Opinion | Published:

The 'atypicality' of antipsychotics: a concept re-examined and re-defined

Nature Reviews Drug Discovery volume 8, pages 197202 (2009) | Download Citation

Abstract

Recent clinical trials have raised questions over the perceived advantages of second-generation 'atypical' antipsychotics over those from the first generation. An atypical antipsychotic in its original sense is one that lacks extrapyramidal side effects. However, the addition of other clinical features to the original concept of atypicality, such as efficacy against negative and cognitive symptoms, seems to have become a feature of searches for novel antipsychotics in the past two decades. Although this approach has led to some therapeutic advances, we propose that it has also hampered antipsychotic drug research and that reframing the concept of atypicality could have a key role in making genuine breakthroughs in schizophrenia therapy.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , , & Recherches sur les diméthylaminopropyl-N-phénothiazines substituées. C. R. Hebd. Seances Acad. Sci. 235, 59–60 (1952) (in French).

  2. 2.

    , & Utilisation thérapeutique psychiatrique d'une phénothiazine d'action centrale elective. Ann. Médico-Psychol. 110, 112–117 (1952) (in French).

  3. 3.

    & Use of reserpine in disturbed psychotic patients. Am. J. Psychiatry 112, 684–690 (1956).

  4. 4.

    , , & Quartre cas de dyskinésie, facio-bucco-linguo-masticatrice à l'évolution prolongée secondaire à un treatment par les neuroleptiques. Rev. Neurol. (Paris) 100, 751–755 (1959) (in French).

  5. 5.

    , , & Clinical experiences with a new piperazine derivative of phenothiazine in neuropsychiatry. Arch. Psychiatr. Nervenkr. Z. Gesamte Neurol. Psychiatr. 197, 534–550 (1958) (in German).

  6. 6.

    , , , & Klinische Untersuchungen über eine neue Gruppe tricyklischer Neuroleptika (Substanzen mit 7-gliedrigen heterocyclischen Zentralringen) 977–983 (V CINP Kongress, Washington, 1966) (in German).

  7. 7.

    et al. Das klinische Wirkungsbild von Clozapin (Untersuchung mit dem AMP-System). Pharmacopsychiatry 4, 201–211 (1971) (in German).

  8. 8.

    & Kritische Stellungnahme zum Begriff der Neuroleptika (anhand von pharmakologischen und klinischen Befunden mit Clozapin). Pharmakopsychiatr. Neuropsychopharmakol. 4, 182–191 (1971) (in German).

  9. 9.

    A historical perspective of clozapine. J. Clin. Psychiatry 60 (Suppl. 12), 22–23 (1999).

  10. 10.

    , , & Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch. Gen. Psychiatry 45, 789–796 (1988).

  11. 11.

    & Mechanisms of action of atypical antipsychotic drugs: a critical analysis. Psychopharmacology (Berl.) 124, 2–34 (1996).

  12. 12.

    & Atypical antipsychotics: are some more atypical than others? Psychopharmacology 148, 3–15 (2000).

  13. 13.

    An atypical compound by any other name is still a.... Psychopharmacology 148, 16–19 (2000).

  14. 14.

    & Prolaction is not a core dimension of “atypicality”. Psychopharmacology 162, 93 (2002).

  15. 15.

    Antipsychotic medications: metabolic and cardiovascular risk. J. Clin. Psychiatry 68 (Suppl. 4), 8–13 (2007).

  16. 16.

    , & A meta-analysis of the efficacy of second-generation antipsychotics. Arch. Gen. Psychiatry 60, 553–564 (2003).

  17. 17.

    et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N. Engl. J. Med. 353, 1209–1223 (2005).

  18. 18.

    et al. Randomized controlled trial of the effect on quality of life of second- vs first-generation antipsychotic drugs in schizophrenia: cost utility of the latest antipsychotic drugs in schizophrenia study (CUtLASS 1). Arch. Gen. Psychiatry 63, 1079–1087 (2006).

  19. 19.

    et al. Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial. Arch. Gen. Psychiatry 64, 633–647 (2007).

  20. 20.

    , & The ratios of serotonin2 and dopamine2 affinities differentiate atypical and typical antipsychotic drugs. Psychopharmacol. Bull. 25, 390–392 (1989).

  21. 21.

    , & Enhanced efficacy of both typical and atypical antipsychotic drugs by adjunctive α2 adrenoceptor blockade: experimental evidence. Int. J. Neuropsychopharmacol. 10, 191–202 (2007).

  22. 22.

    et al. Limbic selectivity of clozapine. Lancet 350, 490–491 (1997).

  23. 23.

    & Does fast dissociation from the dopamine D2 receptor explain the action of atypical antipsychotics? A new hypothesis. Am. J. Psychiatry 158, 360–369 (2001).

  24. 24.

    , , & Serotonin receptors: their key role in drugs to treat schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 27, 1159–1172 (2003).

  25. 25.

    et al. Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch. Gen. Psychiatry 49, 538–544 (1992).

  26. 26.

    , , , & Relationship between dopamine D2 occupancy, clinical response, and side effects: a double-blind study of first-episode schizophrenia. Am. J. Psychiatry 157, 514–520 (2000).

  27. 27.

    et al. A positron emission tomography study of quetiapine in schizophrenia: a preliminary finding of an antipsychotic effect with only transiently high dopamine D2 receptor occupancy. Arch. Gen. Psychiatry 57, 553–559 (2000).

  28. 28.

    et al. The striatal and extrastriatal D2/D3 receptor-binding profile of clozapine in patients with schizophrenia. Neuropsychopharmacology 31, 1027–1035 (2006).

  29. 29.

    et al. Occupancy of striatal and extrastriatal dopamine D2 receptors by clozapine and quetiapine. Neuropsychopharmacology 31, 1991–2001 (2006).

  30. 30.

    , & Clinical and theoretical implications of 5-HT2 and D2 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia. Am. J. Psychiatry 156, 286–293 (1999).

  31. 31.

    , , & Extrapyramidal side effects with risperidone and haloperidol at comparable D2 receptor occupancy levels. Psychiatry Res. 75, 91–101 (1997).

  32. 32.

    , , , & Suggested minimal effective dose of risperidone based on PET-measured D2 and 5-HT2A receptor occupancy in schizophrenic patients. Am. J. Psychiatry 156, 869–875 (1999).

  33. 33.

    et al. Striatal and temporal cortical D2/D3 receptor occupancy by olanzapine and sertindole in vivo: a [123I]epidepride single photon emission tomography (SPET) study. Psychopharmacology (Berl.) 150, 132–140 (2000).

  34. 34.

    et al. Optimizing limbic selective D2/D3 receptor occupancy by risperidone: a [123I]-epidepride SPET study. J. Clin. Psychopharmacol. 23, 5–14 (2003).

  35. 35.

    et al. Extrastriatal and striatal D2 dopamine receptor blockade with haloperidol or new antipsychotic drugs in patients with schizophrenia. Br. J. Psychiatry 179, 503–508 (2001).

  36. 36.

    et al. No support for regional selectivity in clozapine-treated patients: a PET study with [11C]raclopride and [11C]FLB 457. Am. J. Psychiatry 158, 926–930 (2001).

  37. 37.

    et al. High striatal occupancy of D2-like dopamine receptors by amisulpride in the brain of patients with schizophrenia. Int. J. Neuropsychopharmacol. 7, 421–430 (2004).

  38. 38.

    et al. Monthly administration of long-acting injectable risperidone and striatal dopamine D2 receptor occupancy for the management of schizophrenia. J. Clin. Psychiatry 69, 1281–1286 (2008).

  39. 39.

    & A dopaminergic deficit hypothesis of schizophrenia: the path to discovery. Dialogues Clin. Neurosci. 8, 137–142 (2006).

  40. 40.

    & Adaptive properties and heterogeneity of dopamine D2 receptors — pharmacological implications. Brain Res. Rev. 58, 374–378 (2008).

  41. 41.

    , , , & Dopamine axon varicosities in the prelimbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter. J. Neurosci. 18, 2697–2708 (1998).

  42. 42.

    et al. Dopamine transporter immunoreactivity in monkey cerebral cortex: regional, laminar, and ultrastructural localization. J. Comp. Neurol. 432, 119–136 (2001).

  43. 43.

    et al. Brain and plasma pharmacokinetics of aripiprazole in patients with schizophrenia: an [18F]fallypride PET study. Am. J. Psychiatry 165, 988–995 (2008).

  44. 44.

    et al. Dopamine D2 and D3 receptor occupancy in normal humans treated with the antipsychotic drug aripiprazole (OPC 14597): a study using positron emission tomography and [11C]raclopride. Neuropsychopharmacology 27, 248–259 (2002).

  45. 45.

    , & Mechanism of new antipsychotic medications: occupancy is not just antagonism. Arch. Gen. Psychiatry 60, 974–977 (2003).

  46. 46.

    et al. Safety and tolerability of aripiprazole at doses higher than 30 mg. Int. J. Neuropsychopharmacol. 5 (Suppl. 1), 185 (2002).

  47. 47.

    et al. Amisulpride versus flupentixol in schizophrenia with predominantly positive symptomatology – a double-blind controlled study comparing a selective D2-like antagonist to a mixed D1-/D2-like antagonist. The Amisulpride Study Group. Psychopharmacology 137, 223–232 (1998).

  48. 48.

    , & Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nature Rev. Drug Discov. 3, 353–359 (2004).

  49. 49.

    , , & Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261, 717–719 (1976).

  50. 50.

    , , NK3 receptor antagonists: the next generation of antipsychotics? Nature Rev. Drug Discov. 4, 967–975 (2005).

  51. 51.

    , , & Placebo-controlled evaluation of four novel compounds for the treatment of schizophrenia and schizoaffective disorder. Am. J. Psychiatry 161, 975–984 (2004).

  52. 52.

    Stress activation of glutamate neurotransmission in the prefrontal cortex: implications for dopamine-associated psychiatric disorders. Biol. Psychiatry 51, 775–787 (2002).

  53. 53.

    et al. In vivo pharmacological characterization of the structurally novel, potent, selective mGlu2/3 receptor agonist LY4040439 in animal models of psychiatric disorders. Psychopharmacology 193, 121–136 (2007).

  54. 54.

    et al. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nature Med. 13, 1102–1107 (2007).

  55. 55.

    , , , & Sarcosine or D-serine add-on treatment for acute exacerbation of schizophrenia: a randomized, double-blind, placebo-controlled study. Arch. Gen. Psychiatry 62, 1196–1204 (2005).

  56. 56.

    et al. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to clozapine for the treatment of schizophrenia. Biol. Psychiatry 60, 645–649 (2006).

  57. 57.

    et al. Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. Lancet 373, 31–41 (2009).

  58. 58.

    Course and outcome of schizophrenia. Am. J. Psychiatry 112, 161–169 (1955).

  59. 59.

    et al. Approaching a consensus cognitive battery for clinical trials in schizophrenia: the NIMH-MATRICS conference to select cognitive domains and test criteria. Biol. Psychiatry 56, 301–307 (2004).

  60. 60.

    et al. Identifying cognitive mechanisms targeted for treatment development in schizophrenia: an overview of the first meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia Initiative. Biol. Psychiatry 64, 4–10 (2008).

  61. 61.

    et al. Initial phase 2 trial of a nicotinic agonist in schizophrenia. Am. J. Psychiatry 165, 1040–1047 (2008).

  62. 62.

    et al. Subunit-selective modulation of GABA type A receptor neurotransmission and cognition in schizophrenia. Am. J. Psychiatry 165, 1585–1593 (2008).

Download references

Acknowledgements

This work was partly supported by the German Research Council (DFG), GR1399/4–1 and 4–2.

Author information

Affiliations

  1. Gerhard Gründer is at the Department of Psychiatry and Psychotherapy, RWTH Aachen University and JARA Brain — Translational Brain Medicine, Pauwelsstr. 30, 52074 Aachen, Germany.

    • Gerhard Gründer
  2. Hanns Hippius is at the Department of Psychiatry, University of Munich, Nuβbaumstr. 7, 80336 Munich, Germany.

    • Hanns Hippius
  3. Arvid Carlsson is at Sahlgrenska Academy, University of Göteborg, Medicinaregatan 3, 40530 Göteborg, Sweden.

    • Arvid Carlsson

Authors

  1. Search for Gerhard Gründer in:

  2. Search for Hanns Hippius in:

  3. Search for Arvid Carlsson in:

Competing interests

Gründer has served as a consultant for AstraZeneca, Bristol-Myers Squibb, Johnson & Johnson, Otsuka and Pfizer. He has also served on the speakers' bureau of AstraZeneca, Bristol-Myers Squibb, Eli Lilly, Janssen Cilag, Otsuka, Pfizer, Servier and Wyeth. He has received grant support from Alkermes, Bristol-Myers Squibb, Johnson & Johnson and Pfizer.

Hippius has served as a consultant for Eli Lilly.

Corresponding author

Correspondence to Gerhard Gründer.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nrd2806

Further reading