinol. 146, 183–189 (1995).

    CAS  PubMed  Google Scholar 

  68. Wheeler, M. B. et al. Functional expression of the rat glucagon-like peptide-I receptor, evidence for coupling to both adenylyl cyclase and phospholipase-C. Endocrinology 133, 57–62 (1993).

    CAS  PubMed  Google Scholar 

  69. Bullock, B. P., Heller, R. S. & Habener, J. F. Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology 137, 2968–2978 (1996).

    CAS  PubMed  Google Scholar 

  70. Dunphy, J. L., Taylor, R. G. & Fuller, P. J. Tissue distribution of rat glucagon receptor and GLP-1 receptor gene expression. Mol. Cell. Endocrinol. 141, 179–186 (1998).

    CAS  PubMed  Google Scholar 

  71. Prigeon, R. L., Quddusi, S., Paty, B. & D'Alessio, D. A. Suppression of glucose production by GLP-1 independent of islet hormones: a novel extrapancreatic effect. Am. J. Physiol. Endocrinol. Metab. 285, 701–707 (2003).

    Google Scholar 

  72. Ionut, V., Hucking, K., Liberty, I. F. & Bergman, R. N. Synergistic effect of portal glucose and glucagon-like peptide-1 to lower systemic glucose and stimulate counter-regulatory hormones. Diabetologia 48, 967–975 (2005).

    CAS  PubMed  Google Scholar 

  73. Dardevet, D. et al. Insulin secretion-independent effects of GLP-1 on canine liver glucose metabolism do not involve portal vein GLP-1 receptors. Am. J. Physiol. Gastrointest. Liver Physiol. 289, 806–814 (2005).

    Google Scholar 

  74. Vahl, T. P. et al. Glucagon-like peptide-1 (GLP-1) receptors expressed on nerve terminals in the portal vein mediate the effects of endogenous GLP-1 on glucose tolerance in rats. Endocrinology 148, 4965–4973 (2007).

    CAS  PubMed  Google Scholar 

  75. Nakagawa, A. et al. Receptor gene expression of glucagon-like peptide-1, but not glucose-dependent insulinotropic polypeptide, in rat nodose ganglion cells. Auton. Neurosci. 110, 36–43 (2004).

    CAS  PubMed  Google Scholar 

  76. Knauf, C. et al. Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. J. Clin. Invest. 115, 3554–3563 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ayala, J. E. et al. The glucagon-like peptide-1 receptor regulates endogenous glucose production and muscle glucose uptake independent of its incretin action. Endocrinology 150, 1155–1164 (2008).

    Google Scholar 

  78. Woltman, T. & Reidelberger, R. Effects of duodenal and distal ileal infusions of glucose and oleic acid on meal patterns in rats. Am. J. Physiol. 269, R7–R14 (1995).

    CAS  PubMed  Google Scholar 

  79. Zhou, S. Y., Lu, Y. X. & Owyang, C. Gastric relaxation induced by hyperglycemia is mediated by vagal afferent pathways in the rat. Am. J. Physiol. Gastrointest. Liver Physiol. 294, 1158–1164 (2008).

    Google Scholar 

  80. Kang, L. et al. Glucokinase is a critical regulator of ventromedial hypothalamic neuronal glucosensing. Diabetes 55, 412–420 (2006).

    CAS  PubMed  Google Scholar 

  81. Levin, B. E., Dunn-Meynell, A. A. & Routh, V. H. Brain glucosensing and the KATP channel. Nature Neurosci. 4, 459–460 (2001).

    CAS  PubMed  Google Scholar 

  82. Levin, B. E. Neuronal glucose sensing: still a physiological orphan? Cell. Metab. 6, 252–254 (2007).

    CAS  PubMed  Google Scholar 

  83. Sokoloff, L. et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28, 897–916 (1977).

    CAS  PubMed  Google Scholar 

  84. Clegg, D. J., Wortman, M. D., Benoit, S. C., McOsker, C. C. & Seeley, R. J. Comparison of central and peripheral administration of C75 on food intake, body weight, and conditioned taste aversion. Diabetes 51, 3196–3201 (2002).

    CAS  PubMed  Google Scholar 

  85. Wortman, M. D., Clegg, D. J., D'Alessio, D., Woods, S. C. & Seeley, R. J. C75 inhibits food intake by increasing CNS glucose metabolism. Nature Med. 9, 483–485 (2003).

    CAS  PubMed  Google Scholar 

  86. Loftus, T. M. et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 288, 2299–2300 (2000).

    Google Scholar 

  87. Hu, Z., Cha, S. H., van Haasteren, G., Wang, J. & Lane, M. D. Effect of centrally administered C75, a fatty acid synthase inhibitor, on ghrelin secretion and its downstream effects. Proc. Natl Acad. Sci. USA 102, 3972–3977 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Proulx, K., Cota, D., Woods, S. C. & Seeley, R. J. Fatty acid synthase inhibitors modulate energy balance via mammalian target of rapamycin complex 1 signaling in the central nervous system. Diabetes 57, 3231–3238 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Shimokawa, T., Kumar, M. V. & Lane, M. D. Effect of a fatty acid synthase inhibitor on food intake and expression of hypothalamic neuropeptides. Proc. Natl Acad. Sci. USA 99, 66–71 (2002).

    CAS  PubMed  Google Scholar 

  90. He, W., Lam, T. K., Obici, S. & Rossetti, L. Molecular disruption of hypothalamic nutrient sensing induces obesity. Nature Neurosci. 9, 227–233 (2006).

    CAS  PubMed  Google Scholar 

  91. Wolfgang, M. J. & Lane, M. D. The role of hypothalamic malonyl-CoA in energy homeostasis. J. Biol. Chem. 281, 37265–37269 (2006). The data presented in this article provided support for the hypothesis that hypothalamic malonyl CoA is an intermediary in the control of energy homeostasis.

    CAS  PubMed  Google Scholar 

  92. Ronnett, G. V., Kim, E. K., Landree, L. E. & Tu, Y. Fatty acid metabolism as a target for obesity treatment. Physiol. Behav. 85, 25–35 (2005).

    CAS  PubMed  Google Scholar 

  93. Cruciani-Guglielmacci, C. et al. Beta oxidation in the brain is required for the effects of non-esterified fatty acids on glucose-induced insulin secretion in rats. Diabetologia 47, 2032–2038 (2004).

    CAS  PubMed  Google Scholar 

  94. Benani, A. et al. Role for mitochondrial reactive oxygen species in brain lipid sensing: redox regulation of food intake. Diabetes 56, 152–160 (2007).

    CAS  PubMed  Google Scholar 

  95. Greenberg, D., Smith, G. P. & Gibbs, J. Intraduodenal infusions of fats elicit satiety in sham-feeding rats. Am. J. Physiol. 259, R110–R118 (1990).

    CAS  PubMed  Google Scholar 

  96. Matzinger, D. et al. The role of long chain fatty acids in regulating food intake and cholecystokinin release in humans. Gut 46, 688–693 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang, P. Y. et al. Upper intestinal lipids trigger a gut–brain–liver axis to regulate glucose production. Nature 452, 1012–1016 (2008).

    CAS  PubMed  Google Scholar 

  98. Hardie, D. G., Corton, J., Ching, Y. P., Davies, S. P. & Hawley, S. Regulation of lipid metabolism by the AMP-activated protein kinase. Biochem. Soc. Trans. 25, 1229–1231 (1997).

    CAS  PubMed  Google Scholar 

  99. Thomas, G. The S6 kinase signaling pathway in the control of development and growth. Biol. Res. 35, 305–313 (2002).

    CAS  PubMed  Google Scholar 

  100. Lee, K., Li, B., Xi, X., Suh, Y. & Martin, R. J. Role of neuronal energy status in the regulation of adenosine 5′-monophosphate-activated protein kinase, orexigenic neuropeptides expression, and feeding behavior. Endocrinology 146, 3–10 (2005).

    CAS  PubMed  Google Scholar 

  101. McCrimmon, R. J. et al. Activation of AMP-activated protein kinase within the ventromedial hypothalamus amplifies counterregulatory hormone responses in rats with defective counterregulation. Diabetes 55, 1755–1760 (2006).

    CAS  PubMed  Google Scholar 

  102. Han, S. M. et al. Hypothalamic AMP-activated protein kinase mediates counter-regulatory responses to hypoglycaemia in rats. Diabetologia 48, 2170–2178 (2005).

    CAS  PubMed  Google Scholar 

  103. Davis, M. R. & Shamoon, H. Counterregulatory adaptation to recurrent hypoglycemia in normal humans. J. Clin. Endocrinol. Metab. 73, 995–1001 (1991).

    CAS  PubMed  Google Scholar 

  104. Heller, S. R. & Cryer, P. E. Reduced neuroendocrine and symptomatic responses to subsequent hypoglycemia after one episode of hypoglycemia in nondiabetic humans. Diabetes 40, 223–226 (1991).

    CAS  PubMed  Google Scholar 

  105. Alquier, T., Kawashima, J., Tsuji, Y. & Kahn, B. B. Role of hypothalamic adenosine 5′-monophosphate-activated protein kinase in the impaired counterregulatory response induced by repetitive neuroglucopenia. Endocrinology 148, 1367–1375 (2007).

    CAS  PubMed  Google Scholar 

  106. Lindsley, J. E. & Rutter, J. Nutrient sensing and metabolic decisions. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 139, 543–559 (2004).

    PubMed  Google Scholar 

  107. Shaw, R. J. & Cantley, L. C. Ras, PI3K and mTOR signalling controls tumour cell growth. Nature 441, 424–430 (2006).

    CAS  PubMed  Google Scholar 

  108. Wullschleger, S., Loewith, R. & Hall, M. N. TOR signaling in growth and metabolism. Cell 124, 471–484 (2006).

    CAS  PubMed  Google Scholar 

  109. Cota, D., Matter, E. K., Woods, S. C. & Seeley, R. J. The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet-induced obesity. J. Neurosci. 28, 7202–7208 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Claret, M. et al. AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J. Clin. Invest. 117, 2325–2336 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Dunn-Meynell, A. A., Rawson, N. E. & Levin, B. E. Distribution and phenotype of neurons containing the ATP-sensitive K+ channel in rat brain. Brain Res. 814, 41–54 (1998).

    CAS  PubMed  Google Scholar 

  112. Wang, R. et al. The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides. Diabetes 53, 1959–1965 (2004).

    CAS  PubMed  Google Scholar 

  113. Mirshamsi, S. et al. Leptin and insulin stimulation of signalling pathways in arcuate nucleus neurones: PI3K dependent actin reorganization and KATP channel activation. BMC Neurosci. 5, 54 (2004).

    PubMed  PubMed Central  Google Scholar 

  114. Parton, L. E. et al. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature 449, 228–232 (2007).

    CAS  PubMed  Google Scholar 

  115. Gyte, A., Pritchard, L. E., Jones, H. B., Brennand, J. C. & White, A. Reduced expression of the KATP channel subunit, Kir6.2, is associated with decreased expression of neuropeptide Y and agouti-related protein in the hypothalami of Zucker diabetic fatty rats. J. Neuroendocrinol. 19, 941–951 (2007).

    CAS  PubMed  Google Scholar 

  116. Meguid, M. M., Fetissov, S. O., Blaha, V. & Yang, Z. J. Dopamine and serotonin VMN release is related to feeding status in obese and lean Zucker rats. Neuroreport 11, 2069–2072 (2000).

    CAS  PubMed  Google Scholar 

  117. Lieberman, J. A. et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N. Engl. J. Med. 353, 1209–1223 (2005).

    CAS  PubMed  Google Scholar 

  118. Ader, M. et al. Metabolic dysregulation with atypical antipsychotics occurs in the absence of underlying disease: a placebo-controlled study of olanzapine and risperidone in dogs. Diabetes 54, 862–871 (2005).

    CAS  PubMed  Google Scholar 

  119. Houseknecht, K. L. et al. Acute effects of atypical antipsychotics on whole-body insulin resistance in rats: implications for adverse metabolic effects. Neuropsychopharmacology 32, 289–297 (2007).

    CAS  PubMed  Google Scholar 

  120. Chintoh, A. F. et al. Insulin resistance and decreased glucose-stimulated insulin secretion after acute olanzapine administration. J. Clin. Psychopharmacol. 28, 494–499 (2008).

    CAS  PubMed  Google Scholar 

  121. Cincotta, A. H., Tozzo, E. & Scislowski, P. W. D. Bromocriptine/SKF38393 treatment ameliorates obesity and associated metabolic dysfunctions in obese (ob/ob) mice. Life Sci. 61, 951 (1997).

    CAS  PubMed  Google Scholar 

  122. Nonogaki, K., Strack, A. M., Dallman, M. F. & Tecott, L. H. Leptin-independent hyperphagia and type 2 diabetes in mice with a mutated serotonin 5-HT2C receptor gene. Nature Med. 4, 1152–1156 (1998).

    CAS  PubMed  Google Scholar 

  123. Hakansson, M. L., Brown, H., Ghilardi, N., Skoda, R. C. & Meister, B. Leptin receptor immunoreactivity in chemically defined target neurons of the hypothalamus. J. Neurosci. 18, 559–572 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Horvath, T. L., Naftolin, F. & Leranth, C. Beta-endorphin innervation of dopamine neurons in the rat hypothalamus: a light and electron microscopic double immunostaining study. Endocrinology 131, 1547–1555 (1992).

    CAS  PubMed  Google Scholar 

  125. Zhou, L. et al. Serotonin 2C receptor agonists improve type 2 diabetes via melanocortin-4 receptor signaling pathways. Cell. Metab. 6, 398–405 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Xu, Y. et al. 5-HT2CRs expressed by pro-opiomelanocortin neurons regulate energy homeostasis. Neuron 60, 582–589 (2008). This article demonstrated that expression of the serotonin type 2C receptor in proopiomelanocortin neurons is sufficient to mediate the effects of serotonergic compounds on food intake and thus illustrated the importance of the serotonergic melanocortin circuitry in the long-term regulation of energy balance.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Garfield, A. S. & Heisler, L. K. Pharmacological targeting of the serotonergic system for the treatment of obesity. J. Physiol. 587, 49–60 (2008).

    PubMed  PubMed Central  Google Scholar 

  128. Woods, S. C., Lotter, E. C., McKay, L. D. & Porte, D. Jr. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 282, 503–505 (1979).

    CAS  PubMed  Google Scholar 

  129. Air, E. L. et al. Small molecule insulin mimetics reduce food intake and body weight and prevent development of obesity. Nature Med. 8, 179–183 (2002).

    CAS  PubMed  Google Scholar 

  130. Kahn, S. E. et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N. Engl. J. Med. 355, 2427–2443 (2006).

    CAS  PubMed  Google Scholar 

  131. McConell, G. K. et al. Differential attenuation of AMPK activation during acute exercise following exercise training or AICAR treatment. J. Appl. Physiol. 105, 1422–1427 (2008).

    CAS  PubMed  Google Scholar 

  132. Um, S. H. et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431, 200–205 (2004).

    CAS  PubMed  Google Scholar 

  133. Khamzina, L., Veilleux, A., Bergeron, S. & Marette, A. Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology 146, 1473–1481 (2005).

    CAS  PubMed  Google Scholar 

  134. Narkar, V. A. et al. AMPK and PPARδ agonists are exercise mimetics. Cell 134, 405–415 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Anderson, K. A. et al. Hypothalamic CAMKK2 contributes to the regulation of energy balance. Cell. Metab. 7, 377–388 (2008). The data presented in this article illustrated that CAMKK2 has a regulatory role in AMPK activation specifically in the hypothalamus and that inhibition of CAMKK2 could be a pharmacological target for weight loss.

    CAS  PubMed  Google Scholar 

  136. Banks, W. A. The blood–brain barrier as a cause of obesity. Curr. Pharm. Des. 14, 1606–1614 (2008).

    CAS  PubMed  Google Scholar 

  137. Banks, W. A., DiPalma, C. R. & Farrell, C. L. Impaired transport of leptin across the blood–brain barrier in obesity. Peptides 20, 1341–1345 (1999).

    CAS  PubMed  Google Scholar 

  138. Israel, P. A. et al. Effect of diet-induced obesity and experimental hyperinsulinemia on insulin uptake into CSF of the rat. Brain Res. Bull. 30, 571–575 (1993).

    CAS  PubMed  Google Scholar 

  139. Stein, L. J. et al. Reduced effect of experimental peripheral hyperinsulinemia to elevate cerebrospinal fluid insulin concentrations of obese Zucker rats. Endocrinology 121, 1611–1615 (1987).

    CAS  PubMed  Google Scholar 

  140. Patel, M. M., Goyal, B. R., Bhadada, S. V., Bhatt, J. S. & Amin, A. F. Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs 23, 35–58 (2009).

    CAS  PubMed  Google Scholar 

  141. Bodor, N. Redox drug delivery systems for targeting drugs to the brain. Ann. NY Acad. Sci. 507, 289–306 (1987).

    CAS  PubMed  Google Scholar 

  142. Brewster, M. E. et al. Effect of molecular manipulation on the estrogenic activity of a brain-targeting estradiol chemical delivery system. J. Med. Chem. 37, 4237–4244 (1994).

    CAS  PubMed  Google Scholar 

  143. Kreuter, J. Nanoparticulate systems for brain delivery of drugs. Adv. Drug Deliv. Rev. 47, 65–81 (2001).

    CAS  PubMed  Google Scholar 

  144. Giussani, C. et al. Local intracerebral delivery of endogenous inhibitors by osmotic minipumps effectively suppresses glioma growth in vivo. Cancer Res. 63, 2499–2505 (2003).

    CAS  PubMed  Google Scholar 

  145. Gill, S. S. et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nature Med. 9, 589–595 (2003).

    CAS  PubMed  Google Scholar 

  146. Rosenstock, J. et al. Two-year pulmonary safety and efficacy of inhaled human insulin (Exubera) in adult patients with type 2 diabetes. Diabetes Care 31, 1723–1728 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Tataranni, P. A. & DelParigi, A. Functional neuroimaging: a new generation of human brain studies in obesity research. Obes. Rev. 4, 229–238 (2003).

    CAS  PubMed  Google Scholar 

  148. Woods, S. C., Schwartz, M. W., Baskin, D. G. & Seeley, R. J. Food intake and the regulation of body weight. Annu. Rev. Psychol. 51, 255–277 (2000).

    CAS  PubMed  Google Scholar 

  149. Stumvoll, M. et al. Uptake and release of glucose by the human kidney. Postabsorptive rates and responses to epinephrine. J. Clin. Invest. 96, 2528–2533 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Troy, S. et al. Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice. Cell. Metab. 8, 201–211 (2008).

    CAS  PubMed  Google Scholar 

  151. Aftab Guy, D., Sandoval, D., Richardson, M. A., Tate, D. & Davis, S. N. Effects of glycemic control on target organ responses to epinephrine in type 1 diabetes. Am. J. Physiol. Endocrinol. Metab. 289, E258–E265 (2005).

    PubMed  Google Scholar 

  152. Niswender, K. D. et al. Intracellular signalling: key enzyme in leptin-induced anorexia. Nature 413, 794–795 (2001).

    CAS  PubMed  Google Scholar 

  153. Hill, J. W. et al. Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. J. Clin. Invest. 118, 1796–1805 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Donahey, J. C., van Dijk, G., Woods, S. C. & Seeley, R. J. Intraventricular GLP-1 reduces short- but not long-term food intake or body weight in lean and obese rats. Brain Res. 779, 75–83 (1998).

    CAS  PubMed  Google Scholar 

  155. Cota, D., Proulx, K. & Seeley, R. J. The role of CNS fuel sensing in energy and glucose regulation. Gastroenterology 132, 2158–2168 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge grant support from the National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases (DK075365 to D.A.S. and DK54080, DK54890 and DK56863 to R.J.S.) and the American Diabetes Association (support to S.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy J. Seeley.

Ethics declarations

Competing interests

Randy J. Seeley is on the scientific advisory boards for eli Lilly and Company, ethicon endoSurgery, Johnson & Johnson and Zafgen, and has received research support from amylin and ethicon endoSurgery.

Related links

Related links

FURTHER INFORMATION

Author's homepage

Glossary

Postprandial

Relating to the time period immediately after a meal.

Incretin

A hormone that is secreted from the gut in response to a meal and stimulates insulin secretion.

Glucagon-like peptide 1

A hormone secreted from the L-cells of the distal intestine that acts as an incretin.

Exenatide

A long-acting glucagon-like peptide 1 analogue that is used to treat type 2 diabetes. Its known effects include stimulation of insulin secretion and modest weight loss.

Blood–brain barrier

An endothelial layer composed of tight junctions that limit the ability of substances to freely diffuse into the brain. The blood–brain barrier functions to protect the central nervous system from the blood.

Gluconeogenesis

The metabolic process that takes place in the kidneys, liver and gut, whereby glucose is made from non-glucose precursors such as glycerol, lactate and amino acids.

KATP channel

A potassium channel located on the cell membranes of many tissues, including the pancreas and the brain, that is opened or closed by changes in ATP levels.

AMP-activated protein kinase

(AMPK). A cellular fuel sensor that is activated in response to low ATP (energy) levels. Activation of AMPK stimulates the metabolic breakdown of fuel to generate ATP and restore the energy levels of the cell. When AMPK is activated in the central nervous system (CNS), it is a signal of low energy status in the whole organism and the CNS responds by stimulating food intake to restore energy needs.

Leptin

A hormone secreted by adipose tissue that is thought to serve as a signal of adiposity to the central nervous system.

Saturable transport system

A system to transport a molecule across the plasma membrane involving a specific transmembrane carrier, for which the rate of uptake decreases as the concentration of the molecule in the plasma increases.

Glycogenolysis

The process of breaking down stored glycogen to make glucose.

Mammalian target of rapamycin

(mTOR). A cellular fuel sensor that is activated in response to high ATP levels. Activation of mTOR serves to stimulate pathways that are involved in protein biosynthesis. When mTOR is activated in the central nervous system (CNS), the CNS responds to this signal of nutrient excess in the whole organism by inhibiting food intake.

Endoplasmic reticulum stress

Stress in the endoplasmic reticulum (where protein and sterol synthesis and protein folding take place) results when the influx of unfolded proteins exceeds the ability of the endoplasmic reticulum to fold the proteins.

Hyperinsulinaemic euglycaemic clamp

The gold standard for assessing insulin sensitivity. It involves a primed continuous infusion of insulin and a variable rate of infusion of exogenous glucose that is determined by the glucose level at that time point, with the goal of maintaining glucose at basal levels.

Glucose rate of appearance

The rate of glucose appearance in the plasma. Glucose enters the plasma primarily through the gastrointestinal tract and the liver. In the context of euglycaemic clamp conditions, glucose rate of appearance corresponds to liver glucose output.

Sulphonylurea receptor

The regulatory subunit of the KATP channel. This receptor is targeted clinically to increase insulin secretion in patients with type 2 diabetes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandoval, D., Obici, S. & Seeley, R. Targeting the CNS to treat type 2 diabetes. Nat Rev Drug Discov 8, 386–398 (2009). https://doi.org/10.1038/nrd2874

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2874

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing