Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Capturing adenylyl cyclases as potential drug targets

Key Points

  • Cyclic AMP (cAMP) is generated by nine membrane-bound adenylyl cyclases (AC1–AC9) and one soluble isoform (sAC). Many drugs target cAMP signalling pathways through their respective G-protein coupled receptors. Recent studies on the physiological functions of the different AC isoforms and advances in the development of isoform-selective AC inhibitors and activators suggest that ACs are useful drug targets.

  • Genetic deletion of AC5 markedly attenuates pain-like responses in acute, inflammatory and neuropathic pain tests as well as the analgesic effects of morphine, suggesting that this isoform could be a target for the development of analgesics. Additionally, in mice, AC5 deletion increases the median lifespan, protects from reduced bone density and from aging-induced cardiomyopathy.

  • AC1 is required in learning and memory processes. Its overexpression in the forebrain increases memory for object recognition and slows rates of extinction for contextual memory, indicating that activation of AC1 enhances memory formation.

  • Cardiac-directed overexpression of AC6 improves cardiac function and has favourable effects on the failing heart. In these mice no increase in heart rate or left ventricular (LV) contractile function was observed in the basal state but a marked increase in the stimulated heart rate and the contractile function were found. In addition, a reduced mortality and improvements in measures of LV systolic and diastolic function after myocardial infarction were observed.

  • Classical anti-obstructive drugs for the treatment of asthma such as β2-adrenergic receptor agonists (fenoterol or albuterol, for example) or theophylline act through increased levels of cAMP. AC9 loss-of-function polymorphisms are involved in the decreased responsiveness to asthma therapies, suggesting that selective activation of AC9 in the lung might have bronchodilatative effects.

  • Soluble AC (sAC) is mainly expressed in the testes and pharmacological inhibition or genetic deletion of sAC markedly impairs the ability of mouse sperm to undergo capacitation. The finding that male sAC knockout mice were phenotypically normal except for their reduced fertility makes sAC an excellent target for male contraceptives.

Abstract

Cyclic AMP (cAMP) is an important intracellular signalling mediator. It is generated in mammals by nine membrane-bound and one soluble adenylyl cyclases (ACs), each with distinct regulation and expression patterns. Although many drugs inhibit or stimulate AC activity through the respective upstream G-protein coupled receptors (for example, opioid or beta-adrenergic receptors), ACs themselves have not been major drug targets. Over the past decade studies on the physiological functions of the different mammalian AC isoforms as well as advances in the development of isoform-selective AC inhibitors and activators suggest that ACs could be useful drug targets. Here we discuss the therapeutic potential of isoform-selective compounds in various clinical settings, including neuropathic pain, neurodegenerative disorders, congestive heart failure, asthma and male contraception.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of cAMP signalling pathways in sensory neurons.
Figure 2: cAMP signalling pathways in asthma therapy.

Similar content being viewed by others

References

  1. Patel, T. B., Du, Z., Pierre, S., Cartin, L. & Scholich, K. Molecular biological approaches to unravel adenylyl cyclase signaling and function. Gene 269, 13–25 (2001).

    CAS  PubMed  Google Scholar 

  2. Scholich, K., Pierre, S. & Patel, T. B. Protein associated with Myc (PAM) is a potent inhibitor of adenylyl cyclases. J. Biol. Chem. 276, 47583–47589 (2001).

    CAS  PubMed  Google Scholar 

  3. Scholich, K. et al. Facilitation of signal onset and termination by adenylyl cyclase. Science 283, 1328–1331 (1999).

    CAS  PubMed  Google Scholar 

  4. Pierre, S. C., Hausler, J., Birod, K., Geisslinger, G. & Scholich, K. PAM mediates sustained inhibition of cAMP signaling by sphingosine-1-phosphate. Embo J. 23, 3031–3040 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Willoughby, D. & Cooper, D. M. Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol. Rev. 87, 965–1010 (2007).

    CAS  PubMed  Google Scholar 

  6. Zaccolo, M. & Pozzan, T. Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295, 1711–1715 (2002). This study demonstrates the spatial control of cAMP signals in a cell.

    CAS  PubMed  Google Scholar 

  7. Hucho, T. & Levine, J. D. Signaling pathways in sensitization: toward a nociceptor cell biology. Neuron 55, 365–376 (2007).

    CAS  PubMed  Google Scholar 

  8. Cunha, F. Q., Teixeira, M. M. & Ferreira, S. H. Pharmacological modulation of secondary mediator systems — cyclic AMP and cyclic GMP — on inflammatory hyperalgesia. Br. J. Pharmacol. 127, 671–678 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Collier, H. O. & Roy., A. C. Morphine-like drugs inhibit the stimulation of E prostaglandins of cyclic AMP formation by rat brain homogenate. Nature 248, 24–27 (1974).

    CAS  PubMed  Google Scholar 

  10. Snyder, S. H. Adenosine as a neuromodulator. Annu. Rev. Neurosci. 8, 103–124 (1985).

    CAS  PubMed  Google Scholar 

  11. Hucho, T. B., Dina, O. A. & Levine, J. D. Epac mediates a cAMP-to-PKC signaling in inflammatory pain: an isolectin B4(+) neuron-specific mechanism. J. Neurosci. 25, 6119–6126 (2005).

    CAS  PubMed  Google Scholar 

  12. Tegeder, I. & Geisslinger, G. Opioids as modulators of cell death and survival —unraveling mechanisms and revealing new indications. Pharmacol. Rev. 56, 351–369 (2004).

    CAS  PubMed  Google Scholar 

  13. Boison, D. Adenosine as a neuromodulator in neurological diseases. Curr. Opin. Pharmacol. 8, 2–7 (2008).

    CAS  PubMed  Google Scholar 

  14. Di Marzo, V. Targeting the endocannabinoid system: to enhance or reduce? Nature Rev. Drug Discov. 7, 438–455 (2008).

    CAS  Google Scholar 

  15. Tegeder, I. et al. GTP cyclohydrolase and tetrahydrobiopterin regulate pain sensitivity and persistence. Nature Med. 12, 1269–1277 (2006).

    CAS  PubMed  Google Scholar 

  16. Wei, F. et al. Genetic elimination of behavioral sensitization in mice lacking calmodulin-stimulated adenylyl cyclases. Neuron 36, 713–726 (2002).

    CAS  PubMed  Google Scholar 

  17. Vadakkan, K. I. et al. Genetic reduction of chronic muscle pain in mice lacking calcium/calmodulin-stimulated adenylyl cyclases. Mol. Pain 2, 7 (2006).

    PubMed  PubMed Central  Google Scholar 

  18. Wei, F. et al. Calcium calmodulin-stimulated adenylyl cyclases contribute to activation of extracellular signal-regulated kinase in spinal dorsal horn neurons in adult rats and mice. J. Neurosci. 26, 851–861 (2006).

    CAS  PubMed  Google Scholar 

  19. Li, S. et al. Calmodulin-stimulated adenylyl cyclase gene deletion affects morphine responses. Mol. Pharmacol. 70, 1742–1749 (2006).

    CAS  PubMed  Google Scholar 

  20. Kim, K. S. et al. Adenylyl cyclase type 5 (AC5) is an essential mediator of morphine action. Proc. Natl Acad. Sci. USA 103, 3908–3913 (2006).

    CAS  PubMed  Google Scholar 

  21. Kim, K. S. et al. Markedly attenuated acute and chronic pain responses in mice lacking adenylyl cyclase-5. Genes Brain Behav. 6, 120–127 (2007).

    CAS  PubMed  Google Scholar 

  22. Yan, L. et al. Type 5 adenylyl cyclase disruption increases longevity and protects against stress. Cell 130, 247–258 (2007). This paper describes the effect of AC5 deletion on different stress-related systems and lifespan.

    CAS  PubMed  Google Scholar 

  23. Bluher, M., Kahn, B. B. & Kahn, C. R. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299, 572–574 (2003).

    PubMed  Google Scholar 

  24. Sinclair, D. A. Toward a unified theory of caloric restriction and longevity regulation. Mech. Ageing Dev. 126, 987–1002 (2005).

    CAS  PubMed  Google Scholar 

  25. Ehnert, C. et al. Protein associated with Myc (PAM) is involved in spinal nociceptive processing. J. Neurochem. 88, 948–957 (2004).

    CAS  PubMed  Google Scholar 

  26. Wong, S. T. et al. Calcium-stimulated adenylyl cyclase activity is critical for hippocampus-dependent long-term memory and late phase LTP. Neuron 23, 787–798 (1999). This work illustrates the functional compensation of two AC isoforms.

    CAS  PubMed  Google Scholar 

  27. Moulder, K. L. et al. A specific role for Ca2+-dependent adenylyl cyclases in recovery from adaptive presynaptic silencing. J. Neurosci. 28, 5159–5168 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Christie, M. J. Cellular neuroadaptations to chronic opioids: tolerance, withdrawal and addiction. Br. J. Pharmacol. 154, 384–396 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Glatt, C. E. & Snyder, S. H. Cloning and expression of an adenylyl cyclase localized to the corpus striatum. Nature 361, 536–538 (1993).

    CAS  PubMed  Google Scholar 

  30. Mansour, A. et al. Mu, delta, and kappa opioid receptor mRNA expression in the rat CNS: an in situ hybridization study. J. Comp. Neurol. 350, 412–438 (1994).

    CAS  PubMed  Google Scholar 

  31. Zachariou, V. et al. Distinct roles of adenylyl cyclases 1 and 8 in opiate dependence: behavioral, electrophysiological, and molecular studies. Biol. Psychiatry 63, 1013–1021 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shah, R. S. et al. Current approaches in the treatment of Alzheimer's disease. Biomed. Pharmacother. 62, 199–207 (2008).

    CAS  PubMed  Google Scholar 

  33. Livingstone, M. S., Sziber, P. P. & Quinn, W. G. Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga, a Drosophila learning mutant. Cell 37, 205–215 (1984).

    CAS  PubMed  Google Scholar 

  34. Connolly, J. B. et al. Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science 274, 2104–2107 (1996).

    CAS  PubMed  Google Scholar 

  35. Pineda, V. V. et al. Removal of G.(ialpha1) constraints on adenylyl cyclase in the hippocampus enhances LTP and impairs memory formation. Neuron 41, 153–163 (2004).

    CAS  PubMed  Google Scholar 

  36. Abel, T. et al. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88, 615–626 (1997).

    CAS  PubMed  Google Scholar 

  37. Ramos, B. P. et al. Dysregulation of protein kinase a signaling in the aged prefrontal cortex: new strategy for treating age-related cognitive decline. Neuron 40, 835–845 (2003).

    CAS  PubMed  Google Scholar 

  38. Reneerkens, O. A., Rutten, K., Steinbusch, H. W., Blokland, A. & Prickaerts, J. Selective phosphodiesterase inhibitors: a promising target for cognition enhancement. Psychopharmacology (Berl.) (2008).

  39. Barad, M., Bourtchouladze, R., Winder, D. G., Golan, H. & Kandel, E. Rolipram, a type IV-specific phosphodiesterase inhibitor, facilitates the establishment of long-lasting long-term potentiation and improves memory. Proc. Natl Acad. Sci. USA 95, 15020–15025 (1998).

    CAS  PubMed  Google Scholar 

  40. Monti, B., Berteotti, C. & Contestabile, A. Subchronic rolipram delivery activates hippocampal CREB and arc, enhances retention and slows down extinction of conditioned fear. Neuropsychopharmacology 31, 278–286 (2006).

    CAS  PubMed  Google Scholar 

  41. Bourtchouladze, R. et al. A mouse model of Rubinstein-Taybi syndrome: defective long-term memory is ameliorated by inhibitors of phosphodiesterase 4. Proc. Natl Acad. Sci. USA 100, 10518–10522 (2003).

    CAS  PubMed  Google Scholar 

  42. Zhang, H. T., Crissman, A. M., Dorairaj, N. R., Chandler, L. J. & O'Donnell, J. M. Inhibition of cyclic AMP phosphodiesterase (PDE4) reverses memory deficits associated with NMDA receptor antagonism. Neuropsychopharmacology 23, 198–204 (2000).

    CAS  PubMed  Google Scholar 

  43. Yamamoto, M. et al. Ca2+/CaM-sensitive adenylyl cyclase activity is decreased in the Alzheimer's brain: possible relation to type I adenylyl cyclase. J. Neural Transm. 104, 721–732 (1997).

    CAS  PubMed  Google Scholar 

  44. Bisel, B. E., Henkins, K. M. & Parfitt, K. D. Alzheimer amyloid beta-peptide A-beta25-35 blocks adenylate cyclase-mediated forms of hippocampal long-term potentiation. Ann. NY Acad. Sci. 1097, 58–63 (2007).

    CAS  PubMed  Google Scholar 

  45. Liauw, J., Wu, L. J. & Zhuo, M. Calcium-stimulated adenylyl cyclases required for long-term potentiation in the anterior cingulate cortex. J. Neurophysiol. 94, 878–882 (2005).

    CAS  PubMed  Google Scholar 

  46. Wang, H., Ferguson, G. D., Pineda, V. V., Cundiff, P. E. & Storm, D. R. Overexpression of type-1 adenylyl cyclase in mouse forebrain enhances recognition memory and LTP. Nature Neurosci. 7, 635–642 (2004). The study provides proof-of-concept that AC1 activation enhances cognition.

    CAS  PubMed  Google Scholar 

  47. Zhang, M. et al. Ca-stimulated type 8 adenylyl cyclase is required for rapid acquisition of novel spatial information and for working/episodic-like memory. J. Neurosci. 28, 4736–4744 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Schaefer, M. L. et al. Altered stress-induced anxiety in adenylyl cyclase type VIII-deficient mice. J. Neurosci. 20, 4809–4820 (2000).

    CAS  PubMed  Google Scholar 

  49. Shen, Y., He, P., Zhong, Z., McAllister, C. & Lindholm, K. Distinct destructive signal pathways of neuronal death in Alzheimer's disease. Trends Mol. Med. 12, 574–579 (2006).

    CAS  PubMed  Google Scholar 

  50. Wang, H. et al. Genetic evidence for adenylyl cyclase 1 as a target for preventing neuronal excitotoxicity mediated by N-methyl-D-aspartate receptors. J. Biol. Chem. 282, 1507–1517 (2007).

    CAS  PubMed  Google Scholar 

  51. Maas, J. W., Jr. et al. Calcium-stimulated adenylyl cyclases modulate ethanol-induced neurodegeneration in the neonatal brain. J. Neurosci. 25, 2376–2385 (2005).

    CAS  PubMed  Google Scholar 

  52. Gotz, J. & Ittner, L. M. Animal models of Alzheimer's disease and frontotemporal dementia. Nature Rev. Neurosci. 9, 532–544 (2008).

    Google Scholar 

  53. American Heart Association. Heart Disease and Stroke Statistics — 2008 update. (online), (2008).

  54. Cowie, M. R. et al. Survival of patients with a new diagnosis of heart failure: a population based study. Heart 83, 505–510 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lohse, M. J., Engelhardt, S. & Eschenhagen, T. What is the role of beta-adrenergic signaling in heart failure? Circ. Res. 93, 896–906 (2003).

    CAS  PubMed  Google Scholar 

  56. Feldman, A. M. Adenylyl cyclase: a new target for heart failure therapeutics. Circulation 105, 1876–1878 (2002).

    CAS  PubMed  Google Scholar 

  57. Brodde, O. E., Bruck, H. & Leineweber, K. Cardiac adrenoceptors: physiological and pathophysiological relevance. J. Pharmacol. Sci. 100, 323–337 (2006).

    CAS  PubMed  Google Scholar 

  58. Bristow, M. R. et al. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N. Engl. J. Med. 307, 205–211 (1982).

    CAS  PubMed  Google Scholar 

  59. Packer, M. et al. Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N. Engl. J. Med. 325, 1468–1475 (1991).

    CAS  PubMed  Google Scholar 

  60. [No authors listed.] Xamoterol in severe heart failure. The Xamoterol in Severe Heart Failure Study Group. Lancet 336, 1–6 (1990).

  61. Uretsky, B. F. et al. Multicenter trial of oral enoximone in patients with moderate to moderately severe congestive heart failure. Lack of benefit compared with placebo. Enoximone Multicenter Trial Group. Circulation 82, 774–780 (1990).

    CAS  PubMed  Google Scholar 

  62. Yan, A. T., Yan, R. T. & Liu, P. P. Narrative review: pharmacotherapy for chronic heart failure: evidence from recent clinical trials. Ann. Intern. Med. 142, 132–145 (2005).

    CAS  PubMed  Google Scholar 

  63. Liggett, S. B. et al. A GRK5 polymorphism that inhibits beta-adrenergic receptor signaling is protective in heart failure. Nature Med. 14, 510–517 (2008).

    CAS  PubMed  Google Scholar 

  64. Okumura, S. et al. Disruption of type 5 adenylyl cyclase gene preserves cardiac function against pressure overload. Proc. Natl Acad. Sci. USA 100, 9986–9990 (2003).

    CAS  PubMed  Google Scholar 

  65. Phan, H. M., Gao, M. H., Lai, N. C., Tang, T. & Hammond, H. K. New signaling pathways associated with increased cardiac adenylyl cyclase 6 expression: implications for possible congestive heart failure therapy. Trends Cardiovasc. Med. 17, 215–221 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Okumura, S. et al. Type 5 adenylyl cyclase disruption alters not only sympathetic but also parasympathetic and calcium-mediated cardiac regulation. Circ. Res. 93, 364–371 (2003).

    CAS  PubMed  Google Scholar 

  67. Tang, T. et al. Adenylyl cyclase type V deletion increases basal left ventricular function and reduces left ventricular contractile responsiveness to beta-adrenergic stimulation. Basic Res. Cardiol. 101, 117–126 (2006).

    CAS  PubMed  Google Scholar 

  68. Okumura, S. et al. Disruption of type 5 adenylyl cyclase enhances desensitization of cyclic adenosine monophosphate signal and increases Akt signal with chronic catecholamine stress. Circulation 116, 1776–1783 (2007).

    CAS  PubMed  Google Scholar 

  69. Iwatsubo, K. et al. Direct inhibition of type 5 adenylyl cyclase prevents myocardial apoptosis without functional deterioration. J. Biol. Chem. 279, 40938–40945 (2004).

    CAS  PubMed  Google Scholar 

  70. Babich, M., Atkinson, J. & Piascik, M. T. The effects of trimetoquinol on the intact rabbit heart and myocardial adenylate cyclase activity: evidence for spare myocardial beta receptors. J. Mol. Cell Cardiol. 17, 565–574 (1985).

    CAS  PubMed  Google Scholar 

  71. Ishikawa, Y., Iwatsubo, K., Tsunematsu, T. & Okumura, S. Genetic manipulation and functional analysis of cAMP signalling in cardiac muscle: implications for a new target of pharmacotherapy. Biochem. Soc. Trans. 33, 1337–1340 (2005).

    CAS  PubMed  Google Scholar 

  72. Jourdan, K. B. et al. Characterization of adenylyl cyclase isoforms in rat peripheral pulmonary arteries. Am. J. Physiol. Lung Cell. Mol. Physiol. 280, 1359–1369 (2001).

    Google Scholar 

  73. Holmer, S. R., Eschenhagen, T., Nose, M. & Riegger, G. A. Expression of adenylyl cyclase and G-protein beta subunit in end-stage human heart failure. J. Card. Fail. 2, 279–283 (1996).

    CAS  PubMed  Google Scholar 

  74. Ishikawa, Y. et al. Downregulation of adenylylcyclase types V and VI mRNA levels in pacing-induced heart failure in dogs. J. Clin. Invest. 93, 2224–2229 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ping, P., Anzai, T., Gao, M. & Hammond, H. K. Adenylyl cyclase and G. protein receptor kinase expression during development of heart failure. Am. J. Physiol. 273, 707–717 (1997).

    Google Scholar 

  76. Espinasse, I. et al. Decreased type VI adenylyl cyclase mRNA concentration and Mg2+-dependent adenylyl cyclase activities and unchanged type V adenylyl cyclase mRNA concentration and Mn2+-dependent adenylyl cyclase activities in the left ventricle of rats with myocardial infarction and longstanding heart failure. Cardiovasc. Res. 42, 87–98 (1999).

    CAS  PubMed  Google Scholar 

  77. Tang, T. et al. Adenylyl cyclase type 6 deletion decreases left ventricular function via impaired calcium handling. Circulation 117, 61–69 (2008).

    CAS  PubMed  Google Scholar 

  78. Roth, D. M. et al. Cardiac-directed adenylyl cyclase expression improves heart function in murine cardiomyopathy. Circulation 99, 3099–3102 (1999).

    CAS  PubMed  Google Scholar 

  79. Takahashi, T. et al. Increased cardiac adenylyl cyclase expression is associated with increased survival after myocardial infarction. Circulation 114, 388–396 (2006).

    CAS  PubMed  Google Scholar 

  80. Lai, N. C. et al. Activation of cardiac adenylyl cyclase expression increases function of the failing ischemic heart in mice. J. Am. Coll. Cardiol. 51, 1490–1497 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Gao, M. H. et al. Controlled expression of cardiac-directed adenylylcyclase type VI provides increased contractile function. Cardiovasc. Res. 56, 197–204 (2002). Therapeutic proof-of-concept that AC6 activation is beneficial after myocardial infarction.

    CAS  PubMed  Google Scholar 

  82. Engelhardt, S., Hein, L., Wiesmann, F. & Lohse, M. J. Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proc. Natl Acad. Sci. USA 96, 7059–7064 (1999).

    CAS  PubMed  Google Scholar 

  83. Gao, M. H. et al. Adenylylcyclase increases responsiveness to catecholamine stimulation in transgenic mice. Circulation 99, 1618–1622 (1999).

    CAS  PubMed  Google Scholar 

  84. Vinge, L. E., Raake, P. W. & Koch, W. J. Gene therapy in heart failure. Circ. Res. 102, 1458–1470 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Toya, Y., Schwencke, C. & Ishikawa, Y. Forskolin derivatives with increased selectivity for cardiac adenylyl cyclase. J. Mol. Cell Cardiol. 30, 97–108 (1998).

    CAS  PubMed  Google Scholar 

  86. Kikura, M., Morita, K. & Sato, S. Pharmacokinetics and a simulation model of colforsin daropate, new forskolin derivative inotropic vasodilator, in patients undergoing coronary artery bypass grafting. Pharmacol. Res. 49, 275–281 (2004).

    CAS  PubMed  Google Scholar 

  87. Takagi, I., Nejima, J., Kiuchi, K., Takagi, G. & Takano, T. Chronic direct stimulation of adenylyl cyclase induces cardiac desensitization to catecholamine and beta-adrenergic receptor downregulation in rabbits. J. Cardiovasc. Pharmacol. 48, 223–230 (2006).

    CAS  PubMed  Google Scholar 

  88. Yoneyama, M. et al. Cardiovascular and adenylate cyclase stimulating effects of colforsin daropate, a water-soluble forskolin derivative, compared with those of isoproterenol, dopamine and dobutamine. Circ. J. 66, 1150–1154 (2002).

    CAS  PubMed  Google Scholar 

  89. Masoli, M., Fabian, D., Holt, S. & Beasley, R. The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy 59, 469–478 (2004).

    PubMed  Google Scholar 

  90. Kroegel, C. & Foerster, M. Phosphodiesterase-4 inhibitors as a novel approach for the treatment of respiratory disease: cilomilast. Expert Opin. Investig. Drugs 16, 109–124 (2007).

    CAS  PubMed  Google Scholar 

  91. Dastidar, S. G., Rajagopal, D. & Ray, A. Therapeutic benefit of PDE4 inhibitors in inflammatory diseases. Curr. Opin. Investig. Drugs 8, 364–372 (2007).

    CAS  PubMed  Google Scholar 

  92. Billington, C. K. et al. Inflammatory and contractile agents sensitize specific adenylyl cyclase isoforms in human airway smooth muscle. Am. J. Respir. Cell. Mol. Biol. 21, 597–606 (1999).

    CAS  PubMed  Google Scholar 

  93. Small, K. M. et al. An Ile to Met polymorphism in the catalytic domain of adenylyl cyclase type 9 confers reduced beta2-adrenergic receptor stimulation. Pharmacogenetics 13, 535–541 (2003).

    CAS  PubMed  Google Scholar 

  94. Tantisira, K. G., Small, K. M., Litonjua, A. A., Weiss, S. T. & Liggett, S. B. Molecular properties and pharmacogenetics of a polymorphism of adenylyl cyclase type 9 in asthma: interaction between beta-agonist and corticosteroid pathways. Hum. Mol. Genet. 14, 1671–1677 (2005).

    CAS  PubMed  Google Scholar 

  95. Hayashida, N. et al. Influence of colforsin daropate hydrochloride on internal mammary artery grafts. Circ. J. 66, 372–376 (2002).

    CAS  PubMed  Google Scholar 

  96. Wajima, Z. et al. Effect of prophylactic bronchodilator treatment with intravenous colforsin daropate, a water-soluble forskolin derivative, on airway resistance after tracheal intubation. Anesthesiology 99, 18–26 (2003).

    CAS  PubMed  Google Scholar 

  97. Bauer, K., Dietersdorfer, F., Sertl, K., Kaik, B. & Kaik, G. Pharmacodynamic effects of inhaled dry powder formulations of fenoterol and colforsin in asthma. Clin. Pharmacol. Ther. 53, 76–83 (1993).

    CAS  PubMed  Google Scholar 

  98. Amann, R. P. & Howards, S. S. Daily spermatozoal production and epididymal spermatozoal reserves of the human male. J. Urol. 124, 211–215 (1980).

    CAS  PubMed  Google Scholar 

  99. Contraceptive efficacy of testosterone-induced azoospermia and oligozoospermia in normal men. Fertil. Steril. 65, 821–829 (1996).

  100. Amory, J. K., Page, S. T. & Bremner, W. J. Drug insight: Recent advances in male hormonal contraception. Nature Clin. Pract. Endocrinol. Metab. 2, 32–41 (2006).

    CAS  Google Scholar 

  101. Visconti, P. E. et al. Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development 121, 1139–1150 (1995).

    CAS  PubMed  Google Scholar 

  102. Leclerc, P., de Lamirande, E. & Gagnon, C. Cyclic adenosine 3′, 5′monophosphate-dependent regulation of protein tyrosine phosphorylation in relation to human sperm capacitation and motility. Biol. Reprod. 55, 684–692 (1996).

    CAS  PubMed  Google Scholar 

  103. Chang, M. C. Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature 168, 697–698 (1951).

    CAS  PubMed  Google Scholar 

  104. Demarco, I. A. et al. Involvement of a Na+/HCO−3 cotransporter in mouse sperm capacitation. J. Biol. Chem. 278, 7001–7009 (2003).

    CAS  PubMed  Google Scholar 

  105. Xu, W. M. et al. Cystic fibrosis transmembrane conductance regulator is vital to sperm fertilizing capacity and male fertility. Proc. Natl Acad. Sci. USA 104, 9816–9821 (2007).

    CAS  PubMed  Google Scholar 

  106. Chen, Y. et al. Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289, 625–628 (2000).

    CAS  Google Scholar 

  107. Wang, D. et al. A sperm-specific Na+/H+ exchanger (sNHE) is critical for expression and in vivo bicarbonate regulation of the soluble adenylyl cyclase (sAC). Proc. Natl Acad. Sci. USA 104, 9325–9330 (2007).

    CAS  PubMed  Google Scholar 

  108. Carrera, A. et al. Regulation of protein tyrosine phosphorylation in human sperm by a calcium/calmodulin-dependent mechanism: identification of A kinase anchor proteins as major substrates for tyrosine phosphorylation. Dev. Biol. 180, 284–296 (1996).

    CAS  PubMed  Google Scholar 

  109. Farrell, J. et al. Somatic 'soluble' adenylyl cyclase isoforms are unaffected in Sacy tm1Lex/Sacy tm1Lex 'knockout' mice. PLoS ONE 3, e3251 (2008).

    PubMed  PubMed Central  Google Scholar 

  110. Esposito, G. et al. Mice deficient for soluble adenylyl cyclase are infertile because of a severe sperm-motility defect. Proc. Natl Acad. Sci. USA 101, 2993–2998 (2004).

    CAS  PubMed  Google Scholar 

  111. Xie, F. et al. Soluble adenylyl cyclase (sAC) is indispensable for sperm function and fertilization. Dev. Biol. 296, 353–362 (2006).

    CAS  PubMed  Google Scholar 

  112. Livera, G. et al. Inactivation of the mouse adenylyl cyclase 3 gene disrupts male fertility and spermatozoon function. Mol. Endocrinol. 19, 1277–1290 (2005).

    CAS  PubMed  Google Scholar 

  113. Baxendale, R. W. & Fraser, L. R. Evidence for multiple distinctly localized adenylyl cyclase isoforms in mammalian spermatozoa. Mol. Reprod. Dev. 66, 181–189 (2003).

    CAS  PubMed  Google Scholar 

  114. Sinclair, M. L. et al. Specific expression of soluble adenylyl cyclase in male germ cells. Mol. Reprod. Dev. 56, 6–11 (2000).

    CAS  PubMed  Google Scholar 

  115. Luconi, M. et al. Tyrosine phosphorylation of the a kinase anchoring protein 3 (AKAP3) and soluble adenylate cyclase are involved in the increase of human sperm motility by bicarbonate. Biol. Reprod. 72, 22–32 (2005).

    CAS  PubMed  Google Scholar 

  116. Pastor-Soler, N. et al. Bicarbonate-regulated adenylyl cyclase (sAC) is a sensor that regulates pH-dependent V-ATPase recycling. J. Biol. Chem. 278, 49523–49529 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Steegborn, C. et al. A novel mechanism for adenylyl cyclase inhibition from the crystal structure of its complex with catechol estrogen. J. Biol. Chem. 280, 31754–31759 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Hess, K. C. et al. The “soluble” adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Dev. Cell 9, 249–259 (2005). A study describing the function and the underlying mechanisms of sAC in fertilization as well as the effects of a selective sAC inhibitor.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Marquez, B. & Suarez, S. S. Soluble adenylyl cyclase is required for activation of sperm but does not have a direct effect on hyperactivation. Reprod. Fertil. Dev. 20, 247–252 (2008).

    CAS  PubMed  Google Scholar 

  120. Buck, J., Levin, L. R. & Muehschlegel, F. A. Chemical inhibitors of soluble adenylyl cyclase (sAC). US Patent WO/2007/041863 (2005).

  121. Nathan, C. F., Buck, J., Levin, L. R. & Han, H. Novel chemical inhibitors of neutrophil activation through the sAC-dependent pathway. US Patent WO/2006/113236 (2006).

  122. Johnson, R. A. et al. Isozyme-dependent sensitivity of adenylyl cyclases to P-site-mediated inhibition by adenine nucleosides and nucleoside 3′-polyphosphates. J. Biol. Chem. 272, 8962–8966 (1997).

    CAS  PubMed  Google Scholar 

  123. Haslam, R. J., Davidson, M. M. & Desjardins, J. V. Inhibition of adenylate cyclase by adenosine analogues in preparations of broken and intact human platelets. Evidence for the unidirectional control of platelet function by cyclic AMP. Biochem. J. 176, 83–95 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Dessauer, C. W. & Gilman, A. G. The catalytic mechanism of mammalian adenylyl cyclase. Equilibrium binding and kinetic analysis of P-site inhibition. J. Biol. Chem. 272, 27787–27795 (1997).

    CAS  PubMed  Google Scholar 

  125. Tesmer, J. J. et al. Molecular basis for P-site inhibition of adenylyl cyclase. Biochemistry 39, 14464–14471 (2000).

    CAS  PubMed  Google Scholar 

  126. Shoshani, I., Laux, W. H., Perigaud, C., Gosselin, G. & Johnson, R. A. Inhibition of adenylyl cyclase by acyclic nucleoside phosphonate antiviral agents. J. Biol. Chem. 274, 34742–34744 (1999).

    CAS  PubMed  Google Scholar 

  127. Onda, T. et al. Type-specific regulation of adenylyl cyclase. Selective pharmacological stimulation and inhibition of adenylyl cyclase isoforms. J. Biol. Chem. 276, 47785–47793 (2001).

    CAS  PubMed  Google Scholar 

  128. Zhuo, M. Method for treating neuronal and non-neuronal pain. US Patent WO/2005/070419 (2007).

  129. Cooney, D. A. et al. Initial studies on the cellular pharmacology of 2′, 3′-dideoxyadenosine, an inhibitor of HTLV-III infectivity. Biochem. Pharmacol. 36, 1765–1768 (1987).

    CAS  PubMed  Google Scholar 

  130. Griffith, T. M., Chaytor, A. T., Edwards, D. H., Daverio, F. & McGuigan, C. Enhanced inhibition of the EDHF phenomenon by a phenyl methoxyalaninyl phosphoramidate derivative of dideoxyadenosine. Br. J. Pharmacol. 142, 27–30 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Gille, A. & Seifert, R. 2′(3′)-O-(N-methylanthraniloyl)-substituted GTP analogs: a novel class of potent competitive adenylyl cyclase inhibitors. J. Biol. Chem. 278, 12672–12679 (2003).

    CAS  PubMed  Google Scholar 

  132. Gille, A. et al. Differential inhibition of adenylyl cyclase isoforms and soluble guanylyl cyclase by purine and pyrimidine nucleotides. J. Biol. Chem. 279, 19955–19969 (2004). This work characterized isoform-selective inhibitors using various adenylyl and guanylyl cyclases.

    CAS  PubMed  Google Scholar 

  133. Mou, T. C., Gille, A., Fancy, D. A., Seifert, R. & Sprang, S. R. Structural basis for the inhibition of mammalian membrane adenylyl cyclase by 2 ′(3′)-O-(N-Methylanthraniloyl)-guanosine 5 ′-triphosphate. J. Biol. Chem. 280, 7253–7261 (2005).

    CAS  PubMed  Google Scholar 

  134. Wang, J. L. et al. A conformational transition in the adenylyl cyclase catalytic site yields different binding modes for ribosyl-modified and unmodified nucleotide inhibitors. Bioorg. Med. Chem. 15, 2993–3002 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Mou, T. C. et al. Broad specificity of mammalian adenylyl cyclase for interaction with 2′, 3′-substituted purine- and pyrimidine nucleotide inhibitors. Mol. Pharmacol. 70, 878–886 (2006).

    CAS  PubMed  Google Scholar 

  136. Kamenetsky, M. et al. Molecular details of cAMP generation in mammalian cells: a tale of two systems. J. Mol. Biol. 362, 623–639 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Jaleel, M., Shenoy, A. R. & Visweswariah, S. S. Tyrphostins are inhibitors of guanylyl and adenylyl cyclases. Biochemistry 43, 8247–8255 (2004).

    CAS  PubMed  Google Scholar 

  138. Schlicker, C. et al. Structure-based development of novel adenylyl cyclase inhibitors. J. Med. Chem. 51, 4456–4464 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Haunso, A., Simpson, J. & Antoni, F. A. Small ligands modulating the activity of mammalian adenylyl cyclases: a novel mode of inhibition by calmidazolium. Mol. Pharmacol. 63, 624–631 (2003).

    CAS  PubMed  Google Scholar 

  140. Robbins, J. D. et al. Differential identification and localization of adenylyl cyclase and glucose transporter in brain using iodinated derivatives of forskolin. Brain Res. 581, 148–152 (1992).

    CAS  PubMed  Google Scholar 

  141. Zhang, G., Liu, Y., Ruoho, A. E. & Hurley, J. H. Structure of the adenylyl cyclase catalytic core. Nature 386, 247–253 (1997).

    CAS  PubMed  Google Scholar 

  142. Tesmer, J. J., Sunahara, R. K., Gilman, A. G. & Sprang, S. R. Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsa.GTPgS. Science 278, 1907–1916 (1997). This study describes the crystal structure of the two catalytic AC domains.

    CAS  PubMed  Google Scholar 

  143. Pinto, C. et al. Activation and inhibition of adenylyl cyclase isoforms by forskolin analogs. J. Pharmacol. Exp. Ther. 325, 27–36 (2008). This paper describes a screen for forskolin-based activators and inhibitors using various AC isoforms.

    CAS  PubMed  Google Scholar 

  144. Tang, W. J. & Gilman, A. G. Construction of a soluble adenylyl cyclase activated by Gs alpha and forskolin. Science 268, 1769–1772 (1995).

    CAS  PubMed  Google Scholar 

  145. Scholich, K., Barbier, A. J., Mullenix, J. B. & Patel, T. B. Characterization of soluble forms of nonchimeric type V adenylyl cyclases. Proc. Natl Acad. Sci. USA 94, 2915–2920 (1997).

    CAS  PubMed  Google Scholar 

  146. Patel, T. B., Wittpoth, C., Barbier, A. J., Yigzaw, Y. & Scholich, K. Functional analyses of type V adenylyl cyclase. Methods Enzymol. 345, 160–187 (2002).

    PubMed  Google Scholar 

  147. Tesmer, J. J. et al. Two-metal-Ion catalysis in adenylyl cyclase. Science 285, 756–760 (1999).

    CAS  PubMed  Google Scholar 

  148. Dessauer, C. W., Tesmer, J. J., Sprang, S. R. & Gilman, A. G. The interactions of adenylate cyclases with P-site inhibitors. Trends Pharmacol. Sci. 20, 205–210 (1999).

    CAS  PubMed  Google Scholar 

  149. D'Orazio, J. A. et al. Topical drug rescue strategy and skin protection based on the role of Mc1r in UV-induced tanning. Nature 443, 340–344 (2006).

    CAS  PubMed  Google Scholar 

  150. Chen-Goodspeed, M., Lukan, A. N. & Dessauer, C. W. Modeling of Galpha(s) and Galpha(i) regulation of human type V and VI adenylyl cyclase. J. Biol. Chem. 280, 1808–1816 (2005).

    CAS  PubMed  Google Scholar 

  151. Dessauer, C. W., Chen-Goodspeed, M. & Chen, J. Mechanism of Galpha i-mediated inhibition of type V adenylyl cyclase. J. Biol. Chem. 277, 28823–28829 (2002).

    CAS  PubMed  Google Scholar 

  152. Dessauer, C. W., Tesmer, J. J., Sprang, S. R. & Gilman, A. G. Identification of a Gialpha binding site on type V adenylyl cyclase. J. Biol. Chem. 273, 25831–25839 (1998).

    CAS  PubMed  Google Scholar 

  153. Sinha, S. C. & Sprang, S. R. Structures, mechanism, regulation and evolution of class III nucleotidyl cyclases. Rev. Physiol. Biochem. Pharmacol. 157, 105–140 (2006).

    CAS  PubMed  Google Scholar 

  154. Rauch, A., Leipelt, M., Russwurm, M. & Steegborn, C. Crystal structure of the guanylyl cyclase Cya2. Proc. Natl Acad. Sci. USA 105, 15720–15725 (2008).

    CAS  PubMed  Google Scholar 

  155. Sunahara, R. K. et al. Exchange of substrate and inhibitor specificities between adenylyl and guanylyl cyclases. J. Biol. Chem. 273, 16332–16338 (1998).

    CAS  PubMed  Google Scholar 

  156. Tucker, C. L., Hurley, J. H., Miller, T. R. & Hurley, J. B. Two amino acid substitutions convert a guanylyl cyclase, RetGC-1, into an adenylyl cyclase. Proc. Natl Acad. Sci. USA 95, 5993–5997 (1998).

    CAS  PubMed  Google Scholar 

  157. Wong, S. T. et al. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 27, 487–497 (2000).

    CAS  PubMed  Google Scholar 

  158. Lee, K. W. et al. Impaired D2 dopamine receptor function in mice lacking type 5 adenylyl cyclase. J. Neurosci. 22, 7931–7940 (2002).

    CAS  PubMed  Google Scholar 

  159. Geng, W. et al. Cloning and characterization of the human soluble adenylyl cyclase. Am. J. Physiol. Cell Physiol. 288, C1305–1316 (2005).

    CAS  PubMed  Google Scholar 

  160. Visel, A., Alvarez-Bolado, G., Thaller, C. & Eichele, G. Comprehensive analysis of the expression patterns of the adenylate cyclase gene family in the developing and adult mouse brain. J. Comp. Neurol. 496, 684–697 (2006).

    CAS  PubMed  Google Scholar 

  161. Defer, N., Best-Belpomme, M. & Hanoune, J. Tissue specificity and physiological relevance of various isoforms of adenylyl cyclase. Am. J. Physiol. Renal Physiol. 279, 400–416 (2000).

    Google Scholar 

  162. Schmid, A. et al. Soluble adenylyl cyclase is localized to cilia and contributes to ciliary beat frequency regulation via production of cAMP. J. Gen. Physiol. 130, 99–109 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Ishikawa, Y., Grant, B. S., Okumura, S., Schwencke, C. & Yamamoto, M. Immunodetection of adenylyl cyclase protein in tissues. Mol. Cell Endocrinol. 162, 107–112 (2000).

    CAS  PubMed  Google Scholar 

  164. Wade, M. A., Roman, S. D., Jones, R. C. & Aitken, R. J. Adenylyl cyclase isoforms in rat testis and spermatozoa from the cauda epididymidis. Cell Tissue Res. 314, 411–419 (2003).

    CAS  PubMed  Google Scholar 

  165. Chaudhry, A., Muffler, L. A., Yao, R. & Granneman, J. G. Perinatal expression of adenylyl cyclase subtypes in rat brown adipose tissue. Am. J. Physiol. 270, 755–760 (1996).

    Google Scholar 

  166. Shen, T. et al. Localization and differential expression of adenylyl cyclase messenger ribonucleic acids in rat adrenal gland determined by in situ hybridization. Endocrinology 138, 4591–4598 (1997).

    CAS  PubMed  Google Scholar 

  167. Chabardes, D. et al. Localization of mRNAs encoding Ca2+-inhibitable adenylyl cyclases along the renal tubule. Functional consequences for regulation of the cAMP content. J. Biol. Chem. 271, 19264–19271 (1996).

    CAS  PubMed  Google Scholar 

  168. Wackym, P. A., Troyanovskaya, M. & Popper, P. Adenylyl cyclase isoforms in the vestibular periphery of the rat. Brain Res. 859, 378–380 (2000).

    CAS  PubMed  Google Scholar 

  169. Muglia, L. M. et al. The 5′-flanking region of the mouse adenylyl cyclase type VIII gene imparts tissue-specific expression in transgenic mice. J. Neurosci. 19, 2051–2058 (1999).

    CAS  PubMed  Google Scholar 

  170. Suzuki, Y. et al. Expression of adenylyl cyclase mRNAs in the denervated and in the developing mouse skeletal muscle. Am. J. Physiol. 274, 1674–1685 (1998).

    Google Scholar 

Download references

Acknowledgements

The work was supported by the DFG (SCHO817-1/-2, Excellence Cluster Cardio-Pulmonary System (ECCPS)) and the LOEWE Lipid Signalling Forschungszentrum Frankfurt (LiFF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Scholich.

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

FURTHER INFORMATION

Klaus Scholich's homepage

Glossary

Nociception

Neuronal processing of painful (noxious) stimuli.

Hyperalgesia

An increased response or sensitivity to a painful stimulus.

NSAID

(Non-steroidal anti-inflammatory drug). Drug family that is classically used for their anti-inflammatory, antihyperalgesic, and antipyretic effects.

Allodynia

Pain resulting from a stimulus that does normally not cause pain.

Dependence

A state in which the body relies on a substance for normal functioning and develops physical and/or psychological dependence.

Withdrawal

Refers to symptoms that appear when a drug that causes physical or psychological dependence is discontinued after regular and long-term use.

Hypertrophy

Increase of the size of an organ or of a selected area of tissue.

Complete Freund's Adjuvant

A suspension of desiccated Mycobacterium butyricum in a mixture of paraffin oil and an emulsifying agent, mannide mono-oleate, that is used to induce a strong and long-lasting inflammatory response in animals.

LTP

(Long-term potentiation).The prolonged strengthening of synaptic communication, induced by patterned input. It is thought to be involved in learning and memory formation.

Excitotoxicity

Process in which nerve cells are damaged and killed after overstimulation by excitatory neurotransmitters.

Desensitization

Loss of responsiveness to the continuing or increasing dose of a drug. Desensitization of G-protein coupled receptors comprise internalization and/or downregulation of the respective receptors.

Catecholamine

Natural and chemical compounds based on the amino-acid tyrosine, such as adrenaline, noradrenaline and dopamine. They activate G-protein coupled receptors and can regulate intracellular cAMP levels.

Decompensated heart failure

Failure of the heart to maintain adequate blood circulation, often a consequence of myocardial infarction, longstanding hypertension, dysfunction of heart valves, viral infection or gene mutations.

Phospholamban

An integral membrane protein that inhibits the sarcoplasmic reticulum calcium pump (SERCA) in cardiac muscle and skeletal muscle cells. Phosphorylation by protein kinase A relieves the inhibitory effect on SERCA and thereby contributes to the positive inotropic effect of catecholamines.

Inotropic

Alterations in the force of cardiac muscle contractions. Negative inotropic agents weaken, and positive inotropic agents increase, the strength of cardiac muscle contraction.

Lead compound

Compound possessing a specific pharmacological activity whose structure modifications will allow the development of further compounds with improved pharmacological properties.

Sperm capacitation

Maturation of the spermatozoid in the female tract; it involves the destabilisation of the sperm-head membrane allowing it to penetrate and fertilize the oocyte.

Prodrug

An inactive substance that is metabolised after administration to its pharmacological active form.

BODIPY

(boron-dipyrromethene). A representative of a class of fluorescent dyes that comprise dipyrromethene complexed with a di-substituted boron atom. Coupled to forskolin, the BODIPY group increases the adenylyl cyclase selectivity of forskolin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierre, S., Eschenhagen, T., Geisslinger, G. et al. Capturing adenylyl cyclases as potential drug targets. Nat Rev Drug Discov 8, 321–335 (2009). https://doi.org/10.1038/nrd2827

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2827

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing